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Abstract—Quality control in electronic system 

manufacturing is achieved mainly through system testing. 

Device miniaturization and multilayer Printed Circuit Boards 

have increased the electronic circuit test complexity 

considerably and processes based on manual inspections have 

become outdated and inefficient. The concept of Industry 4.0 has 

enabled the manufacturing of customized products based on 

customers’ demands, which demands a high degree of flexibility 

in production processes, with low cost and without placing 

numerous test points. In this paper, we propose two automated 

test solutions based on machine learning and thermographic 

analysis. We propose deploying autoencoders and random 

forest in two different manners to detect firmware or hardware 

anomalies based on the circuit board’s temperature signature. 

We validate our proposal using two firmware versions running 

independently on the test board. We obtained an anomaly 

detection rate above 98%. In the random forest approach, we 

require all data classes for training, whereas the autoencoder 

only requires the reference class, which is expected in real 

scenarios. 

Keywords— Anomaly detection; embedded systems test; 

thermography; autoencoders; deep learning; random forest. 

I. INTRODUCTION 

Testing embedded systems is an essential task during the 
design and manufacturing phases [1], which ensures system 
correct operation and avoids rework and economic losses [2]. 
Anomalies in embedded systems have several causes, such as 
defective components, improper assembly, welding defects 
and software-related errors. Testing techniques commonly 
used for anomaly detection are automated, where computers 
process images or signals of the system to be tested. 

 Meanwhile, the concept of industry 4.0 [3] poses an 
additional challenge for system testing: a high level of product 
customization [4][5]. The use of intrusive test methods that 
require test points on the circuit or flying probe analyzers 
shows many disadvantages [6], such as high cost and 
complexity. On the other hand, a flexible and non-intrusive 
method, capable of detecting defects in both hardware and 
firmware, shall provide more agility and reliability to the 
design flow of embedded systems [7]. 

In this work, we present an automated and non-invasive 
test approach based on the thermographic signature of the 
embedded system. The core of the system is a machine 
learning model called autoencoder [8]. Machine learning has 
become a frequently applied tool for solving complex 
problems, especially where there is a large data availability. In 
our work, we obtained the required data using commercially 

available thermographic cameras. The proposed method 
detects anomalies without the need of a physical connection 
to the tested system. Autoencoders are neural networks trained 
to reconstruct in the output a pattern similar to that presented 
at the input. Therefore, anomalies can be detected by 
reconstructing and comparing images. 

The simplified architecture of the proposed test system is 
illustrated in Fig.  1. The system to be tested is called DUT 
(Device Under Test). The information collected from the DUT 
that is processed by the test system detects anomaly is 
obtained wirelessly. Hence, changing the DUT model during 
the manufacturing process can be done seamlessly. An 
identification tag can be used to inform the test system which 
DUT model is currently being tested. This is accomplished in 
an automated fashion. 

 

Fig.  1. Anomaly detection system architecture. 

The test system consists of a previously trained 
autoencoder, which calculates the difference between the 
autoencoder’s input and output images, and a comparator. The 
comparator determines whether the DUT passes or fails the 
test according to the image difference magnitude. Further 
details are outlined in section III and Fig.  2. 

The images used for training and anomaly detection, 
however, are not the thermal images themselves. 
Thermographic information is obtained from the captured 
images using a specific computer application. The application 
generates a graph indicating the temperature variation in a 
determined DUT’s region as a function of time. From that 
graph, a spectrogram is constructed. The spectrogram is the 
image used by the autoencoder. 

In order to properly detect anomalies, the autoencoder 
only must be trained with images from the non-anomalous 
class. Thus, the proposed solution has the following 
characteristics: simplicity of implementation and flexibility. 
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Fig.  2. Summary of the operation of the anomaly detection system with 

autoencoder: the infrared camera captures the DUT’s thermal image; the 

temporal temperature signature is plotted; the spectrogram is obtained from 
this signature and converted to imageA; imageA is used as input of a trained 

autoencoder, which reconstructs it as imageB; the difference between 

imageA and imageB is compared to a threshold λo, if |imageA-imageB| > λo 

 Fail. 

To validate the proposed approach, we built an 
experimental setup using an embedded system development 
board. We have implemented two classes of firmware that can 
be run independently on the test board. One of these versions 
is free of anomalies (FWOK) and the other emulates a system 
with anomalies (FWNOK). 

Given the promising results and the attractive 
characteristics of the proposed system, namely flexibility and 
effectiveness, we believe that using the proposed solution 
application in a real manufacturing environment shall improve 
the embedded system design and testing process, especially in 
highly customizable electronic products. 

The rest of the article is structured as follows. We discuss 
related works in Section II. We describe the proposed 
approach in Section III, where we address the theory of 
thermography and the machine learning techniques explored 
in this work: autoencoders and random forest. Section IV 
discusses the implementation aspects. We present the 
experimental results in Section V. Finally, we present our 
conclusions outline related future work in Section VI. 

II. THEORICAL BACKGROUND 

Embedded systems are computational systems typically 
manufactured and mounted on Printed Circuit Boards (PCBs). 
They consist of (at least): a processor, memory, input/output 
interfaces, and an interconnection system [9]. These four 
hardware subsystems work collaboratively to ensure a proper 
execution of stored programs, which we call firmware. 
Embedded system complexity, size, and computational power 
vary enormously and depend on the final application and 
objective. 

An embedded system defect occurs if any parameter or 
function does not attend to the manufacturer's functional 
criteria. Such defects can be categorized according to the 
extent of performance degradation they may cause. A usual 
metric is counting the percentage of defect PCBs related to the 
total amount of tested boards for quantitative analysis. In 
testing, we denote the system under design as Device Under 
Test (DUT). A set of selected input patterns – so-called test 
patterns – is applied to DUT's input for testing purposes. Then, 
the output behavior is compared with the expected behavior. 
Currently, even modest PCBs feature a high component 
density. Therefore, automated techniques are required to 
overcome human limitations applied in manual inspection. 

Since embedded systems consist of hardware and 
firmware, manufacturers should expect both elements to 
present anomalies. Testing hardware and firmware separately 
is a common approach. Nevertheless, it is a two-step work. 
Furthermore, test pattern generation is usually based on fault 
models [10][11]. Unfortunately, while good fault models exist 
for hardware testing, the same type of model for embedded 
software testing is unavailable [12]. 

Regarding hardware testing, the most common types of 
defect embedded systems present are PCB mounting, faulty 
component, and final product malfunction [1]. A myriad of 
hardware test methods can be employed depending on 
financial constraints and technical barriers. One of the most 
reliable PCB test methods is using a fixture or bed of nails 
[13], where fixed probes power up and actuate the board's 
circuitry. A less expensive similar approach is the use of flying 
probes [14]. In this case, needles attached to a probe on an x-
y grid match the circuit board. Alternatively, digital image 
processing has also been efficiently employed in circuit 
testing. Computer vision techniques apply a camera to capture 
PCB images that are algorithmically analyzed [15][16]. For 
PCB's internal anatomy inspection, x-ray images are 
frequently employed [17]. Automated Optical Inspection 
(AOI) refers to test techniques where PCB images are 
compared to a reference image, and dissimilarities denote 
possible defects [18][19]. Thermography is a similar approach 
to AOI, where infrared images are used to detect defects [20]. 

Non-invasive test approaches have been published for 
hardware testing. However, the proposed solution is restricted 
due to specific device/circuit characteristics [21] or data 
availability [22]. 

Regarding software test, automation techniques have been 
developed and systematically used in the industry [23]. The 
solutions proposed in [23], [24] and [25] use either machine 
learning models or artificial neural networks. However, as in 
high-level software, the objective is to predict the occurrence 
of failures and not detect anomaly in an embedded system. 
Moreover, the analysis is based on software metrics [26]. 

III. PROPOSED APPROACH FOR ANOMALY DETECTION 

Our proposed method is an adaptation of [27], in which the 
electric current consumed by the DUT is used to generate the 
spectrogram images instead of the thermal signature [28] (a 
more conventional current signature approach can be found in 
[29]). In this section, we provide a description on how the 
anomaly detection is performed. The block diagram of the 
proposed system is illustrated in Fig.  2. First, we acquire a 
region of interest (ROI) of the thermal image that belongs to 
the circuit to be tested. The maximum temperature in the ROI 
is plotted using a computer software during a specific time 
interval ΔT (acquisition window). Then, we determine the 
temporal behavior of temperature in that region, and the 
temperature as a function of time is plotted. This graph is 
called a sample. Then, we generated the spectrogram from that 
sample. The spectrogram image serves as input data for a 
previously trained autoencoder, which attempts to reproduce 
a copy of the input. Next, we calculate the difference between 
the autoencoder’s output and input images using mean square 
error. The anomaly detection algorithm compares this 
difference to a decision threshold λo. Therefore, the test result 
(pass or fail) depends on the similarity between the 
autoencoder input and output. Fig.  3 illustrates the ROI 
definition and the thermographic processing. The 
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thermographic sample generation process is further explained 
in section IV.B. 

 

Fig.  3. PCB region of interest. The maximum temperature in the marked 

square (a and b) is acquired and plotted as a function of time. 

In order to ensure that the built system has the required 
flexibility, several of the parameters shown in Fig.  2 are 
adjustable: ΔT - acquisition window; Construction of the 
spectrogram - image size (height x width); frequency range on 
the y axis; Autoencoder - number of layers; training and 
construction parameters of the neural network; Comparator - 
decision threshold λo. Additionally, multiple acquisitions can 
be carried out in the same test. This allows the test to be 
repeated for the same DUT for a certain number of times. 
Despite increasing the test time, this increases the anomaly 
detection reliability. 

A. Thermography 

Physically, the heat can be treated as an infrared ray. The 
infrared wavelength range is generally considered to be from 
0.7 to 100 μm. Infrared rays are spontaneously irradiated by 
all objects with a temperature above absolute zero. The 
emitted energy indicates the temperature of the object. 

The equipment used in thermography consists of a special 
infrared camera that scans the object and a computer 
application. The camera unit contains an optical system that 
scans the field of view at a very high speed and focuses the 
infrared radiation on a detector that converts the radiation 
signal into an electrical signal. 

The computer application processes the captured signal. In 
our experiment, we used a FLIR T530 infrared camera and the 
FLIRTools+ software [30] for data processing. 

B. Autoencoders 

Autoencoders can be seen as artificial neural networks 
trained to learn a representation of the input data and, based 
on this representation, reconstruct the input data on its output 
[8]. The representation of information, called coding, can be 
used for various purposes, such as dimensional data reduction 
or anomalies detection [31]. An autoencoder consists of an 
input layer, one or more hidden intermediate layers, and an 
output layer. Traditionally, these networks have a symmetrical 
structure, in which the input and output layers have the same 
number of neurons. Autoencoder implementation involves 
three steps: definition of the structure (size, number of 
neurons, number of layers, etc.); training; and validation. 

C. Random Forest 

Random Forests are a widely-used machine learning 
model, which can be trained to perform multiclass 
classification. In this work, to obtain a basis of comparison 
with the results of the proposed system – based on 
autoencoders – we analyzed experimental samples with a 

Random Forest model [32]. For the sake of simplicity, we 
built a classifier and trained only with two types of firmware: 
FWOK and FWNOK. The characteristics of the samples were 
previously extracted through wavelet analysis (DWT – 
Discrete Wavelet Transform) to improve the quality of the 
classification process [33]. Fig.  4 shows the Random Forest 
and DWT based classifier. Briefly, the classifier reads the 
samples, extracts their features and sends them to the trained 
model for classification. The extracted features are wavelet 
coefficients. In this experiment, the data were split in a 75% 
and 25% ratio for Random Forest training and test, 
respectively. 

 

Fig.  4. A temperature signal sample is applied to the feature extraction block; 

the coefficients generated by the DWT are processed by the Random Forest, 

which classifies the sample in one of the two classes: FWOK or FWNOK. 

IV. EXPERIMENTAL SETUP 

In this section, we describe the design and building of an 
experimental validation system certify the anomaly detection 
efficiency. First, we detail the implementation of a DUT, 
which provides the data used for the validation tests. Then, we 
show how the information is acquired, pre-processed and used 
to train the models for anomaly detection, based on Random 
Forest and Autoencoder. 

A. Device Under Test - Design and Construction 

The DUT consists of two parts: hardware (Fig.  5-a) and 
software (Fig.  5-b).  

 

Fig.  5. Implementation of the DUT. Development. Test software composed 
of infinite loop and LED activation functions and sending information via 

serial interface (UART). 
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The hardware was implemented in an ARM Cortex M4F 
microcontroller evaluation platform from Texas Instruments 
[34]. The development board provides multiple general-
purpose interfaces (GPIO – General-Purpose Input/Output), 
which can emulate typical embedded systems applications. 
The firmware has the typical structure of an embedded 
application. It has an initial hardware bootstrap followed by 
an infinite loop. The system periodically activates an RGB 
(Red Green Blue) LED and performs data transmission via 
serial interface. In experimental tests, two firmware versions 
were implemented. One version represents a simulated 
operational form of the system. A summary of these versions 
can be seen in TABLE  I. 

TABLE  I.    TEST FIRMWARE VERSIONS AND THEIR 

BEHAVIOR. 

Designation FWOK FWNOK 

Expected Tasks 
Periodic RGB 

LED blinking 

Periodic RGB 

LED blinking 

Modification (simulated 

anomaly) 

None (anomaly 

free)  

LED activation 

delay + UART 
data transmission 

 

The implemented firmware behavior, although quite 
simple, is typical for reactive embedded systems [9]. Such 
systems execute cyclically, reading and triggering GPIO pins 
and transmitting/receiving information over one or more 
communication interfaces, such as UART. Two board control 
keys were used to switch the execution mode between the two 
firmware versions. In Fig.  6, two examples (excerpts) of the 
test firmware used in the experiment and the respective 
thermographic signatures, given as a function of time, are 
illustrated. A slightly change in the LED blinking cadence – 
caused by the added delay on FWNOK – and the unexpected 
UART transmission produces a noticeable impact on the 
thermographic signature. The generation of thermographic 
signatures is explained next in section IV. 

 

Fig.  6. Sections of the embedded test firmware and the respective 

thermographic signature. 

B. Data Acquisition 

i) Infrared images acquisition 

The data used to train and validate the autoencoder are 
obtained from the DUT’s thermographic behavior. Thus, the 
infrared image acquisition is the first stage of data acquisition. 

A picture of this setup is shown in Fig.  7. In our experiment, 
the total acquisition time was approximately two hours for 
both firmware versions FWOK and FWNOK. 

 

Fig.  7. Infrared data acquisition system with a FLIR T530 camera. 

ii) Thermographic samples generation 

After the acquisition, the two hours long signal is split into 
multiple ΔT long sections, called thermographic samples. The 
total number of samples generated from the acquired signal 
depends on ΔT, i. e., a higher number of samples requires a 
lower ΔT. However, there is a tradeoff between the number of 
generated samples and the anomaly detection accuracy: the 
longer the acquisition length, the more detail it contains; 
hence, the higher the accuracy. In our experiments, ΔT = 4, 5 
and 6 s were evaluated. In all cases, we used the same the 
number of samples, to ensure a fair comparison. We obtained 
the best result with ΔT = 6 s. Then, from the two hours long 
collected data, a series of 6 seconds long samples were 
obtained (see details in TABLE  II). From the operational 
perspective, ΔT is a parameter of the anomaly detection 
system that can be adjusted. 

TABLE  II.    TOTAL AMOUNT OF GENERATED SAMPLES 
AND IMAGES FOR TRAINING, VALIDATION AND TEST PURPOSES. 

Thermographic Samples and 

Spectrogram Images 
FWOK FWNOK 

Total  1204 1204 

Autoencoder training 643 Not Applicable 

Autoencoder validation 160 Not Applicable 

Autoencoder testing 401 401 

Random forest training 903 903 

Random forest testing 301 301 

 

iii) Spectrograms generation 

We used the Matlab function “spectrogram (X, S_len, 
N_overlap, Nf, Fs)” to generate the spectrogram. This 
function generates the spectrogram of X (discrete signal 
acquired with sampling rate Fs) as follows: The signal is 
divided into sections of length “S_len”; A Hamming window 
is applied to the section; An overlapping "N_overlap" points 
is applied between adjunct sections; The spectrum (Fourier) is 
calculated at the frequencies ⌊Nf / 2 + 1⌋, where “⌊ ⌋” is the 
floor operator. The following values were used in our 
experiment: S_len = 64; N_overlap = 50; Nf = 60; Fs = 30 
Hz. Then, the generated spectrogram is converted into color 
images of 128 x 96 pixels. This process of converting the 
spectrogram to an image makes it possible to filter the 
frequencies of the samples by adjusting the limits of the y-
axis. Thus, it is possible to filter out unwanted sample noise 
and acquisition artifacts. In our examples, the spectral range 
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FWNOK

DUT

FLIR 530
Computer Application
FLIR Tools+



of interest of the measured temperature signal is restricted to 
low-frequency values. Therefore, frequency values above 5 
Hz were filtered out by the image generation process. This 
filtering is adjustable and can be configured for a new DUT. 
Fig.  8 shows examples of two samples and their 
spectrograms. The final image generated from the 
spectrogram does not have the axes, only the spectral 
information. From Fig.  8, it is possible to notice that the 
differences between the samples cause minimal differences in 
the spectrograms. Nevertheless, this minimal difference can 
be detected by the autoencoder quite effectively. This is the 
fundamental aspect of the method proposed in this work. 

 

Fig.  8. Samples with width (ΔT = 6 s). (a) - FWOK; (b) - FWNOK. (c) and (d) 

- Spectrograms of the samples displayed in (a) and (b), respectively. 

Finally, for each thermographic sample, one spectrogram 
image is generated. TABLE  II summarizes sample and image 
generation and application within the anomaly detection 
process. Random Forest uses thermographic samples, while 
Autoencoder uses spectrogram images. 

C. Data Preprocessing 

The temperature signal as a function of time varies very 
slowly – observed frequencies are of the order of 5 to 10 Hz. 
Therefore, the spectrograms generated directly from the 
obtained signal show a slight variation. Thus, the autoencoder 
cannot correctly distinguish images that belong to the OK 
class from those that belong to the NOK class. To get around 
this restriction, we change the temperature signal utilizing a 
simple non-linear transformation: the DC level of the signal is 
removed before obtaining the spectrogram. This 
transformation represents a form of preprocessing applied to 
the data. In Matlab, this is simply accomplished through the 
detrend() function. It is important to note that this approach is 
only necessary in the case where images are used, e. g., the 
autoencoder of our anomaly detection system. The curves 
depicted in Fig.  9 illustrates this transformation. 

 

Fig.  9. Preprocessing example using Matlab detrend() function. 

D. Random Forest Training 

Here, we detail the process of building and training the 
Random Forest used to classify the firmware executed by the 
DUT into two classes: OK and NOK. The model was built 
using the R language [35], a well-established library for this 
purpose. The random forest model’s performance can be 
optimized through parameter adjustment. Thus, we observed 
the model’s performance as a function of parameters Ntree 
and Mtry, the number of trees to grow, and the number of 
variables randomly sampled as candidates at each split. For 
the experiment, for anomaly detection, we chose the model 
with Ntree = 80 and Mtry = 20 for it has been shown the best 
results, with a test error of approximately 0.16 % (Fig.  10). 

 

Fig.  10. Train and test errors obtained for a Random Forest model as a 

function of the number of trees (Ntree) and number of variables randomly 

sampled as candidates at each split (Mtry). 

E. Autoencoder Training 

We implemented an autoencoder based on a famous 
structure [36], where the layers consist of convolutional and 
filtering networks. We used Python and the open-source 
artificial neural network library Keras to implement the 
autoencoder [37]. The autoencoder summary is shown in Fig.  
11. 

 

Fig.  11. Autoencoder summary. 

(b)(a)

(d)(c)

-------------------------------------------------------------------------------------------------  

Model: "model_1" 

________________________________________________________________ 

Layer (type)                   Output Shape                Param #    

========================================================= 

input_1 (InputLayer)          (None, 96, 128, 3)          0          

________________________________________________________________ 

conv2d_1 (Conv2D)             (None, 94, 126, 32)         896        

________________________________________________________________ 

max_pooling2d_1 (MaxPooling2  (None, 47, 63, 32)         0          

________________________________________________________________ 

conv2d_2 (Conv2D)             (None, 45, 61, 64)          18496      

________________________________________________________________ 

max_pooling2d_2 (MaxPooling2  (None, 22, 30, 64)         0          

________________________________________________________________ 

conv2d_3 (Conv2D)             (None, 20, 28, 64)          36928      

________________________________________________________________ 

flatten_1 (Flatten)            (None, 35840)               0          

________________________________________________________________ 

dense_1 (Dense)                (None, 2304)                82577664   

________________________________________________________________ 

reshape_1 (Reshape)           (None, 24, 32, 3)           0          

________________________________________________________________ 

conv2d_transpose_1 (Conv2DTr  (None, 48, 64, 64)          1792       

________________________________________________________________ 

batch_normalization_1 (Batch  (None, 48, 64, 64)         256        

________________________________________________________________ 

conv2d_transpose_2 (Conv2DTr  (None, 96, 128, 64)         36928      

________________________________________________________________ 

batch_normalization_2 (Batch  (None, 96, 128, 64)         256        

________________________________________________________________ 

conv2d_transpose_3 (Conv2DTr  (None, 96, 128, 32)         18464      

________________________________________________________________ 

conv2d_4 (Conv2D)             (None, 96, 128, 3)          867        

========================================================= 

 

Total params: 82,692,547 

Trainable params: 82,692,291 

Non-trainable params: 256 

------------------------------------------------------------------------------------------------- 



Before using the autoencoder to detect anomalies, it is 
mandatory to train it. In our case, the training process must be 
carried out using anomaly free class images solely. The 
quality of the training process is measured by two parameters: 
loss and accuracy. 

We performed cross-validation during the training process 
to avoid autoencoder overfitting. The, training is performed 
on one subset (called the training set), and validation is 
performed on the other subset (called the validation). We used 
data subsets to perform training and validation, as listed in 
TABLE  II. 

Training and validation outcomes are shown in Fig.  12. 
An epoch denotes the number of times all the training data 
have passed through the neural network in the 
training/validation process. Both loss and accuracy converge 
to reasonable values after a few dozen iterations. Hence, the 
training process is successful. 

 

 

Fig.  12. Loss and Accuracy for Training and Validation processes. 

V. EXPERIMENTAL RESULTS 

A. Anomaly detection with Random Forest 

Using the structure shown in Fig.  4 and the data listed in 
TABLE  II, we performed an anomaly detection test for two 
configurations, Mtry = 4 with Ntree = 20 and Mtry = 20 with 
Ntree = 80. The model’s classification error shows that the 
model can perform a near-optimal classification for the second 
situation. This result is confirmed by ROC curves, as shown 
in Fig.  13. 

 

Fig.  13. ROC curves regarding firmware classification for two random forest 

implementations. 

The confusion matrix constructed for this test is depicted 
in TABLE  III, from which an overall anomaly detection 
accuracy rate of 99.67 % is obtained. 

TABLE  III. CONFUSION MATRIX FOR THE RANDOM FOREST 

ANOMALY DETECTION. 

  Prediction 

  FWOK FWNOK 

Actual class 
FWOK 300 0 

FWNOK 1 301 

 

B. Anomaly detection with Autoencoder 

The detection accuracy strongly depends on the decision 
threshold. In practical situations, optimal threshold selection 
is a gradual process. In this case, values are refined with 
empirical data from the system in operation [22]. 

For the anomaly detection system to work correctly, the 
reconstruction error’s variance for the anomaly-free cases 
must be limited. Thus, there must be a gap between the 
anomaly-free distribution and any other distribution in order 
to define a threshold that leads to maximum detection 
accuracy. 

The autoencoder reconstruction error distributions 
obtained in our tests are shown in Fig.  14. There is a gap 
between FWOK and FWNOK distributions, where the optimal 
decision threshold λo = 5.375 x 10-3 can be placed. 

Fig.  14 presents curves with an interesting shape: the 
FWOK curve is narrow and has a low average. The FWNOK 
curve, on the other hand, is broader and has a high average. 
Such a trend indicates that, in practice, the reconstruction 
errors for NOK signals should be higher, which facilitates 
anomaly detection. 

The optimal decision threshold can be found from the 
reconstruction errors obtained during the tests as described 
next. First, we perform multiple tests with incremental values 
for the decision threshold λ. 

The error or accuracy of anomaly detection is obtained for 
each case and plotted as a function of λ, as illustrated in Fig.  
15. 



 

Fig.  14. Autoencoder reconstruction error obtained from 401 tests. 

 

Fig.  15. Anomaly detection accuracy versus decision threshold values. The 

best case defines the optimum decision threshold. 

For the optimal threshold, anomaly detection is 
accomplished with nearly 100% accuracy. This is confirmed 
by the ROC curve obtained from this experiment shown in 
Fig.  16 and by the confusion matrix constructed for the 
Random Forest test, depicted in TABLE  IV. From the 
confusion matrix in TABLE  IV, we find the overall correct 
anomaly detection rate of 98,50%. 

 

Fig.  16. ROC curves for the Autoencoder anomaly detection using threshold 

λo = 5.375 x 10-3. 

TABLE  IV.  CONFUSION MATRIX FOR THE AUTOENCODER 

ANOMALY DETECTION. 

  Prediction 

  FWOK FWNOK 

Actual class 
FWOK 393 8 

FWNOK 4 397 

 

C. Analysis 

The ROC curves and confusion matrix demonstrate that 
both autoencoder and random forest models can distinguish 
data from different firmware classes. Autoencoders have the 
advantage that they can be trained with anomaly-free data 
only. 

For the Autoencoder approach, since the reconstruction 
errors extent varies with the spectrogram class (FWOK or 
FWNOK), the anomaly detection accuracy depends on the 
decision threshold. After performing multiple detection tests, 
we can use the curve in  Fig.  15 to obtain an informed 
estimation for the decision threshold. We can confirm this by 
comparing the obtained ROC, AUC and detection accuracy to 
similar [38] or superior [22], [39] to that published in previous 
works, with the advantage of being completely non-intrusive. 
The mentioned works are also limited regarding the class of 
anomaly they can detect. The work presented in [20] used 
thermography to detect hardware anomalies. However, in that 
case, only the soldered joint quality of PCB mounted LEDs 
was analyzed. Similarly, the approach described in [28] is 
focused on electrical component’s defects, instead of system 
anomalies. 

To summarize, the results demonstrate the effectiveness of 
the proposed embedded system anomaly detection method; 
for two test firmware versions, the detection accuracy is 
significantly high; and pre-processing applied on the data was 
essential to anomaly detection accuracy. The proposed 
method can be easily adapted to other embedded systems by 
retraining the autoencoder with appropriate anomaly-free 
thermographic sample and spectrograms. 

VI. CONCLUSION AND FUTURE WORKS 

In this work, we investigated the application of machine 
learning and thermography to detect anomalies in embedded 
systems. We designed and built a validation DUT, which 
consists of two parts: hardware and firmware. For comparison 
purposes, a machine learning model based on Random Forest 
was used to detect anomalies on the same board we used to 
validate the Autoencoder approach. The test results showed 
that both approaches are effective. However, Random Forest 
training requires data from all classes. Autoencoders, on the 
other hand, only require the reference class (anomaly free). 
This is fundamental because, in a practical scenario, data from 
anomalous classes are challenging to obtain. 

Regarding this research work, our next steps are: 

• Investigate autoencoder’s optimization; 

• Test the system with more samples (i. e., increase the 
data acquisition time); 

• Investigate the effects of other non-linear 
transformation on the data before training the 
Autoencoder; 

λo = 



• Design a machine learning model based on a 
Convolutional Neural Network with multiple inputs, 
each one receiving data from a different ROI. 
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