
Hunting Android Malware Using Multimodal Deep
Learning and Hybrid Analysis Data

Angelo Schranko de Oliveira
PPGIGC

Universidade Nove de Julho
São Paulo, Brasil

ORCID 0000-0003-2933-9676

Renato José Sassi
PPGIGC

Universidade Nove de Julho
São Paulo, Brasil

ORCID 0000-0001-5276-4895

Abstract—In this work, we propose a new multimodal Deep
Learning (DL) Android malware detection method, Chimera,
that combines both manual and automatic feature engineering
by using the DL architectures, Convolutional Neural Networks
(CNN), feedforward Deep Neural Networks (DNN), and Trans-
former Networks (TN) to perform feature learning from raw
data (Dalvik Executables (DEX)), static analysis data (Android
Intents & Permissions), and dynamic analysis data (system
call sequences) respectively. To train and evaluate our model,
we implemented the Knowledge Discovery in Databases (KDD)
process and used the publicly available Android benchmark
dataset Omnidroid. By leveraging a hybrid source of information
to learn high-level feature representations for both the static and
dynamic properties of Android applications, Chimera’s detection
Accuracy, Precision, and Recall outperform classical Machine
Learning (ML) algorithms, state-of-the-art Ensemble, and Voting
Ensembles ML methods, as well as unimodal DL methods using
CNNs, DNNs, TNs, and Long-Short Term Memory Networks
(LSTM). To the best of our knowledge, this is the first work
that successfully applies multimodal DL to combine those three
different modalities of data using DNNs, CNNs, and TNs to learn
a shared representation that can be used in Android malware
detection tasks.

Index Terms—Android Malware Detection, Computer Secu-
rity, Multimodal Deep Learning.

I. INTRODUCTION

Malware, or malicious software, is any software intention-
ally designed to cause harm to a computer, user, or network
[1]. In order to understand malware internals and behavior,
one can make use of Malware Analysis techniques. Malware
Analysis is a set of techniques used to dissect malware and
understand how it works in order to identify and defeat it
[1]. It is based on a subset of techniques known as Static
Analysis, Dynamic Analysis, and Hybrid Analysis [2]. Static
Analysis provides a set of tools and techniques to under-
stand how malware works without executing it [2]. Dynamic
Analysis provides a set of tools and techniques to understand
how malware works by executing it in a controlled, isolated
environment known as sandbox [2]. Hybrid Analysis leverages
both Static Analysis and Dynamic Analysis to understand
malware effectively by taking advantage of both Static and
Dynamic Analysis resources. The information gathered using
Malware Analysis can be leveraged for malware detection

Coordination for the Improvement of Higher Education Personnel (CAPES)

and classification tasks [3]. The most common, faster, and
simpler way of detecting malware is using signature-based
methods [3]. Some disadvantages of signature-based methods
are their inefficiency in detecting polymorphic and metamor-
phic malware [4], zero-day malware, and the high rate of false
positives.

In order to increase the accuracy of malware detection and
classification methods, several ML and DL methods have been
proposed [5], [6]. The main advantage of ML malware detec-
tion methods is their capability of learning malicious patterns
from data (e.g., real-world malware samples); however, ML
techniques frequently require manual feature engineering in
order to achieve higher accuracy, which usually requires a
highly specialized workforce, and it is time-consuming. Deep
Learning malware detection methods leverage specialized ar-
chitectures designed for image processing, speech recognition,
sequence learning, and so on [7]. The main advantage of DL
methods is their capability of performing automatic feature
learning from structured and non-structured data of different
domains, thus decreasing the work associated with manual
feature engineering [7]. DL methods’ main disadvantage is the
requirement of large volumes of data and processing power to
achieve higher accuracy.

More recently, Android malware detection methods using
multimodal DL have also been proposed [8]–[12]. Multi-
modal DL uses independent, specialized DL subnetworks to
extract high-level feature representations from different data
modalities and combines the resulting embeddings into a
shared representation that can be used for classification and
regression tasks [13]. In this work, we propose Chimera, a
new Android malware detection method based on multimodal
DL and hybrid Analysis. As we can see in Figure 1, Chimera
is composed of 3 independent DL subnetworks: (1) Chimera-
Static (Chimera-S), a DNN [7] to learn high-level feature
representations from Android Intents & Permissions using an
early fusion layer. (2) Chimera-Raw (Chimera-R), a CNN
[14] to learn high-level feature representations from raw data
transformed into DEX grayscale images, and (3) Chimera-
Dynamic (Chimera-D), a TN encoder [15] to learn high-level
feature representations from the system call sequences. Finally,
the intermediate fusion network is responsible for imple-
menting shared high-level feature representations using each



subnetwork’s internal representations and learning correlations
that can be leveraged for Android malware detection. Our ex-
periments’ results indicate that Chimera’s detection Accuracy,
Precision, Recall, and ROC AUC outperform classical ML
algorithms, state-of-the-art Ensemble and Voting Ensembles
ML methods, as well as unimodal DL methods using CNNs,
DNNs, TNs, and LSTMs. To the best of our knowledge,
this is the first work that uses a combination of raw data,
static analysis data, and dynamic analysis data inputs for a
multimodal DL method based on CNNs, DNNs, and TNs to
learn shared representations that can be applied to Android
malware detection.

II. RELATED WORK

The first Android malware detection method based on
multimodal deep learning was introduced by [8]. The authors
used Static Analysis data extracted from different sources:
Android Manifest files, decompiled DEX files and disassem-
bled shared libraries. A multimodal DL architecture based
on several DNNs was proposed for feature extraction, and
an intermediate fusion layer was introduced to build shared
representations that can be used for malware detection. [9]
introduced a multimodal DL method that implements an
intermediate fusion layer composed of features extracted from
Static Analysis data: Permissions and Hardware Features. The
authors evaluated the performance of using each modality
separately and in the multimodal setting. [10] proposed a
multimodal DL method that implements an early fusion layer
composed of features extracted from Static Analysis data:
Android Manifest files and Java API modules. Moreover,
the authors also included the Sigpid (Significant Permission
Identification) as a feature since SigPid was evaluated to have
high discriminative power. [11] introduced a multimodal DL
method to extract features from Static Analysis data: Android
Manifest files and decompiled DEX files. The multimodal
DL architecture is based on CNNs for feature extraction, an
intermediate fusion layer to build shared representations of
the extracted features and a DNN for malware detection. [12]
developed a multimodal DL method to extract features from
Static and Dynamic Analysis data and proposed a multimodal
DL architecture based on several DNNs and an intermediate
fusion layer to build the shared representations that can be
used for malware detection.

III. PROPOSED METHOD AND METHODOLOGY

This work follows the Knowledge Discovery in Databases
(KDD) process [16] and Supervised ML methodology [17] for
model selection, training, and evaluation. KDD is an iterative,
interactive, and non-trivial process composed of several stages
for extracting (useful) patterns from large databases. Figure
5 depicts the KDD process implementation for Chimera.
Since Chimera is a multimodal method, each DL subnetwork
(Chimera-S, Chimera-R, and Chimera-D) is responsible for
feature extraction from a different data source. Therefore, the
Selection, Preprocessing, Transformation, and Data Mining
stages are performed independently for each DL subnetwork.

Moreover, an additional Data Mining implementation step
is executed over the intermediate fusion layer built using
high-level feature representations learned by each DL sub-
network. Finally, the Interpretation stage is performed by the
last Chimera’s DNN classifier layer. In the context of the
KDD process, the knowledge produced by our method can
be summarized by its generalization performance, i.e., the
detection accuracy resulting from 10-fold cross-validation.

The main advantage of Chimera over the other methods is
the use of three different data modalities, i.e., raw data, static
analysis data, and dynamic analysis data, to tune, train, and
evaluate the model and each one of its subnetworks. More-
over, each subnetwork implements a specialized architecture
designed for its data modality in order to perform better feature
learning, and therefore improving the method’s performance.

A. Selection, Preprocessing and Transformation

In this work, we used the Android benchmark dataset
Omnidroid, introduced by [18]. Omnidroid is a balanced
dataset composed of pre-static, static, and dynamic analysis
information extracted from 22,000 real malware and benign
Android applications. We also downloaded the APK files
required for Chimera-R from the online malware repositories
Androzoo1.

1) Chimera-S: Inspired by the work presented in [19]–[21],
Chimera-S and Chimera implement an early fusion layer to
combine both Android Intents and Android Permissions for
malware detection. We extracted the top-100 Android Intents
and the top-100 Android Permissions from Omnidroid’s JSON
files, concatenated them into a 200-dimensional feature vector,
and saved the result into a CSV file using binary encoding to
indicate the presence or absence of a particular Android Intent
or Android Permission for each instance. Finally, the Trans-
formation stage was performed by applying a Standardization
procedure [17].

2) Chimera-R: DEX files contain the executable code in
Dalvik (bytecode) format. The methods proposed by [22],
[23] make use of DEX bytecodes as images for malware
detection and classification tasks. Figure 3 depicts grayscale
images representing two benign Android applications and
two Android malware instances. Motivated by their work,
Chimera-R and Chimera also use data from the DEX files
for Android malware detection to perform automatic feature
extraction from DEX grayscale images using CNNs. The
Transformation stage was performed by resampling the data
to image representations of 1x128x128 pixels (channel, width,
height) using the Lanczos resampling algorithm [24], and by
applying Scaling and Standardization procedures [17].

3) Chimera-D: System call sequences represent the ap-
plication’s interaction with the hardware by calling low-
level functions exposed by the OS. Figure 4 depicts the
system call sequences of benign applications and malware
overlapped. Based on the work introduced by [25], Chimera-
D and Chimera also depend on data collected using Dynamic

1https://androzoo.uni.lu/



 Chimera

Chimera-S Subnetwork

Fully Connected
(200, 256)

Batch Normalization

ReLU

Dropout(0.5)

Fully Connected
(256, 128)

Batch Normalization

ReLU

Dropout(0.5)

Chimera-R Subnetwork

Convolution
(1, 8, 11, 2, 5)

Batch Normalization

ReLU

Convolution
(8, 16, 11, 2, 5)

Batch Normalization

ReLU

Convolution
(16, 32, 13, 2, 6)

Batch Normalization

ReLU

1x1 Convolution
(32, 128, 1, 1, 0)

Batch Normalization

ReLU

Dropout2D(0.5)

Average Pool 2D

Fully Connected
(128, 128)

Batch Normalization

ReLU

Dropout(0.5)

Fully Connected
(384, 512)

Batch Normalization

ReLU

Fully Connected
(512, 2)

Batch Normalization

ReLU

Dropout(0.3)Dropout(0.3)

Softmax

Intermediate
Fusion

Static Analysis Input
(Intents & Permissions)

Raw Input
(DEX Images)

Dynamic Analysis Input
(Syscalls Sequences)

Chimera-D Subnetwork

Dropout(0.5)

Transformer Encoder
(124, 512, 0.2, 4)

Fully Connected
(400 * 124, 128)

Batch Normalization

Positional Encoder

Batch Normalization

ReLU

Dropout(0.5)

ReLU

Fig. 1: Chimera Android malware detection method architecture.

Analysis, particularly the system call sequences. To reduce
noise and avoid loops, we removed all the consecutive repeat-
ing system calls. Then, we trimmed the sequences to 400-time
steps since the smallest resulting sequence after removing the
consecutive repeating system calls contained 415-time steps.
In total, 124 unique system calls were identified. Finally, the
Transformation stage is performed by converting the integer
encoded feature to its one-hot encoding representation [17].

B. Data Mining and Interpretation

In order to choose the best architectures for Chimera-S,
Chimera-R, Chimera-D, and Chimera, we performed model

selection using grid search cross-validation with 10-fold cross-
validation to estimate the generalization error [26] and the
Accuracy metric (See Equation 1) to guide the hyperparameter
tuning process.

1) Chimera-S: As depicted in Figure 2, Chimera-S intro-
duces a DNN architecture [27] with one input layer containing
200 neurons: 100 neurons for Android Intentions features
and 100 neurons for Android Permissions features. Two
hidden layers containing 256 and 128 neurons respectively,
and one output layer containing two neurons followed by a
Softmax layer. Each fully connected layer is followed by a
ReLU activation function. We included Dropout and Batch



Chimera-D

Dropout(0.5) Softmax

Dynamic Analysis Input
(Syscalls Sequences)

Transformer Encoder
(124, 512, 0.2, 4)

Fully Connected
(400 * 124, 128)

Batch Normalization

Positional Encoder

Batch Normalization

ReLU

Dropout(0.5)

ReLU

Fully Connected
(128, 2)

Dropout(0.5)

Batch Normalization

ReLU

Chimera-R

Convolution
(1, 8, 11, 2, 5)

Batch Normalization

ReLU

Convolution
(8, 16, 11, 2, 5)

Batch Normalization

ReLU

Convolution
(16, 32, 13, 2, 6)

Batch Normalization

ReLU

1x1 Convolution
(32, 128, 1, 1, 0)

Batch Normalization

ReLU

Dropout2D(0.5)

Average Pool 2D

Fully Connected
(128, 128)

Batch Normalization

ReLU

Dropout(0.5)

Fully Connected
(128, 2)

Batch Normalization

ReLU

Dropout(0.5)

Softmax

Raw Input
(DEX Images)

Chimera-S

Fully Connected
(200, 256)

Batch Normalization

ReLU

Dropout(0.5)

Fully Connected
(256, 128)

Batch Normalization

ReLU

Dropout(0.5)

Fully Connected
(128, 2)

Batch Normalization

ReLU

Dropout(0.5)

Softmax

Static Analysis Input
(Intents & Permissions)

Fig. 2: Chimera’s Android malware detection method DL subnetworks for Static Analysis data (Chimera-S), DEX grayscale
images (Chimera-R), and Dynamic Analysis data (Chimera-D).

Normalization layers between the fully connected layers and
between the output layer and the Softmax layer to mitigate
overfitting. In addition, the best results were found when
using the step decay schedule for the learning rate decay
strategy. After model selection using 10-fold cross-validation
on 216 candidate architectures (2160 fits), the best set of
hyperparameters found was:

• Number of neurons in the 1st/2nd hidden layer: 256/128
• Dropout probability: 0.5
• Number of epochs: 50
• Learning rate step decay schedule factor/steps: 0.5/10
2) Chimera-R: As we can see in Figure 3, the second row

depicts two malware instances from the same family (Trojan).
It is easy to see that both instances share common spatial
(visual) patterns. The same holds for the benign instances in
the first row. If the spatial patterns across the instances of
a dataset have enough discriminative power to identify the
instance’s class, then it is possible to use ML or DL techniques

to leverage the information contained in the spatial patterns for
detection and classification tasks. In fact, [22] proposed a CNN
architecture for Android malware classification using DEX
grayscale images, and [23] introduced a CNN architecture for
Android malware detection using DEX opcodes translated to
RGB images.

Our work follows a similar approach proposed by [22],
[23] and introduces a new CNN architecture inspired by the
Residual Networks (ResNet) architecture [28]. As we can see
in Figure 2, Chimera-R is composed of 4 convolutional layers
used for feature extraction and a final DNN used for Android
malware detection. The 5-tuple that defines each convolutional
layer comprises the number of input channels, the number
of output channels, the filter (or kernel) size, the stride of
the filter, and the padding [27]. The Global Average Pooling
operation [27] is applied after the 1x1 convolution to collapse
the resulting tensor of feature maps into a tensor of real
numbers that summarize each feature map. From this point



17e2b74a8c0952d748971b38cb6fdcc1a81dbd63f71a745d45b27a47208595f7 2db4c751e6c21c57448a15c4a61a2a5bb9b3b4a71612691f16f5a495060de565

001ea298d8aaf19ed1afaab2d9d3b5e247c42f3f0beeeb2bb9a9b858f4d737b6 001338ac3e27cbceceff5d03a268acef608b0345903f48773aea44ece5064f52

Fig. 3: DEX grayscale images of two benign applications in the first row and two Trojan malware in the second row, including
the SHA256 hash of each instance.

40 60 80 100 120 140
0

20

40

60

80

100

120

17e2b74a8c0952d748971b38cb6fdcc1a81dbd63f71a745d45b27a47208595f7
2db4c751e6c21c57448a15c4a61a2a5bb9b3b4a71612691f16f5a495060de565

40 60 80 100 120 140
0

20

40

60

80

100

120

001ea298d8aaf19ed1afaab2d9d3b5e247c42f3f0beeeb2bb9a9b858f4d737b6
001338ac3e27cbceceff5d03a268acef608b0345903f48773aea44ece5064f52

40 60 80 100 120 140
0

20

40

60

80

100

120

17e2b74a8c0952d748971b38cb6fdcc1a81dbd63f71a745d45b27a47208595f7
001ea298d8aaf19ed1afaab2d9d3b5e247c42f3f0beeeb2bb9a9b858f4d737b6

Fig. 4: System call sequences of two benign applications in the first column, two Trojan malware in the second column, and
one benign application overlapped with one Trojan malware in the third column. The titles include the SHA256 hash of each
instance. The x-axis represents the time step. The y-axis represents the system call number.



SHA256
APKsOmnidroid

Dataset

Raw APK files
(Android apps)

(non-structured data)

Dynamic Analysis data
(JSON files)

Static Analysis data
(JSON files)

Top-100 Android
Intents & Permissions

Early fusion
(CSV file)

Syscalls sequences
(400 syscalls / sequence)

(CSV file)

DEX extraction
(noSQL, CSV file)

Numpy array
Pytorch tensor

(batch, 200)

Numpy array
Pytorch tensor

One-hot encoding
(batch, 100, 124)

Numpy array
Pytorch tensor

(batch, 1, 128, 128)

Data Standardization Data Normalization
Data Standardization

Chimera's Intermediate Fusion Layer
(batch, 384)

S
el

ec
tio

n
P

re
pr

oc
es

si
ng

Tr
an

sf
or

m
at

io
n

D
at

a 
M

in
in

g
In

te
rp

re
ta

tio
n

KDD

Chimera-S
* Hyperparameter

tuning / Model
selection
* Training

* Transfer Learning
* Evaluation

Chimera-D
* Hyperparameter

tuning / Model
selection
* Training

* Transfer Learning
* Evaluation

Chimera-R
* Hyperparameter

tuning / Model
selection
* Training

* Transfer Learning
* Evaluation

Chimera's DNN Classifier
* Transfer Learning

* Hyperparameter tuning / Model selection
* Evaluation

Positional Encoding

Fig. 5: KDD process stages of Chimera Android malware detection method. The blue boxes represent each KDD process stage.
The white boxes represent the implementation steps for each stage.

on, the information is passed to a DNN with one hidden
layer containing 128 neurons and one output layer containing
two neurons, followed by a Softmax activation function. Each
convolutional layer and fully connected layer is followed
by a ReLU activation function. To mitigate overfitting, we
included Dropout and Batch Normalization layers. After model
selection using 10-fold cross-validation on 3888 candidate
architectures (38880 fits), the best set of hyperparameters
found was:

• Filter size of the 1st/2nd/3rd convolutional layer:
11/11/13

• Dropout probability: 0.5

• Number of epochs: 40
• Learning rate step decay schedule factor/steps: 0.1/10

3) Chimera-D: As we can see in Figure 4, the second
column depicts two malware instances’ system call sequences
overlapped. Also, notice that those two malware instances
belong to the same family (Trojan). It is easy to see that
both instances share common temporal patterns. The same
holds for the benign instances in the first column. Suppose
the temporal patterns across the instances of a dataset have
enough discriminative power to identify the instance’s class.
In that case, it is possible to use ML or DL techniques to
leverage the information contained in the temporal patterns for



detection and classification tasks. In addition, the third column
depicts a malware instance overlapped with a benign instance,
and indicates a high negative correlation between them, which
can be leveraged by the model for detection and classification
purposes. In fact, [25] proposed an LSTM architecture to
implement a neural probabilistic language model for Android
malware detection using system call sequences.

Our work is based on a different architecture for sequence
learning: the Transformer Networks (TN) [15]. TN is a state-
of-the-art encoder-decoder DL architecture designed to handle
sequential data, such as natural language. As we can see in
Figure 2, Chimera-D is composed of a positional encoder that
is used to add positional information to the inputs represented
as 124-dimensional one-hot encoding vectors. The result is
passed to the TN encoder layer for sequence learning and
temporal feature extraction. Finally, a DNN is used for An-
droid malware detection. The TN encoder comprises an input
layer of 124 neurons, a feedforward layer of 512 neurons,
and four attention heads. The DNN contains three layers.
The first layer has 400 * 124 neurons representing the high-
level features extracted by the TN encoder. The second layer
is composed of 128 neurons, and the output layer contains
two neurons, followed by a Softmax activation function. We
included Dropout and Batch Normalization layers after the TN
encoder and the fully connected layers to mitigate overfitting
and increase training stability. We used the ReLU activation
function in the TN encoder and in Chimera-D to introduce
non-linearity. To train Chimera-D, we used a different learning
rate scheduling strategy, the learning rate warm-up, to increase
the learning rate after every epoch by a constant factor [15].
After model selection using 10-fold cross-validation on 900
candidate architectures (9000 fits), the best set of hyperpa-
rameters found was:

• Number of neurons in the TN/DNN layer: 512/128
• TN/DNN Dropout probability: 0.2/0.5
• Number of epochs: 30
• Learning rate warm-up schedule factor/steps: 1.033/1

4) Chimera: As we can see in Figure 1, once the subnet-
works Chimera-S, Chimera-R, and Chimera-D have forward
propagated their inputs, a shared representation layer is imple-
mented by feature-wise concatenation of the results and passed
to the last Chimera’s DNN classifier. Similar to what was veri-
fied by [8], [29], we found out that training Chimera as a single
model resulted in underfitting one subnetwork and overfitting
of the other subnetworks. Taking that into account, we trained
Chimera-S, Chimera-R, and Chimera-D separately using the
optimized hyperparameters presented in the Sections III-B1,
III-B2, and III-B3 respectively, and used Transfer Learning
[30] to combine them into the final Chimera architecture.
As we can see in Figure 1, Chimera’s DNN classifier is
composed of one input layer containing 384 neurons, one
hidden layer containing 512, and one output layer containing
two neurons followed by a Softmax activation function. After
model selection using 10-fold cross-validation on 54 candidate
architectures (540 fits), the best set of hyperparameters found

was:
• Number of neurons in the hidden layer of the DNN: 512
• Dropout probability: 0.3
• Number of epochs: 30
• Learning rate step decay schedule factor/steps: 0.5/10

IV. PERFORMANCE EVALUATION AND DISCUSSION

To evaluate our method, we performed 10-fold cross-
validation using the preprocessed/transformed Omnidroid
dataset (See III-A) on the following ML/DL algo-
rithms/methods:

1) Classical ML algorithms [17]: Decision Tree, Gaussian
Naive Bayes, K-Nearest Neighbors (K-NN), Logistic
Regression, Multi-layer Perceptron (MLP), Support Vec-
tor Machines (SVM), and Radial Basis Function (RBF).

2) State-of-the-art Ensemble ML algorithms [31]: Ad-
aBoost, Bagging, Extra Trees, Gradient Boosting, and
Random Forest.

3) Chimera’s DL subnetworks: Chimera-S, Chimera-R, and
Chimera-D. See Figure 2.

4) DL for sequence classification: LSTM networks.
Notice that we set the number of CPU cores to four to
all the ML and Ensemble ML methods. The number of
estimators to 100 for the Ensemble ML methods and all the
other hyperparameters were set to the default values used in
the scikit-learn library [32]. In addition, we also compared
Chimera’s performance results to the state-of-the-art Voting
Ensemble ML method results presented in [18].

The following performance metrics were chosen for results
evaluation and comparisons:

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

Where TP, TN, FP, FN stand for True Positive, True Negative,
False Positive, and False Negative, respectively.

In the context of this work, the Accuracy metric (See
Equation 1) represents the total number of correct detections
over the total number of instances. Therefore, the higher the
Accuracy, the better is the overall method’s performance.
The Precision metric (See Equation 2) represents the total
number of correct malware detections over the total number of
malware detections. According to Equation 2, if the number of
false positives is equal to zero, then the method achieved the
highest possible Precision. The Recall metric (See Equation 3)
represents the total number of correct malware detections over
the total number of malware instances. According to Equation
3, if the number of false negatives is equal to zero, then the
method achieved the highest possible Recall. In the context of



Classifier Accuracy Precision Recall AUC ROC Fit Time (s)

Chimera 0.909 ± ( 0.001 ) 0.944 ± ( 0.003 ) 0.866 ± ( 0.003 ) 0.972 ± ( 0.000 ) 240.041
Random Forest 0.835 ± ( 0.003 ) 0.862 ± ( 0.002 ) 0.792 ± ( 0.004 ) 0.913 ± ( 0.002 ) 7.350
Extra Trees 0.835 ± ( 0.002 ) 0.867 ± ( 0.002 ) 0.787 ± ( 0.004 ) 0.906 ± ( 0.002 ) 11.164
Chimera-S 0.832 ± ( 0.002 ) 0.887 ± ( 0.004 ) 0.755 ± ( 0.003 ) 0.908 ± ( 0.002 ) 42.330
Bagging 0.825 ± ( 0.002 ) 0.850 ± ( 0.002 ) 0.784 ± ( 0.004 ) 0.905 ± ( 0.002 ) 43.018
MLP 0.823 ± ( 0.003 ) 0.842 ± ( 0.005 ) 0.789 ± ( 0.004 ) 0.883 ± ( 0.002 ) 37.947
RBF SVM 0.815 ± ( 0.002 ) 0.844 ± ( 0.003 ) 0.766 ± ( 0.003 ) 0.876 ± ( 0.002 ) 168.844
K-NN 0.811 ± ( 0.001 ) 0.835 ± ( 0.002 ) 0.767 ± ( 0.002 ) 0.883 ± ( 0.002 ) 4.419
Decision Tree 0.807 ± ( 0.003 ) 0.831 ± ( 0.004 ) 0.764 ± ( 0.005 ) 0.824 ± ( 0.003 ) 0.947
Gradient Boosting 0.803 ± ( 0.002 ) 0.813 ± ( 0.002 ) 0.778 ± ( 0.004 ) 0.882 ± ( 0.002 ) 37.854
Logistic Regression 0.792 ± ( 0.002 ) 0.803 ± ( 0.002 ) 0.764 ± ( 0.003 ) 0.866 ± ( 0.002 ) 2.535
SVM 0.788 ± ( 0.002 ) 0.799 ± ( 0.003 ) 0.763 ± ( 0.003 ) 0.860 ± ( 0.003 ) 36.207
AdaBoost 0.783 ± ( 0.003 ) 0.792 ± ( 0.003 ) 0.759 ± ( 0.004 ) 0.862 ± ( 0.002 ) 14.430
Naive Bayes 0.585 ± ( 0.002 ) 0.859 ± ( 0.008 ) 0.189 ± ( 0.003 ) 0.783 ± ( 0.003 ) 0.325

TABLE I: 10-fold cross-validation results of different methods on Static Analysis data (Android Intents & Permissions). The
text in bold indicates the best mean values for each metric. The dark gray row indicates the best performing method. The light
gray row indicates the performance of Chimera-S.

Classifier Accuracy Precision Recall AUC ROC Fit Time (s)

Chimera 0.909 ± ( 0.001 ) 0.944 ± ( 0.003 ) 0.866 ± ( 0.003 ) 0.972 ± ( 0.000 ) 240.041
Chimera-R 0.801 ± ( 0.002 ) 0.816 ± ( 0.004 ) 0.777 ± ( 0.004 ) 0.885 ± ( 0.001 ) 177.506
RBF SVM 0.789 ± ( 0.002 ) 0.797 ± ( 0.004 ) 0.774 ± ( 0.003 ) 0.868 ± ( 0.002 ) 17,748.879
Bagging 0.765 ± ( 0.002 ) 0.766 ± ( 0.004 ) 0.763 ± ( 0.003 ) 0.856 ± ( 0.002 ) 20,045.508
Extra Trees 0.765 ± ( 0.002 ) 0.765 ± ( 0.003 ) 0.764 ± ( 0.004 ) 0.856 ± ( 0.002 ) 147.221
Random Forest 0.765 ± ( 0.003 ) 0.762 ± ( 0.004 ) 0.769 ± ( 0.004 ) 0.856 ± ( 0.002 ) 174.734
MLP 0.758 ± ( 0.003 ) 0.762 ± ( 0.003 ) 0.748 ± ( 0.006 ) 0.841 ± ( 0.003 ) 798.400
Gradient Boosting 0.756 ± ( 0.003 ) 0.742 ± ( 0.003 ) 0.783 ± ( 0.004 ) 0.838 ± ( 0.002 ) 5,941.192
AdaBoost 0.705 ± ( 0.002 ) 0.695 ± ( 0.002 ) 0.730 ± ( 0.005 ) 0.786 ± ( 0.002 ) 1,835.485
Logistic Regression 0.701 ± ( 0.002 ) 0.699 ± ( 0.003 ) 0.707 ± ( 0.005 ) 0.776 ± ( 0.002 ) 50.412
SVM 0.690 ± ( 0.003 ) 0.688 ± ( 0.004 ) 0.696 ± ( 0.005 ) 0.734 ± ( 0.002 ) 453.465
Decision Tree 0.672 ± ( 0.002 ) 0.668 ± ( 0.002 ) 0.681 ± ( 0.003 ) 0.671 ± ( 0.002 ) 275.743
K-NN 0.647 ± ( 0.002 ) 0.593 ± ( 0.002 ) 0.938 ± ( 0.005 ) 0.767 ± ( 0.009 ) 76.280
Naive Bayes 0.624 ± ( 0.003 ) 0.586 ± ( 0.002 ) 0.846 ± ( 0.005 ) 0.641 ± ( 0.004 ) 16.494

TABLE II: 10-fold cross-validation results of different methods on Static Analysis data (DEX grayscale images). The text in
bold indicates the best mean values for each metric. The dark gray row indicates the best performing method. The light gray
row indicates the performance of Chimera-R.

Classifier Accuracy Precision Recall AUC ROC Fit Time (s)

Chimera 0.909 ± ( 0.001 ) 0.944 ± ( 0.003 ) 0.866 ± ( 0.003 ) 0.972 ± ( 0.000 ) 240.041
Gradient Boosting 0.717 ± ( 0.003 ) 0.735 ± ( 0.004 ) 0.666 ± ( 0.004 ) 0.787 ± ( 0.002 ) 1,061.624
AdaBoost 0.712 ± ( 0.003 ) 0.733 ± ( 0.004 ) 0.654 ± ( 0.003 ) 0.777 ± ( 0.003 ) 413.008
Bagging 0.712 ± ( 0.003 ) 0.723 ± ( 0.003 ) 0.672 ± ( 0.004 ) 0.773 ± ( 0.002 ) 2,259.014
Chimera-D 0.711 ± ( 0.002 ) 0.751 ± ( 0.005 ) 0.620 ± ( 0.006 ) 0.783 ± ( 0.003 ) 220.275
RBF SVM 0.711 ± ( 0.003 ) 0.724 ± ( 0.003 ) 0.666 ± ( 0.003 ) 0.774 ± ( 0.003 ) 8,125.626
Logistic Regression 0.704 ± ( 0.002 ) 0.715 ± ( 0.003 ) 0.663 ± ( 0.005 ) 0.766 ± ( 0.003 ) 67.017
Random Forest 0.701 ± ( 0.003 ) 0.707 ± ( 0.003 ) 0.670 ± ( 0.004 ) 0.770 ± ( 0.003 ) 61.147
Extra Trees 0.697 ± ( 0.003 ) 0.700 ± ( 0.004 ) 0.672 ± ( 0.003 ) 0.765 ± ( 0.003 ) 85.011
SVM 0.684 ± ( 0.003 ) 0.697 ± ( 0.005 ) 0.637 ± ( 0.010 ) 0.736 ± ( 0.003 ) 38.018
MLP 0.666 ± ( 0.004 ) 0.668 ± ( 0.005 ) 0.644 ± ( 0.006 ) 0.726 ± ( 0.004 ) 669.931
K-NN 0.658 ± ( 0.003 ) 0.683 ± ( 0.005 ) 0.569 ± ( 0.006 ) 0.699 ± ( 0.004 ) 41.194
LSTM 0.647 ± ( 0.017 ) 0.702 ± ( 0.025 ) 0.573 ± ( 0.054 ) 0.719 ± ( 0.003 ) 82.175
Decision Tree 0.621 ± ( 0.003 ) 0.620 ± ( 0.004 ) 0.597 ± ( 0.004 ) 0.623 ± ( 0.003 ) 77.641
Naive Bayes 0.518 ± ( 0.001 ) 0.711 ± ( 0.017 ) 0.034 ± ( 0.002 ) 0.510 ± ( 0.001 ) 7.531

TABLE III: 10-fold cross-validation results of different methods on Dynamic Analysis data (System call sequences). The text
in bold indicates the best mean values for each metric. The dark gray row indicates the best performing method. The light
gray row indicates the performance of Chimera-D.



malware detection methods, false negatives pose a much more
significant threat to the users than false positives.

As we can see in Tables I, II, and III, Chimera achieved
the best performance for all the considered metrics except
the Fit Time. Chimera uses a shared representation layer
for Android malware detection; thus, it takes advantage of
the correlation between multiple data modalities. Moreover,
it also takes advantage of automatic feature engineering by
using DL architectures and manual feature engineering ap-
plied. It is important to notice that Chimera achieved higher
performance than its subnetworks evaluated independently as
we can see in Tables I, II, and III. The reason for that
is because Chimera learned to correlate information from
multiple modalities of data, increasing true positives and
true negatives, and decreasing the number of false positives
and false negatives, thus increasing its Accuracy, Precision,
Recall, and AUC ROC. As presented in Table I, Chimera-
S achieved fourth place, showing better performance than
all the classical ML algorithms and some of the Ensemble
ML algorithms. As presented in Table II, Chimera-R achieved
second place, showing better performance than all the classical
and Ensemble ML algorithms. Interestingly enough, the RBF
SVM achieved third place, showing better performance than all
the classical and Ensemble ML algorithms; however, since the
RBF SVM presents O(n3) time complexity and O(n2) space
complexity, it does not scale well for problems with large
feature vectors. As presented in Table III, Chimera-D achieved
fifth place, showing better performance than all the classical
ML algorithms and some Ensemble ML algorithms. Surpris-
ingly enough, LSTM networks, which are specialized DL
architectures for sequence learning, showed poor performance.
The results presented in Table III show that all the algorithms
except Chimera achieved less than 72% Accuracy. A possible
reason for that is that the sequences of system calls do not
present a high discriminative power. Another reason can be
related to the size of the sequences used (III-A3). The results
presented in Table III clearly show the main advantage of
using a multimodal method such as Chimera, which does not
depend only on one data modality. Finally, we also compared
Chimera to the state-of-the-art Voting classifier proposed by
[18]. The Voting classifier includes a Random Forest classifier
for the static features and a Bagging classifier for the dynamic
features. The Voting classifier achieved an Accuracy of 0.897
± ( 0.008 ) and a Precision of 0.897 ± ( 0.007 ).

We based our experimental platform on an Intel (R) Core
(R) i7-8750H CPU @ 2.20GHz, 12 cores, 64 GB memory,
and four Nvidia GeForce GTX 1080 Ti graphics cards. We
mainly used PyTorch [33] and the numpy stack [34] for the
implementations.

A. Limitations and Future Work

Chimera achieved the best performance for all the consid-
ered metrics except the Fit Time. The main reason for that is
the requirement of training of each subnetwork independently
in addition to a final training session for the intermediate
fusion layer using the features learned by each one of the

subnetworks. One possible attempt for improvement is the
simplification of the each subnetwork by reducing the number
of parameters and layers, while keeping similar performance.
Another promising attempt for improvement is the addition of
learnable parameters associated to each subnetwork to weight
their importance in order to mitigate the training problem
described in III-B4, thus decreasing the Fit Time. Future work
can investigate these possibilities.

Chimera is, by definition, a binary classifier designed for
Android malware detection. Malware analysts might take
advantage of knowing to which family a malware belongs
to perform incident response more effectively. To accomplish
that, Chimera can be extended to malware multiclass classifi-
cation in future work.

Chimera, Chimera-S, Chimera-R, and Chimera-D are black-
box methods. Malware analysts might take advantage of
knowing why an instance was detected as malware and why
it belongs to a particular family. Future work can explore DL
interpretability methods and how to apply them to Chimera.

Finally, both Windows malware and malicious documents
also contain or generate raw data, static analysis data, and
dynamic analysis data. Taking that into account, future work
can research the applicability of Chimera and its subnetworks
to those classes of malware.

V. CONCLUSION

In this work, we proposed Chimera, a new Android malware
detection method based on multimodal DL and Hybrid Analy-
sis. We combined five different approaches to achieve superior
performance: (1) Multimodal DL to generate and classify the
intermediate fusion layer containing shared representations
of high-level features extracted from different data sources.
(2) Specialized DL architectures able to extract high-level
feature representations from relational, spatial, and temporal
data. (3) Hybrid Analysis results from a source of information
(the Omnidroid benchmark dataset) containing high-quality
data extracted from real-world Android applications using
Static and Dynamic Analysis techniques. (4) A combination of
manual and automatic feature engineering techniques for each
data modality, and (5) The use of the KDD process and ML
methodology for the method implementation, model selection,
training, and evaluation. The result of our experiments showed
that Chimera’s Accuracy, Precision, Recall, and AUC ROC
outperform the classical ML methods, state-of-the-art Ensem-
ble ML algorithms, the Chimera’s DL subnetworks Chimera-
S, Chimera-R, and Chimera-D, and the state-of-the-art Voting
Ensemble method proposed by the creators of the Omnidroid
dataset. Future work will tackle the training challenges and
expand the method’s applicability and usability.

REFERENCES

[1] M. Sikorski and A. Honig, Practical malware analysis: the hands-on
guide to dissecting malicious software. no starch press, 2012.

[2] M. Egele, T. Scholte, E. Kirda, and C. Kruegel, “A survey on automated
dynamic malware-analysis techniques and tools,” ACM computing sur-
veys (CSUR), vol. 44, no. 2, pp. 1–42, 2008.

[3] N. Idika and A. P. Mathur, “A survey of malware detection techniques,”
Purdue University, vol. 48, pp. 2007–2, 2007.



[4] X. Li, P. K. Loh, and F. Tan, “Mechanisms of polymorphic and meta-
morphic viruses,” in 2011 European intelligence and security informatics
conference. IEEE, 2011, pp. 149–154.

[5] F. A. Narudin, A. Feizollah, N. B. Anuar, and A. Gani, “Evaluation
of machine learning classifiers for mobile malware detection,” Soft
Computing, vol. 20, no. 1, pp. 343–357, 2016.

[6] Z. Wang, Q. Liu, and Y. Chi, “Review of android malware detection
based on deep learning,” IEEE Access, 2020.

[7] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[8] T. Kim, B. Kang, M. Rho, S. Sezer, and E. G. Im, “A multimodal deep
learning method for android malware detection using various features,”
IEEE Transactions on Information Forensics and Security, vol. 14, no. 3,
pp. 773–788, 2018.

[9] J. McGiff, W. G. Hatcher, J. Nguyen, W. Yu, E. Blasch, and C. Lu,
“Towards multimodal learning for android malware detection,” in 2019
International Conference on Computing, Networking and Communica-
tions (ICNC). IEEE, 2019, pp. 432–436.

[10] B. Vasu and N. Pari, “Combining multimodal dnn and sigpid technique
for detecting malicious android apps,” in 2019 11th International Con-
ference on Advanced Computing (ICoAC). IEEE, 2019, pp. 289–294.

[11] D. Zhu, T. Xi, P. Jing, D. Wu, Q. Xia, and Y. Zhang, “A transparent and
multimodal malware detection method for android apps,” in Proceedings
of the 22nd International ACM Conference on Modeling, Analysis and
Simulation of Wireless and Mobile Systems, 2019, pp. 51–60.

[12] N. Amrutha and N. Balagopal, “Multimodal deep learning method for
detection of malware in android using static and dynamic features,” CSI
Journal of, p. 13, 2020.

[13] J. Ngiam, A. Khosla, M. Kim, J. Nam, H. Lee, and A. Y. Ng,
“Multimodal deep learning,” in ICML, 2011.

[14] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

[15] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances
in neural information processing systems, 2017, pp. 5998–6008.

[16] U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth, “From data mining to
knowledge discovery in databases,” AI magazine, vol. 17, no. 3, pp.
37–37, 1996.

[17] E. Alpaydin, Introduction to machine learning. MIT press, 2020.
[18] A. Martı́n, R. Lara-Cabrera, and D. Camacho, “Android malware de-

tection through hybrid features fusion and ensemble classifiers: the
andropytool framework and the omnidroid dataset,” Information Fusion,
vol. 52, pp. 128–142, 2019.

[19] A. Feizollah, N. B. Anuar, R. Salleh, G. Suarez-Tangil, and S. Furnell,
“Androdialysis: Analysis of android intent effectiveness in malware
detection,” computers & security, vol. 65, pp. 121–134, 2017.

[20] F. Idrees and M. Rajarajan, “Investigating the android intents and
permissions for malware detection,” in 2014 IEEE 10th International
Conference on Wireless and Mobile Computing, Networking and Com-
munications (WiMob). IEEE, 2014, pp. 354–358.

[21] F. Idrees, M. Rajarajan, T. M. Chen, Y. Rahulamathavan, and A. Nau-
reen, “Andropin: Correlating android permissions and intents for mal-
ware detection,” in 2017 8th IEEE Annual Information Technology,
Electronics and Mobile Communication Conference (IEMCON). IEEE,
2017, pp. 394–399.

[22] T. Hsien-De Huang and H.-Y. Kao, “R2-d2: color-inspired convolutional
neural network (cnn)-based android malware detections,” in 2018 IEEE
International Conference on Big Data (Big Data). IEEE, 2018, pp.
2633–2642.

[23] Y. Ding, X. Zhang, J. Hu, and W. Xu, “Android malware detection
method based on bytecode image,” Journal of Ambient Intelligence and
Humanized Computing, pp. 1–10, 2020.

[24] K. Turkowski, “Filters for common resampling tasks,” in Graphics gems.
Academic Press Professional, Inc., 1990, pp. 147–165.

[25] X. Xiao, S. Zhang, F. Mercaldo, G. Hu, and A. K. Sangaiah, “Android
malware detection based on system call sequences and lstm,” Multimedia
Tools and Applications, vol. 78, no. 4, pp. 3979–3999, 2019.

[26] S. Arlot, A. Celisse et al., “A survey of cross-validation procedures for
model selection,” Statistics surveys, vol. 4, pp. 40–79, 2010.

[27] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016, http://www.deeplearningbook.org.

[28] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[29] D. Gibert, C. Mateu, and J. Planes, “Hydra: A multimodal deep
learning framework for malware classification,” Computers & Security,
p. 101873, 2020.

[30] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2015, pp. 3431–3440.

[31] Z.-H. Zhou, Ensemble methods: foundations and algorithms. CRC
press, 2012.

[32] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[33] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury,
G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga,
A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani,
S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala,
“Pytorch: An imperative style, high-performance deep learning
library,” in Advances in Neural Information Processing Systems
32, H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett, Eds. Curran Associates, Inc., 2019,
pp. 8024–8035. [Online]. Available: http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.
pdf

[34] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers,
P. Virtanen, D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J.
Smith, R. Kern, M. Picus, S. Hoyer, M. H. van Kerkwijk, M. Brett,
A. Haldane, J. F. del Rı́o, M. Wiebe, P. Peterson, P. Gérard-Marchant,
K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke,
and T. E. Oliphant, “Array programming with NumPy,” Nature,
vol. 585, no. 7825, pp. 357–362, Sep. 2020. [Online]. Available:
https://doi.org/10.1038/s41586-020-2649-2

http://www.deeplearningbook.org
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.1038/s41586-020-2649-2

	Introduction
	Related Work
	Proposed Method and Methodology
	Selection, Preprocessing and Transformation
	Chimera-S
	Chimera-R
	Chimera-D

	Data Mining and Interpretation
	Chimera-S
	Chimera-R
	Chimera-D
	Chimera


	Performance Evaluation and Discussion
	Limitations and Future Work

	Conclusion
	References

