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Abstract—Tattoos are still poorly explored as a biometrics
factor for human identification, especially in public security,
where tattoos can play an important role for identifying criminals
and victims. Tattoos are considered a soft biometrics, since
they are not permanent and can change along time, differently
from hard biometrics traits (fingerprint, iris, DNA, etc). The
identification of tattoos are not simple, since they do not have
a definite pattern or location. This fact increases the complexity
of developing models to address this problem. In addition, the
tattoo identification roadmap is very complex, including several
steps and, in each step, specific methods need to be developed.
Among the several problems identified in this roadmap, we
tacked the identification problem, which is defined as: given an
image of a person, determine if there is a tattoo or not. We
present a deep learning model based on transfer learning for
the tattoo detection problem. We also used data augmentation to
improve the diversity of the training sets so as to achieve better
classification accuracy. Along the work two new datasets for
tattoo detection were created. Several comparative experiments
were done to evaluate the diversity of images in the datasets,
and the accuracy of the proposed model. Results were very
promising, achieving an accuracy of 95.1% in the test set, and
a Fl-score of 0.79 in an external dataset. Overall, results were
satisfactory, given the complexity of the problem. Future work
will focus on expanding the datasets created and addressing the
other problems of the tattoo roadmap.

Index Terms—Tattoo detection, Transfer learning, Deep neural
network, Pattern recognition

I. INTRODUCTION

Tattoos are not only an expression of art and a kind of
“customization” of the human body. They are also considered
as biometric identifications that, through their almost unique
features, can be used as a form of people identification.

Similar to clothing, tattoos are classified as soft biometrics,
that is, something that can be modified and is not permanent
[1]. However, tattoos are a human identification factor that
is very relevant from the applied point of view. Therefore,
the development of studies to improve the quality of the
identification systems based on this biometrics has significant
relevance not only to applied sciences but, also, to security.

Its application in public security, in particular, is of great
importance, since the problem of identifying individuals is a
fundamental issue for this area. The identification of suspects
or criminals, and the recognition of victims in disasters are two
examples of the use of tattoos as a biometrics. In these cases,
tattoos be helpful to public security agents in cases where the

hard biometrics (digital, iris, face, hand palm, etc.) may not
be available, as in the case of image capture on surveillance
cameras.

Hard biometrics have well-defined patterns and localization.
Therefore, the process of identifying these patterns is more
precise. However, tattoos do not have patterns, and may have
any shape, color, size or location on the body. Therefore,
one of the great challenges is, given an image (of a person),
devise if there is a tattoo or not. More specifically, the tattoo
is the only region of interest, and it can be considered the
foreground and all the remaining of the image is considered
the background. This is the tattoo detection problem.

The main objective of this work is to present a method
for detecting tattoos in images. This is the first issue of the
tattoo recognition roadmap, to be presented later. This study
is based on applying the transfer learning method to extract
features from images and, then, to detect tattoos using a trained
binary classifier. For this, different well-known deep learning
networks were tested in the transfer learning step. Along the
work, it was needed to create a high-quality dataset for training
the models. Specific data augmentation procedures were also
used to improve the robustness of the trained classifiers.

II. TATTOO RECOGNITION ROADMAP

Tattoo recognition is a complex process that involves several
tasks and, to the best of our knowledge, no model was found
in the literature capable of addressing all the problems related
in this roadmap. After compiling many studies carried out in
this area, we found that tattoo recognition is divided into two
main steps: pre-processing and recognition (Fig. 1).

The pre-processing step is responsible for preparing the
original image for the recognition step. It includes the fol-
lowing problems:

o Detection: determines whether an image (of a human) has

a tattoo or not.

o Location: finds where in the image the tattoo is found, and
returns a bounding-box around the corresponding region
of the image.

o Segmentation: crops out the exact contour of the tattoo
from the rest of the image, removing all the surrounding
background.

« Semantic Segmentation: crops further the tattoo image
separating each distinct object represented in the tattoo.



Localization

Pre-processing

Semantic
Segmentation

Segmentation

L

A1
] | !
[ Re-ldentification ] [ Classification [ De-ldentification ]

Image-to-lmage

Sketch-to-Image

Similarity

Partial
Image-to-lmage

Recognition

Figure 1. Tattoo recognition roadmap

The pre-processing tasks have the challenge to prepare the
image to be submitted to the next step, receiving a raw image
and returning an image without the noise represented by the
background. This process is as important as the recognition
process, because the better the pre-processing, the more effi-
cient the recognition.

The recognition processing, which are the methods that ef-
fectively perform the tattoo recognition, includes the following
problems:

o Re-identification: searches for an image in a dataset of
tattoo images, returning the one that is the most similar
to the searched tattoo. This process can be further divided
into other specific models:

— Image-to-Image: consists of, given a sample tattoo
image, finding the most similar image in a database.

— Sketch-to-Image: consists of, given a hand-drawn
sketch of a tattoo, finding the most similar image
in a database.

— Similar Groups: consists of, given a sample tattoo
image, finding a group of tattoos that are similar to
the one searched and that have the same pattern, but
not necessarily the original image searched.

— Partial Image-to-Image: consists of, given a partially
occluded tattoo image, finding images that have the
searched image as part of a complete image in the
database.

« Classification: given a tattoo image, give a description for
the object or objects that make up that image, returning
labels to the input image.

o De-Identification: consist of a process of erasing the tat-
too from an image, a process also known as anonymiza-
tion.

As mentioned before, the tattoo detection problem consists
in determining whether an image contains a tattoo or not.
Figure 2 shows some examples of images of people with
and without tattoos. Despite the theoretical simplicity of the
concept, the detection process is not such a simple task at all,
as there are no defined standards for what a tattoo is in terms of
patterns of shape, color, size, proportion to the individual and,
mainly, its location on the body. In addition, a single image
can have several tattoos. Furthermore, the background where
the image of a person was captured can introduce significant
noise to the detection process, since its complexity may be
confused with tattoos. Some of these issues are shown in the
images shown in Fig. 2, for both tattoo and non-tattoo images.

Figure 2. Example of images, used for the detection task, of people with and

without tattoos. Image "a" is an example of well-behaved situation, where the

tattoo is a well-defined, and the surrounding background is a clear skin. The
Image "b" there are multiple tattoos, and a bounding-box of them will include
other areas of the body where there is no tattoo. Also, the letters of the hat

may disturb the recognition process. In image "c" the painting in the backward
has similar patterns to the tattoo, and they are close to each other. The image

"d" is a good example of non-tattoo, easily identified. In the image "e", the
design of the clothes in contrast with the skin may be confused as a tattoo.
In image "f" the green background contrasts with the remaining foreground,
and the design of the tennis may be confused as a tattoo.

III. LITERATURE REVIEW

Tattoo detection plays a fundamental role in the initial
image filtering and data selection, and its importance has been
neglected for many years by the scientific community [2], and
the first publication on this topic came up only recently, in
2015 [3].

After that seminal publication, several other studies fol-
lowed. Table I presents a summary of the results recently
published for the tattoo detection problem. In this table,
column “Best Result 1” refers to results obtained when using
the same dataset for both, training the model and testing the
model, evaluating its accuracy. In the column “Best Result
2”, the accuracy presented was achieved by testing the model



Table I
TATTOO DETECTION PUBLISHED RESULTS

Ref.  Year Method Best Result 1 Best Result 2
[4] 2015 not cited 96.30% acc. -
2] 2016 CNN 98.80% acc. 93.78%

AlexNet
5] 2016 KNCF 99,839 ace. ;
2-Class SVM
AlexNet
6] 2017 NCE 99,839 ace. ;
2-Class SVM
[7] 2016 Decision tree 52.38% acc. -
[8] 2016  Faster R-CNN 98.25% acc. 80.66%
87.10% recall
WebTatt
(9] 2019 Faster RCNN  eDTattoo) 80.00%
61.70% recall
(Tatt-C)

using a different dataset from that used to train the model (this
issue will be addressed later in this paper).

In Table I it is noticed a diversity of machine learning meth-
ods as well as seemingly good results. However, training and
testing over the same dataset may lead to biased results, since
generalization capability of the classifiers are not evaluated.
This fact raises an important issue, the datasets used. Table II
describes the databases used in each study. Due to the large
diversity of tattoo types and the lack of standards for capturing
images, datasets can be very different to each other. As a
consequence, it is difficult or even unreasonable to compare
results.

It is important to notice that the first published results
appeared in response to the challenge published by NIST [3].
In this scenario, four institutions presented results, with the
company MorphoTrek presenting the best performance with
96.3% of accuracy [4]. Unfortunately, the algorithms used by
NIST participants were not published. This fact turned out
impossible to carry out external validation tests, which was
criticized in [2].

Table II
TATTOO DATASETS REFERENCED IN THE TATTOO DETECTION
BIBLIOGRAPHY.
Ref. Dataset Name # Tattoo  # Non-Tattoo
Images Images
[4] Tatt-C 1,349 1,000
2] Tatt-C 1,349 1,000
NTU_Flickr 5,740 4.260
[5], [6] Tatt-C 1,349 1,000
[7] Unidentified 547 -
Tatt-C 3,839 -
[8] PASCAL Visual Object
Classes (VOC) 20(J)7 i 9963
NTU_Flickr 5,740 4,260
Tatt-C 1,349 1,000
[9] NTU_Flickr 5,740 4.260
WebTattoo 300,000 -

Based on this scenario, [2] suggested to evaluate whether the
dataset available in [3] and [4] was sufficiently comprehensive
to ensure that the results presented could be generalized.
Therefore, the authors presented a Conventional Neural Net-
work (CNN) trained in two scenarios: the Tatt-C dataset
[3] and a dataset obtained from Flickr (NTU_Flickr). The
experiment consisted of training the network with one of the
datasets and validating with the other, and vice-versa. Initially,
in the same scenario presented in [4], the CNN described in
[2] had a slightly higher performance, increasing the previous
accuracy from 96.3% to 98.8%. In subsequent tests, networks
trained on the NIST dataset and validated on the NTU_Flickr
dataset performed less well than the other way around. Finally,
the authors showed that as the training dataset increases, the
result accuracy also improves.

In [5] and [6], authors also propose using a CNN for
tattoo detection, also basing their study on the Tatt-C dataset.
The proposed model consists in extracting features through
fine tuning the AlexNet network and, then, applying a linear
Support Vector Machine (SVM) to determine whether an
image has tattoos or not. The proposed algorithm was also
compared with [4], and obtained an accuracy of 99.83%, that
is, an improvement of 3.2% compared to the best initial result.

Another approach based on decision trees was presented by
[7], this time in its own dataset, with less expressive results,
reaching only 52.38% of accuracy.

In [8] the authors present a deep learning region-based
method, the Faster R-CNN, which is based on a fine-tuning
of the VGG_CNN_M_1024 network. The training data was
also based on Tatt-C dataset, but now joining other 9,963
images without tattoos divided in 20 object categories from
the PASCAL Visual Object Classes (VOC) 2007 dataset [10].
Their results were also compared with those presented in [4],
and its performance had an accuracy of 98.25%, meaning
1.95% better than that presented by MorphoTrek in [4].

More recently, [9] presented a detection model also using
a Faster R-CNN. In this model, the detection problem was
classified as an instance of the image recovery system, where
learning and detection were performed simultaneously. The
authors also present a result based on the recall percentage,
which was compared with the results obtained in [8]. While
[8] presented a recall of 45% to 0.1 FPPI (false positive per
image) for the Tatt-C dataset, the authors in [9] presented a
result of 61.7% for the same dataset and 87.1% to a dataset
obtained from the internet (called WebTattoo). In summary, it
is difficult to compare different works due to differences in
test procedures, metrics and the datasets used.

IV. DATASETS

Datasets are a fundamental part for all machine learning
methods. In the one hand, choosing the correct dataset to
perform a study is directly related to the quality of results.
On the other hand, looking at the results without evaluating
the dataset used can lead to misconceptions about the real
quality of results. Considering that a dataset is a sample of
the real world, it is particularly important for the efficiency



of machine learning methods that the datasets used reflect the
same diversity. Also, for multi-class datasets, the balance of
samples in the classes is another important issue since, in
general, classifiers are strongly biased towards the majority
class. Unfortunately, many real-world datasets do not follow
such principles. For instance, the dataset Tatt-C presented in
[3], widely used in the literature, have images of the non-tattoo
class predominantly of faces. Possibly, this can bias a classified
trained with this dataset, acquiring a misconcept that images
without tattoos are generally those with faces. This issue was
criticized by [2] in their publication. Despite this, that database
was the most used, to date, for studies involving tattoos.

Taking into account the previous considerations, we de-
signed datasets for this specific study taking care to maximize
the image diversity and minimize possible biases in the results.
Considering the need of two classes, namely, tattoo and non-
tattoo, both must have diversity not only in terms of the
specific part of the body that is in focus but, also, in the
amount of background, distance to the tatoo within the image
and framing pattern.

In addition, it is desirable to obtain data from different
sources, in order to avoid possible bias due to the source of
the information. In the next Section, experiments will show
how this issue was addressed.

Two datasets were created, namely, TattDetectB and TattDe-
tectF, with images extracted from internet at Bing' and Flickr?,
respectively. Each dataset was composed of 2,000 images
of people, 1,000 for the tattoo and 1,000 for the non-tattoo
class.To obtain images for the proposed dataset, a web scrap-
ing technique was used. It consists of scanning internet pages,
identifying images, and capturing. A Python script was used
to perform web scrapping. For each website we performed
the web scraping searching for images with and without
tattoos separately. Also, aiming at improving the diversity
of images, we searched for images with tattoos combined
with specific parts of the body, such as back, shoulder, arms,
legs, etc. Such a procedure was done for both, TattDetectB
and TattDetectF and, also, for tattoos and non-tattoos classes.
Overall, this procedure helped to provide a good balance
within the datasets.

For the two datasets, the same criterion was used for both,
tattoo and non-tattoo classes, including only images containing
at least one person in the image, or a part of a person.
Differently from other datasets in the literature, no other
random image (without a person) was included..

Here it is important to note that the TattDetectF dataset
used in this study is not the same as the NTU_Flickr dataset
mentioned in the studies carried out by other authors, already
cited here and presented in Table II. Although the data was
scrapped from the same source, they are different.

To date, we did not find any specific methodology for com-
paring tattoo datasets, regarding their diversity and complexity,
so as to compare our proposed datasets with other ones.

Thttp://bing.com
Zhttp://flickr.com

V. METHODS

In this work we used the transfer learning technique, which
has been shown excellent results in many classification prob-
lems, specially for image processing [11]-[13]. The basic idea
is to use a CNN architecture, trained for a given problem, and
re-use part of this architecture for other problem (Fig. 3). But,
usually using the same type of data, in our case, images.

Input Image

Features
Vector

Pre-trained Model

Figure 3. Proposed transfer-learning model

The last layers of the trained network is excluded and
the remaining is re-used as a feature extractor. In other
words, the knowledge learned by the trained network will
be transferred to another similar problem. Therefore, using
this procedure, a pre-trained network receives an image and
provides a feature vector that represents that image in a high-
dimensional embedded space.

In our working pipeline, the images of the training set are
presented to the feature extractor and the output vector is
forwarded to the input from a dense neural network, which
is the trainable classifier for tattoo or non-tattoo classes.

We applied two different approaches by using the dense
neural network. Firstly, using the same dataset for training and
testing the model, with a 10-fold cross validation procedure.
Secondly, using one dataset to train the model and a different
dataset to test it. In both approaches the classifier was a dense
network with a single hidden layer with 100 neurons, ReLu
activator function, Adam solver, regularization of 0.0001 and
200 iterations to train the network.

When data is scarce or with low variety, a convenient way
to expand data is by using data augmentation. With limited
data, many problems may appear, such as overfitting and poor
generalization capability. Those problems can be alleviated
by using data augmentation methods, specific for the nature
of the data being processed. In the case of images, there
are many possible transformations [14]. In our experiments
two scenarios using data augmentation were created. The
first one, the data were augmented 6 times, and the second,
augmented 12 times. For the first case, 6 randomly chosen
transformations were applied, out of the 12 following ones:
zoom, vertical mirroring, horizontal mirroring, rotation, warp
perspective, Poisson random noise, Gaussian random noise,
salt and pepper random noise, random contrast and brightness,
Gaussian blur and a bilateral filter. For the second case, all the
above-mentioned transformations were applied once each.

Also, we aimed to discover which CNN performed better as
the feature extractor for our classification problem. Therefore,



the classification accuracy of tattoo detection was used for
measuring the performance. The following architectures were
tested as feature extractors: SqueezeNet [15], Inception-v3
[16], VGG-16 and VGG-19 [17].

VI. EXPERIMENTS AND RESULTS

In this session, the results obtained for the experiments are
reported and commented. The experiments were carried out
using the Orange platform [18] and complemented with scripts
in the Python language, both running in the Windows 64 bits
environment, on a desktop computer with Intel i7-8565U CPU
@1.80GHz processor, and 16 GB of memory.

A. Evaluation of feature extractors

In the first experiment, we aimed at answering the following
question: “Which feature extractor can lead to better detec-
tion results ?”. As mentioned before, we used SqueezeNet,
Inception-v3, VGG-16, VGG-19. For these DNNs, the length
of the feature vectors are 1,000, 2,408, 4,096 and 4,096,
respectively.

In order to evaluate the quality of the feature extractors,
they were input to a dense neural network (fully-connected) to
classify each image into two classes: tattoo or non-tattoo. Both
datasets created (TattDetectB and TattDetectF) were used,
for training and testing with the four DNNs. We used the
10-fold cross-validation procedure and the average accuracy
was reported. Results were quite similar to each other, since
all feature extractors achieved very good results. Therefore,
since the difference between the performances of the feature
extractors was irrelevant, we elected Inception-v3 for the
further experiments.

B. Evaluation of the effect of data augmentation

Since the former experiment did not indicate preference for
a specific DNN architecture, the next experiment included all
of them.

In the literature it is well-known that data augmentation is a
valuable strategy for improving the quality of the classifier, es-
pecially for improving its generalization capability. Therefore,
experiments were done to answer the question: ‘“Does data
augmentation applied to the training set improves the detection
capability of the classifiers 7’

First, an “internal” baseline must be established. For this
purpose, two experiments were done: first training with
TattDetectB and testing with TattDetectF and, then, vice-versa.
Results are shown in the left side of Table III.

Next, two new groups of datasets were created. The first,
by augmenting each original image 5 times, generates a
dataset with 6,000 images (the 1,000 original images plus
5,000 augmented images). The second, by augmenting 12
times each original image, generates a training dataset with
13,000 images. The same data augmentation procedures were
applied to both, tattoo and non-tattoo images, of the original
datasets. Therefore, the following new datasets were created:
TattDetectB_Aug6, TattDetectF_Aug6, TattDetectB_Augl3,
and TattDetectF_Augl3.

Table IIT
RESULTS FOR THE DATA AUGMENTATION TESTS.

Baseline Augmented

Training Test Accuracy Training Test Accuracy

TattDetectB_Aug6 TattDetectF
TattDetectB_Aug13 TattDetectF

94,90%
95,10%

TattDetectB TattDetectF 93.95%

TattDetectF_Aug6 TattDetectB
TattDetectF_Augl3 TattDetectB

89,39%
90,24%

TattDetectF TattDetectB 88.40%

Now, using the new augmented datasets it is aimed to
verify if data augmentation can improve upon the baseline
results. That is, if the use of an augmented dataset increases
the generalization ability of the classifier. Therefore, four
experiments were run, and results are shown in the right side
of Table III.

Comparing the accuracies of the baseline and the augmented
experiments, it is inferred that data augmentation do improve
the generalization capability of the classifier. The amount of
improvement is small, possibly due to the fact that the baseline
is high. Also, augmenting more (*_Augl3) the original dataset
leaded to even better results. Comparatively, the classifier
trained with TattDetectB_Augl3 was the best performing, and
it will be used in the next experiments.

C. Comparison with other dataset

In order to perform an ‘“external” evaluation of our ap-
proach, it would be desirable to compare its performance
with other datasets published in the literature. However, the
direct comparison with those works are not possible because
some works published results by training and testing in the
same dataset. In most cases, there is no information about
how the dataset was split into training and testing datasets
or if cross-validation was used instead. Also, most of the
datasets used in previously published works are no longer
available for downloading. We succeeded to find only one
dataset with reasonable parameters for testing (two classes,
relatively balanced, and a large number of images). Therefore,
the question to be answered is: “How does our approach
perform with an external dataset?”.

The results for this experiment are presented in Table IV,
where we first trained the network with our datasets and, then,
tested with the NTU_Flickr dataset. Next, we trained with
the NTU_Flickr dataset and tested with our datasets. Observe
that the NTU_Flickr is unbalanced, with more tattoo images
than non-tattoo images (see Table II). Consequently, accuracy
is an inadequate performance measure, and the Fl-score is
used instead. For a fair comparison with our previous results
(Table III), it is necessary to report the corresponding F1-
score: when trained with TattDetectB_Augl3 and tested with
TattDetectF, the Fl-score was 0.95; and when trained with
TattDetectF_Augl3 and tested with TattDetectB, the F1 score
was 0.90.

Based on the results of Table III, we used both the classifiers
trained on the augmented datasets, i.e., TattDetectB_Augl3



Table IV
RESULTS FOR THE CLASSIFICATION USING AN EXTERNAL DATASET.

Training Test Fl-score
TattDetectB_Augl3  NTU_Flickr 0.78
TattDetectF_Augl3  NTU_Flickr 0.79

NTU_Flickr TattDetectB 0.53
NTU_Flickr TattDetectF 0.56

and TattDetectF_Augl3, to classify the NTU_Flickr dataset.
Results are shown in Table IV.

When training with our datasets and testing with the
NTU_Flickr, results were reasonable good, despite the results
be less than 10% lower than those achieved in Table III. On the
other hand, when training with NTU_Flickr and testing with
our datasets, the results showed a larger drop in performance.

To investigate the possible reasons for these differences in
performance, Figure 4 shows the confusion matrices for these
experiments. In (a), results seems to be relatively balanced,
although in (b) they are not, with many tattoo images being
classified as non-tattoo. A visual inspection of the TattDe-
tectF_Aug13 dataset, regarding tattoo images classified as non-
tattoos, indicated that they were either very small tattoos or
tattoos covering a large part of the body. This fact suggests
that the TattDetectB_Aug13 dataset has a wider range of tattoo
sizes in the images, compared with the TattDetectF_Augl3.

a) TattDetectB_Augl3 - NTU_Flickr

Predicted
non_tatttoo  tattoo total
T non_tattto 77.5% 21.1% 4260
E tattoo 22.5% 78.9% 5740
total 3814 6186 10000

b) TattDetectF_Augl3 - NTU_Flickr

Predicted
non_tatttoo tattoo total
—+ hon_tattto 68.4% 4.6% 4260
£ tattoo 31.6% 95.4% 5740
< total 5953 4047 10000

c) NTU_Flickr - TattDetectB

Predicted
non_tatttoo tattoo total
+ hon_tattto 95.6% 44.2% 1000
£ tattoo 4.4% 55.8% 998
< total 228 1770 1998

d) NTU_Flickr - TattDetectF

Predicted
non_tatttoo tattoo total
—+ hon_tattto 98.8% 43.2% 1000
£ tattoo 1.2% 56.8% 1000
< total 246 1754 2000

Figure 4. Confusion matrices for the experiments with an external dataset.

Observing the results of the confusion matrix in (c) and
(d), a systematic unbalance was found. The network trained
with NTU_Flickr dataset classified wrongly as tattoo 44.2% of
the non-tattoos images of the TattDetectB dataset, and 43.2%
of the TattDetectF dataset. The reasoning for this requires a
visual inspection in the NTU_Flickr dataset. It was built using
only human images in the tattoo class, and random images in
the non-tattoo class, i.e., images of animals, sights, objects,
drawings, cars, flowers, etc. On other hand, our datasets were
built using only images of people and human body parts, with
and without tattoos. This fact misleaded the classifier trained
with the NTU_Flickr to classify anything human-like as the
tattoo class.

D. Qualitative analysis

Finally, a qualitative analysis was carried out with the
objective of verifying in which scenarios our approach had
classification errors. Such analysis could shed a light into
which kind of tattoos and non-tattoos are more difficult to
be classified.

The confusion matrices from two of the best-performing
train-test pairs shown in Table III are shown in Figure 5.
On the one hand, when trained with TattDetectB_Augl3
and tested with TattDetectF more non-tattoos were wrongly
classified as tattoos (8.47%) than the opposite (0.66%). On the
other hand, when trained with TattDetectF_Augl3 and tested
with TattDetectB more tattoos were wrongly classified as non-
tattoos (16.19%) than the opposite (0.25%).

Although the results are obtained in terms of overall
accuracy, this qualitative analysis helps us to realize that
the datasets still deserve a little more attention, especially
regarding to their image diversity, since this is, possibly, the
cause of the asymmetry in the results reported above.

In the case of the model trained with the TattDe-
tectB_Augl3 dataset, which had a larger error when classi-
fying non-tattoos, the dataset was inspected. We observed that
the non-tattoo part of the dataset is composed of many clean
images, with a large amount of images with light backgrounds,
and without much visual pollution. On the other hand, the
wrongly classified non-tattoo images had more colorful back-
grounds or people wearing more colorful clothes with details.

The same qualitative analysis was done with the TattDe-
tectF_Augl3 dataset. We found that the wrongly classified
images were those that had tattoos with less details, smaller
in size to the image or less colorful, a class of images with
less samples in trained dataset.

To exemplify the qualitative nature of this analysis, Fig. 6
brings some samples of images that were incorrectly classified
as tattoos. It was possible to notice the following: elements
with high contrast (a, b), colorful backgrounds (c, d, e, h),
many details (h, i), people wearing colorful clothes (j, k),
confused or blurred images (f), images with some colored
element different from the rest of the image (g, k).

Similarly, Fig. 7 brings samples of images that had tattoos
but were classified as non-tattoos. In general, errors were due
to the small size of the tattoo, regarding the size of the image



a) TattDetectB_Augl3 - TattDetectF

Predicted
non_tatttoo tattoo  total
= non_tattto 99.34% 8.47% 1000
£ tattoo 0.66% 91.53% 1000
= total 914 1086 2000

b) TattDetectF_Augl3 - TattDetectB

Predicted
non_tatttoo tattoo  total
= non_tattto 83.81% 0.25% 1000
£ tattoo 16.19% 99.75% 1000
= total 1192 808 2000

Figure 5. Confusion matrices for different training and testing datasets.

Figure 6. Examples of non-tattoos wrongly classified as tattoos.

those in which the tattoos were hidden or very small (a, b, c,
d, e, f), with many people (e, f), person full of tattoos (g, h)
or unfocused (i).

VII. CONCLUSIONS

The present study aimed to present a model based on
transfer learning applied to the problem of detecting tattoos
in images, that is, given an image, to determine whether there
is a tattoo on it or not.

This problem is the initial part of the tattoo identification
roadmap, which involves a series of steps, each with its
importance within the process (Figure 1).

From an applied point of view, and specifically in appli-
cations for public security, the use of tattoo recognition can
significantly contribute to the work of identifying individuals
and, thus, the development of new techniques that are robust
has a great applied value.

The results presented in this research project showed to
be significant, as it brought a new approach to the proposed
problem as well as showing robustness in the results presented.

Regarding the feature extraction process, it was found that
all DNN’s tested had an good performance and similar results,
reaching an average accuracy of 96.82% using a dense neural
network as a classifier, with 10-fold cross-validation.

We also observed that data augmentation is effective in pro-
viding more robustness for the classification process. A small
difference in performance (~5%) was observed using TattDe-
tectB_Augl3 and TattDetectF_Augl3 for feature extraction,

and TattDetectF and TattDetectB for testing, respectivelly.
Such assimetry raised the need for a qualitative analysis.

We also applied our approach to classify another dataset
found in the literature (NTU_Flickr [2], [8], [9]). In general,
results were good, considering that the type of images of
NTU_Flickr may be of different categories. Some imbalance
in the results were observed, and they were due to the type
of non-tattoo images of the NTU_Flickr dataset. Results sug-
gested that the datasets proposed in this work are more realistic
(than NTU_Flickr), keeping in mind that tattoo identification
only makes sense in images of humans. It is possible that this
fact contributed to reach better results.

However, it is important to emphasize that a quantitative
comparison of classification performance with other works is
not possible due to the methodological differences between
works. It should be pointed, also, that the former studies with
tattoos were based on the the Tatt-C dataset, provided by NIST,
which was discontinued over time and is no longer found for
download. Actually, the lack of standardized datasets for tattoo
detection is a great drawback for this area of research.

Future work will include the expansion of our datasets, with
increased diversity and quality, so that, once put at the public
domain, we can foster more research in this area. Also, a
deeper study about the effect of image properties, such as
sizes, proportion of the tattoo in the image, illumination, effect
of colors, effect of the complexity of the tattoos, etc, will be
interesting research directions to be sought in the near future.



Figure 7. Examples of tattoos wrongly classified as non-tattoos
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