
Non-intrusive Embedded Systems Anomaly

Detection using Thermography and Machine

Learning

José Paulo G. de Oliveira

Universidade Federal de Pernambuco

Universidade de Pernambuco

Recife, Brazil

ORCID 0000-0001-9438-6829

Carmelo J. A. Bastos Filho

Universidade de Pernambuco

Recife, Brazil

ORCID 0000-0002-0924-5341

Sérgio Campello Oliveira

Universidade de Pernambuco

Recife, Brazil

ORCID 0000-0003-1058-1139

Abstract—Quality control in electronic system

manufacturing is achieved mainly through system testing.

Device miniaturization and multilayer Printed Circuit Boards

have increased the electronic circuit test complexity

considerably and processes based on manual inspections have

become outdated and inefficient. The concept of Industry 4.0 has

enabled the manufacturing of customized products based on

customers’ demands, which demands a high degree of flexibility

in production processes, with low cost and without placing

numerous test points. In this paper, we propose two automated

test solutions based on machine learning and thermographic

analysis. We propose deploying autoencoders and random

forest in two different manners to detect firmware or hardware

anomalies based on the circuit board’s temperature signature.

We validate our proposal using two firmware versions running

independently on the test board. We obtained an anomaly

detection rate above 98%. In the random forest approach, we

require all data classes for training, whereas the autoencoder

only requires the reference class, which is expected in real

scenarios.

Keywords— Anomaly detection; embedded systems test;

thermography; autoencoders; deep learning; random forest.

I. INTRODUCTION

Testing embedded systems is an essential task during the
design and manufacturing phases [1], which ensures system
correct operation and avoids rework and economic losses [2].
Anomalies in embedded systems have several causes, such as
defective components, improper assembly, welding defects
and software-related errors. Testing techniques commonly
used for anomaly detection are automated, where computers
process images or signals of the system to be tested.

 Meanwhile, the concept of industry 4.0 [3] poses an
additional challenge for system testing: a high level of product
customization [4][5]. The use of intrusive test methods that
require test points on the circuit or flying probe analyzers
shows many disadvantages [6], such as high cost and
complexity. On the other hand, a flexible and non-intrusive
method, capable of detecting defects in both hardware and
firmware, shall provide more agility and reliability to the
design flow of embedded systems [7].

In this work, we present an automated and non-invasive
test approach based on the thermographic signature of the
embedded system. The core of the system is a machine
learning model called autoencoder [8]. Machine learning has
become a frequently applied tool for solving complex
problems, especially where there is a large data availability. In
our work, we obtained the required data using commercially

available thermographic cameras. The proposed method
detects anomalies without the need of a physical connection
to the tested system. Autoencoders are neural networks trained
to reconstruct in the output a pattern similar to that presented
at the input. Therefore, anomalies can be detected by
reconstructing and comparing images.

The simplified architecture of the proposed test system is
illustrated in Fig. 1. The system to be tested is called DUT
(Device Under Test). The information collected from the DUT
that is processed by the test system detects anomaly is
obtained wirelessly. Hence, changing the DUT model during
the manufacturing process can be done seamlessly. An
identification tag can be used to inform the test system which
DUT model is currently being tested. This is accomplished in
an automated fashion.

Fig. 1. Anomaly detection system architecture.

The test system consists of a previously trained
autoencoder, which calculates the difference between the
autoencoder’s input and output images, and a comparator. The
comparator determines whether the DUT passes or fails the
test according to the image difference magnitude. Further
details are outlined in section III and Fig. 2.

The images used for training and anomaly detection,
however, are not the thermal images themselves.
Thermographic information is obtained from the captured
images using a specific computer application. The application
generates a graph indicating the temperature variation in a
determined DUT’s region as a function of time. From that
graph, a spectrogram is constructed. The spectrogram is the
image used by the autoencoder.

In order to properly detect anomalies, the autoencoder
only must be trained with images from the non-anomalous
class. Thus, the proposed solution has the following
characteristics: simplicity of implementation and flexibility.

DUT
Test

System

User Control
Interface

Non-intrusive sensor

Wireless data
acquisition

ID Tag

– Autoencoder
– Image difference
– Comparator

This study was financed in part by the Fundação de Amparo a Ciência

e Tecnologia do Estado de Pernambuco (FACEPE) – APQ-0532-3.04/1.

Fig. 2. Summary of the operation of the anomaly detection system with

autoencoder: the infrared camera captures the DUT’s thermal image; the

temporal temperature signature is plotted; the spectrogram is obtained from
this signature and converted to imageA; imageA is used as input of a trained

autoencoder, which reconstructs it as imageB; the difference between

imageA and imageB is compared to a threshold λo, if |imageA-imageB| > λo

 Fail.

To validate the proposed approach, we built an
experimental setup using an embedded system development
board. We have implemented two classes of firmware that can
be run independently on the test board. One of these versions
is free of anomalies (FWOK) and the other emulates a system
with anomalies (FWNOK).

Given the promising results and the attractive
characteristics of the proposed system, namely flexibility and
effectiveness, we believe that using the proposed solution
application in a real manufacturing environment shall improve
the embedded system design and testing process, especially in
highly customizable electronic products.

The rest of the article is structured as follows. We discuss
related works in Section II. We describe the proposed
approach in Section III, where we address the theory of
thermography and the machine learning techniques explored
in this work: autoencoders and random forest. Section IV
discusses the implementation aspects. We present the
experimental results in Section V. Finally, we present our
conclusions outline related future work in Section VI.

II. THEORICAL BACKGROUND

Embedded systems are computational systems typically
manufactured and mounted on Printed Circuit Boards (PCBs).
They consist of (at least): a processor, memory, input/output
interfaces, and an interconnection system [9]. These four
hardware subsystems work collaboratively to ensure a proper
execution of stored programs, which we call firmware.
Embedded system complexity, size, and computational power
vary enormously and depend on the final application and
objective.

An embedded system defect occurs if any parameter or
function does not attend to the manufacturer's functional
criteria. Such defects can be categorized according to the
extent of performance degradation they may cause. A usual
metric is counting the percentage of defect PCBs related to the
total amount of tested boards for quantitative analysis. In
testing, we denote the system under design as Device Under
Test (DUT). A set of selected input patterns – so-called test
patterns – is applied to DUT's input for testing purposes. Then,
the output behavior is compared with the expected behavior.
Currently, even modest PCBs feature a high component
density. Therefore, automated techniques are required to
overcome human limitations applied in manual inspection.

Since embedded systems consist of hardware and
firmware, manufacturers should expect both elements to
present anomalies. Testing hardware and firmware separately
is a common approach. Nevertheless, it is a two-step work.
Furthermore, test pattern generation is usually based on fault
models [10][11]. Unfortunately, while good fault models exist
for hardware testing, the same type of model for embedded
software testing is unavailable [12].

Regarding hardware testing, the most common types of
defect embedded systems present are PCB mounting, faulty
component, and final product malfunction [1]. A myriad of
hardware test methods can be employed depending on
financial constraints and technical barriers. One of the most
reliable PCB test methods is using a fixture or bed of nails
[13], where fixed probes power up and actuate the board's
circuitry. A less expensive similar approach is the use of flying
probes [14]. In this case, needles attached to a probe on an x-
y grid match the circuit board. Alternatively, digital image
processing has also been efficiently employed in circuit
testing. Computer vision techniques apply a camera to capture
PCB images that are algorithmically analyzed [15][16]. For
PCB's internal anatomy inspection, x-ray images are
frequently employed [17]. Automated Optical Inspection
(AOI) refers to test techniques where PCB images are
compared to a reference image, and dissimilarities denote
possible defects [18][19]. Thermography is a similar approach
to AOI, where infrared images are used to detect defects [20].

Non-invasive test approaches have been published for
hardware testing. However, the proposed solution is restricted
due to specific device/circuit characteristics [21] or data
availability [22].

Regarding software test, automation techniques have been
developed and systematically used in the industry [23]. The
solutions proposed in [23], [24] and [25] use either machine
learning models or artificial neural networks. However, as in
high-level software, the objective is to predict the occurrence
of failures and not detect anomaly in an embedded system.
Moreover, the analysis is based on software metrics [26].

III. PROPOSED APPROACH FOR ANOMALY DETECTION

Our proposed method is an adaptation of [27], in which the
electric current consumed by the DUT is used to generate the
spectrogram images instead of the thermal signature [28] (a
more conventional current signature approach can be found in
[29]). In this section, we provide a description on how the
anomaly detection is performed. The block diagram of the
proposed system is illustrated in Fig. 2. First, we acquire a
region of interest (ROI) of the thermal image that belongs to
the circuit to be tested. The maximum temperature in the ROI
is plotted using a computer software during a specific time
interval ΔT (acquisition window). Then, we determine the
temporal behavior of temperature in that region, and the
temperature as a function of time is plotted. This graph is
called a sample. Then, we generated the spectrogram from that
sample. The spectrogram image serves as input data for a
previously trained autoencoder, which attempts to reproduce
a copy of the input. Next, we calculate the difference between
the autoencoder’s output and input images using mean square
error. The anomaly detection algorithm compares this
difference to a decision threshold λo. Therefore, the test result
(pass or fail) depends on the similarity between the
autoencoder input and output. Fig. 3 illustrates the ROI
definition and the thermographic processing. The

+ VDC

Thermographic
analysis

Spectrogram
Generation

Autoencoder

|ImageA - ImageB | > λo?

NOK OKAnomaly Detection System

Comparator

ImageA ImageB

IR
Camera

0 V

Thermographic
image

Temperature
signature

Input
spectrogram

Output
spectrogram

Computer SW
DUT

Device

Under Test

Y N

_

thermographic sample generation process is further explained
in section IV.B.

Fig. 3. PCB region of interest. The maximum temperature in the marked

square (a and b) is acquired and plotted as a function of time.

In order to ensure that the built system has the required
flexibility, several of the parameters shown in Fig. 2 are
adjustable: ΔT - acquisition window; Construction of the
spectrogram - image size (height x width); frequency range on
the y axis; Autoencoder - number of layers; training and
construction parameters of the neural network; Comparator -
decision threshold λo. Additionally, multiple acquisitions can
be carried out in the same test. This allows the test to be
repeated for the same DUT for a certain number of times.
Despite increasing the test time, this increases the anomaly
detection reliability.

A. Thermography

Physically, the heat can be treated as an infrared ray. The
infrared wavelength range is generally considered to be from
0.7 to 100 μm. Infrared rays are spontaneously irradiated by
all objects with a temperature above absolute zero. The
emitted energy indicates the temperature of the object.

The equipment used in thermography consists of a special
infrared camera that scans the object and a computer
application. The camera unit contains an optical system that
scans the field of view at a very high speed and focuses the
infrared radiation on a detector that converts the radiation
signal into an electrical signal.

The computer application processes the captured signal. In
our experiment, we used a FLIR T530 infrared camera and the
FLIRTools+ software [30] for data processing.

B. Autoencoders

Autoencoders can be seen as artificial neural networks
trained to learn a representation of the input data and, based
on this representation, reconstruct the input data on its output
[8]. The representation of information, called coding, can be
used for various purposes, such as dimensional data reduction
or anomalies detection [31]. An autoencoder consists of an
input layer, one or more hidden intermediate layers, and an
output layer. Traditionally, these networks have a symmetrical
structure, in which the input and output layers have the same
number of neurons. Autoencoder implementation involves
three steps: definition of the structure (size, number of
neurons, number of layers, etc.); training; and validation.

C. Random Forest

Random Forests are a widely-used machine learning
model, which can be trained to perform multiclass
classification. In this work, to obtain a basis of comparison
with the results of the proposed system – based on
autoencoders – we analyzed experimental samples with a

Random Forest model [32]. For the sake of simplicity, we
built a classifier and trained only with two types of firmware:
FWOK and FWNOK. The characteristics of the samples were
previously extracted through wavelet analysis (DWT –
Discrete Wavelet Transform) to improve the quality of the
classification process [33]. Fig. 4 shows the Random Forest
and DWT based classifier. Briefly, the classifier reads the
samples, extracts their features and sends them to the trained
model for classification. The extracted features are wavelet
coefficients. In this experiment, the data were split in a 75%
and 25% ratio for Random Forest training and test,
respectively.

Fig. 4. A temperature signal sample is applied to the feature extraction block;

the coefficients generated by the DWT are processed by the Random Forest,

which classifies the sample in one of the two classes: FWOK or FWNOK.

IV. EXPERIMENTAL SETUP

In this section, we describe the design and building of an
experimental validation system certify the anomaly detection
efficiency. First, we detail the implementation of a DUT,
which provides the data used for the validation tests. Then, we
show how the information is acquired, pre-processed and used
to train the models for anomaly detection, based on Random
Forest and Autoencoder.

A. Device Under Test - Design and Construction

The DUT consists of two parts: hardware (Fig. 5-a) and
software (Fig. 5-b).

Fig. 5. Implementation of the DUT. Development. Test software composed
of infinite loop and LED activation functions and sending information via

serial interface (UART).

(b)

ROI

(a)

Feature exctraction
(DWT Haar Wavelet)

Random Forest trained with
FWOK and FWNOK

ClassificationFWOK FWNOK

Sample

HW
initialization

timer_setup()

GPIO_setup()

UART_setup()

ISR_setup()

Main loop

while(TRUE){

LEDs();

uart_send();

}

Boot
(a) (b)

The hardware was implemented in an ARM Cortex M4F
microcontroller evaluation platform from Texas Instruments
[34]. The development board provides multiple general-
purpose interfaces (GPIO – General-Purpose Input/Output),
which can emulate typical embedded systems applications.
The firmware has the typical structure of an embedded
application. It has an initial hardware bootstrap followed by
an infinite loop. The system periodically activates an RGB
(Red Green Blue) LED and performs data transmission via
serial interface. In experimental tests, two firmware versions
were implemented. One version represents a simulated
operational form of the system. A summary of these versions
can be seen in TABLE I.

TABLE I. TEST FIRMWARE VERSIONS AND THEIR

BEHAVIOR.

Designation FWOK FWNOK

Expected Tasks
Periodic RGB

LED blinking

Periodic RGB

LED blinking

Modification (simulated

anomaly)

None (anomaly

free)

LED activation

delay + UART
data transmission

The implemented firmware behavior, although quite
simple, is typical for reactive embedded systems [9]. Such
systems execute cyclically, reading and triggering GPIO pins
and transmitting/receiving information over one or more
communication interfaces, such as UART. Two board control
keys were used to switch the execution mode between the two
firmware versions. In Fig. 6, two examples (excerpts) of the
test firmware used in the experiment and the respective
thermographic signatures, given as a function of time, are
illustrated. A slightly change in the LED blinking cadence –
caused by the added delay on FWNOK – and the unexpected
UART transmission produces a noticeable impact on the
thermographic signature. The generation of thermographic
signatures is explained next in section IV.

Fig. 6. Sections of the embedded test firmware and the respective

thermographic signature.

B. Data Acquisition

i) Infrared images acquisition

The data used to train and validate the autoencoder are
obtained from the DUT’s thermographic behavior. Thus, the
infrared image acquisition is the first stage of data acquisition.

A picture of this setup is shown in Fig. 7. In our experiment,
the total acquisition time was approximately two hours for
both firmware versions FWOK and FWNOK.

Fig. 7. Infrared data acquisition system with a FLIR T530 camera.

ii) Thermographic samples generation

After the acquisition, the two hours long signal is split into
multiple ΔT long sections, called thermographic samples. The
total number of samples generated from the acquired signal
depends on ΔT, i. e., a higher number of samples requires a
lower ΔT. However, there is a tradeoff between the number of
generated samples and the anomaly detection accuracy: the
longer the acquisition length, the more detail it contains;
hence, the higher the accuracy. In our experiments, ΔT = 4, 5
and 6 s were evaluated. In all cases, we used the same the
number of samples, to ensure a fair comparison. We obtained
the best result with ΔT = 6 s. Then, from the two hours long
collected data, a series of 6 seconds long samples were
obtained (see details in TABLE II). From the operational
perspective, ΔT is a parameter of the anomaly detection
system that can be adjusted.

TABLE II. TOTAL AMOUNT OF GENERATED SAMPLES
AND IMAGES FOR TRAINING, VALIDATION AND TEST PURPOSES.

Thermographic Samples and

Spectrogram Images
FWOK FWNOK

Total 1204 1204

Autoencoder training 643 Not Applicable

Autoencoder validation 160 Not Applicable

Autoencoder testing 401 401

Random forest training 903 903

Random forest testing 301 301

iii) Spectrograms generation

We used the Matlab function “spectrogram (X, S_len,
N_overlap, Nf, Fs)” to generate the spectrogram. This
function generates the spectrogram of X (discrete signal
acquired with sampling rate Fs) as follows: The signal is
divided into sections of length “S_len”; A Hamming window
is applied to the section; An overlapping "N_overlap" points
is applied between adjunct sections; The spectrum (Fourier) is
calculated at the frequencies ⌊Nf / 2 + 1⌋, where “⌊ ⌋” is the
floor operator. The following values were used in our
experiment: S_len = 64; N_overlap = 50; Nf = 60; Fs = 30
Hz. Then, the generated spectrogram is converted into color
images of 128 x 96 pixels. This process of converting the
spectrogram to an image makes it possible to filter the
frequencies of the samples by adjusting the limits of the y-
axis. Thus, it is possible to filter out unwanted sample noise
and acquisition artifacts. In our examples, the spectral range

FWOK

FWNOK

DUT

FLIR 530
Computer Application
FLIR Tools+

of interest of the measured temperature signal is restricted to
low-frequency values. Therefore, frequency values above 5
Hz were filtered out by the image generation process. This
filtering is adjustable and can be configured for a new DUT.
Fig. 8 shows examples of two samples and their
spectrograms. The final image generated from the
spectrogram does not have the axes, only the spectral
information. From Fig. 8, it is possible to notice that the
differences between the samples cause minimal differences in
the spectrograms. Nevertheless, this minimal difference can
be detected by the autoencoder quite effectively. This is the
fundamental aspect of the method proposed in this work.

Fig. 8. Samples with width (ΔT = 6 s). (a) - FWOK; (b) - FWNOK. (c) and (d)

- Spectrograms of the samples displayed in (a) and (b), respectively.

Finally, for each thermographic sample, one spectrogram
image is generated. TABLE II summarizes sample and image
generation and application within the anomaly detection
process. Random Forest uses thermographic samples, while
Autoencoder uses spectrogram images.

C. Data Preprocessing

The temperature signal as a function of time varies very
slowly – observed frequencies are of the order of 5 to 10 Hz.
Therefore, the spectrograms generated directly from the
obtained signal show a slight variation. Thus, the autoencoder
cannot correctly distinguish images that belong to the OK
class from those that belong to the NOK class. To get around
this restriction, we change the temperature signal utilizing a
simple non-linear transformation: the DC level of the signal is
removed before obtaining the spectrogram. This
transformation represents a form of preprocessing applied to
the data. In Matlab, this is simply accomplished through the
detrend() function. It is important to note that this approach is
only necessary in the case where images are used, e. g., the
autoencoder of our anomaly detection system. The curves
depicted in Fig. 9 illustrates this transformation.

Fig. 9. Preprocessing example using Matlab detrend() function.

D. Random Forest Training

Here, we detail the process of building and training the
Random Forest used to classify the firmware executed by the
DUT into two classes: OK and NOK. The model was built
using the R language [35], a well-established library for this
purpose. The random forest model’s performance can be
optimized through parameter adjustment. Thus, we observed
the model’s performance as a function of parameters Ntree
and Mtry, the number of trees to grow, and the number of
variables randomly sampled as candidates at each split. For
the experiment, for anomaly detection, we chose the model
with Ntree = 80 and Mtry = 20 for it has been shown the best
results, with a test error of approximately 0.16 % (Fig. 10).

Fig. 10. Train and test errors obtained for a Random Forest model as a

function of the number of trees (Ntree) and number of variables randomly

sampled as candidates at each split (Mtry).

E. Autoencoder Training

We implemented an autoencoder based on a famous
structure [36], where the layers consist of convolutional and
filtering networks. We used Python and the open-source
artificial neural network library Keras to implement the
autoencoder [37]. The autoencoder summary is shown in Fig.
11.

Fig. 11. Autoencoder summary.

(b)(a)

(d)(c)

Model: "model_1"

__

Layer (type) Output Shape Param #

===

input_1 (InputLayer) (None, 96, 128, 3) 0

__

conv2d_1 (Conv2D) (None, 94, 126, 32) 896

__

max_pooling2d_1 (MaxPooling2 (None, 47, 63, 32) 0

__

conv2d_2 (Conv2D) (None, 45, 61, 64) 18496

__

max_pooling2d_2 (MaxPooling2 (None, 22, 30, 64) 0

__

conv2d_3 (Conv2D) (None, 20, 28, 64) 36928

__

flatten_1 (Flatten) (None, 35840) 0

__

dense_1 (Dense) (None, 2304) 82577664

__

reshape_1 (Reshape) (None, 24, 32, 3) 0

__

conv2d_transpose_1 (Conv2DTr (None, 48, 64, 64) 1792

__

batch_normalization_1 (Batch (None, 48, 64, 64) 256

__

conv2d_transpose_2 (Conv2DTr (None, 96, 128, 64) 36928

__

batch_normalization_2 (Batch (None, 96, 128, 64) 256

__

conv2d_transpose_3 (Conv2DTr (None, 96, 128, 32) 18464

__

conv2d_4 (Conv2D) (None, 96, 128, 3) 867

===

Total params: 82,692,547

Trainable params: 82,692,291

Non-trainable params: 256

Before using the autoencoder to detect anomalies, it is
mandatory to train it. In our case, the training process must be
carried out using anomaly free class images solely. The
quality of the training process is measured by two parameters:
loss and accuracy.

We performed cross-validation during the training process
to avoid autoencoder overfitting. The, training is performed
on one subset (called the training set), and validation is
performed on the other subset (called the validation). We used
data subsets to perform training and validation, as listed in
TABLE II.

Training and validation outcomes are shown in Fig. 12.
An epoch denotes the number of times all the training data
have passed through the neural network in the
training/validation process. Both loss and accuracy converge
to reasonable values after a few dozen iterations. Hence, the
training process is successful.

Fig. 12. Loss and Accuracy for Training and Validation processes.

V. EXPERIMENTAL RESULTS

A. Anomaly detection with Random Forest

Using the structure shown in Fig. 4 and the data listed in
TABLE II, we performed an anomaly detection test for two
configurations, Mtry = 4 with Ntree = 20 and Mtry = 20 with
Ntree = 80. The model’s classification error shows that the
model can perform a near-optimal classification for the second
situation. This result is confirmed by ROC curves, as shown
in Fig. 13.

Fig. 13. ROC curves regarding firmware classification for two random forest

implementations.

The confusion matrix constructed for this test is depicted
in TABLE III, from which an overall anomaly detection
accuracy rate of 99.67 % is obtained.

TABLE III. CONFUSION MATRIX FOR THE RANDOM FOREST

ANOMALY DETECTION.

 Prediction

 FWOK FWNOK

Actual class
FWOK 300 0

FWNOK 1 301

B. Anomaly detection with Autoencoder

The detection accuracy strongly depends on the decision
threshold. In practical situations, optimal threshold selection
is a gradual process. In this case, values are refined with
empirical data from the system in operation [22].

For the anomaly detection system to work correctly, the
reconstruction error’s variance for the anomaly-free cases
must be limited. Thus, there must be a gap between the
anomaly-free distribution and any other distribution in order
to define a threshold that leads to maximum detection
accuracy.

The autoencoder reconstruction error distributions
obtained in our tests are shown in Fig. 14. There is a gap
between FWOK and FWNOK distributions, where the optimal
decision threshold λo = 5.375 x 10-3 can be placed.

Fig. 14 presents curves with an interesting shape: the
FWOK curve is narrow and has a low average. The FWNOK
curve, on the other hand, is broader and has a high average.
Such a trend indicates that, in practice, the reconstruction
errors for NOK signals should be higher, which facilitates
anomaly detection.

The optimal decision threshold can be found from the
reconstruction errors obtained during the tests as described
next. First, we perform multiple tests with incremental values
for the decision threshold λ.

The error or accuracy of anomaly detection is obtained for
each case and plotted as a function of λ, as illustrated in Fig.
15.

Fig. 14. Autoencoder reconstruction error obtained from 401 tests.

Fig. 15. Anomaly detection accuracy versus decision threshold values. The

best case defines the optimum decision threshold.

For the optimal threshold, anomaly detection is
accomplished with nearly 100% accuracy. This is confirmed
by the ROC curve obtained from this experiment shown in
Fig. 16 and by the confusion matrix constructed for the
Random Forest test, depicted in TABLE IV. From the
confusion matrix in TABLE IV, we find the overall correct
anomaly detection rate of 98,50%.

Fig. 16. ROC curves for the Autoencoder anomaly detection using threshold

λo = 5.375 x 10-3.

TABLE IV. CONFUSION MATRIX FOR THE AUTOENCODER

ANOMALY DETECTION.

 Prediction

 FWOK FWNOK

Actual class
FWOK 393 8

FWNOK 4 397

C. Analysis

The ROC curves and confusion matrix demonstrate that
both autoencoder and random forest models can distinguish
data from different firmware classes. Autoencoders have the
advantage that they can be trained with anomaly-free data
only.

For the Autoencoder approach, since the reconstruction
errors extent varies with the spectrogram class (FWOK or
FWNOK), the anomaly detection accuracy depends on the
decision threshold. After performing multiple detection tests,
we can use the curve in Fig. 15 to obtain an informed
estimation for the decision threshold. We can confirm this by
comparing the obtained ROC, AUC and detection accuracy to
similar [38] or superior [22], [39] to that published in previous
works, with the advantage of being completely non-intrusive.
The mentioned works are also limited regarding the class of
anomaly they can detect. The work presented in [20] used
thermography to detect hardware anomalies. However, in that
case, only the soldered joint quality of PCB mounted LEDs
was analyzed. Similarly, the approach described in [28] is
focused on electrical component’s defects, instead of system
anomalies.

To summarize, the results demonstrate the effectiveness of
the proposed embedded system anomaly detection method;
for two test firmware versions, the detection accuracy is
significantly high; and pre-processing applied on the data was
essential to anomaly detection accuracy. The proposed
method can be easily adapted to other embedded systems by
retraining the autoencoder with appropriate anomaly-free
thermographic sample and spectrograms.

VI. CONCLUSION AND FUTURE WORKS

In this work, we investigated the application of machine
learning and thermography to detect anomalies in embedded
systems. We designed and built a validation DUT, which
consists of two parts: hardware and firmware. For comparison
purposes, a machine learning model based on Random Forest
was used to detect anomalies on the same board we used to
validate the Autoencoder approach. The test results showed
that both approaches are effective. However, Random Forest
training requires data from all classes. Autoencoders, on the
other hand, only require the reference class (anomaly free).
This is fundamental because, in a practical scenario, data from
anomalous classes are challenging to obtain.

Regarding this research work, our next steps are:

• Investigate autoencoder’s optimization;

• Test the system with more samples (i. e., increase the
data acquisition time);

• Investigate the effects of other non-linear
transformation on the data before training the
Autoencoder;

λo =

• Design a machine learning model based on a
Convolutional Neural Network with multiple inputs,
each one receiving data from a different ROI.

REFERENCES

[1] Khandpur, Raghbir Singh. “Printed circuit boards: design, fabrication,
assembly and testing,” Tata McGraw-Hill Education, 2006.

[2] Justyna Zander, Ina Schieferdecker, Pieter J. Mosterman. „Model-
Based Testing for Embedded Systems,” CRC Press, 2017.

[3] Gilchrist, Alasdair. “Industry 4.0: the industrial internet of things,”
Apress, 2016.

[4] Jiage Huo, Felix T. S. Chan, Carman K. M. Lee, Jan Ola Strandhagen,
Ben Niu. “Smart control of the assembly process with a fuzzy control
system in the context of Industry 4.0,” Advanced Engineering
Informatics. Volume 43, January 2020, 101031.

[5] Bartodziej, Christoph Jan. "The Concept Industry 4.0," The Concept
Industry 4.0. Springer Fachmedien Wiesbaden, 2017. 27-50.

[6] M. R. Johnson, "The Increasing Importance of Utilizing Non-intrusive
Board Test Technologies for Printed Circuit Board Defect Coverage,"
2018 IEEE AUTOTESTCON, National Harbor, MD, 2018, pp. 1-5,
doi: 10.1109/AUTEST.2018.8532499.

[7] Ming-Chuan Chiu, Chi-Hsuan Tsai. “Design a personalized product
service system utilizing a multi-agent system.,”Advanced Engineering
Informatics. Volume 43, January 2020, 101036.
https://doi.org/10.1016/j.aei.2020.101036.

[8] Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. “Deep
learning,” MIT press, 2016.

[9] Edward A. Lee and Sanjit A. Seshia, “Introduction to Embedded
Systems, A Cyber-Physical Systems Approach,” Second Edition, MIT
Press, ISBN 978-0-262-53381-2, 2017.

[10] M. Esser, P.Struss. “Fault-model-based Test Generation for Embedded
Software,” IJCAI'07: Proceedings of the 20th international joint
conference on Artificial intelligence. 2007. Pages 342–347.

[11] “Test Pattern Generation and Fault Simulation. In: Integrated Circuit
Test Engineering,”. Springer, London. https://doi.org/10.1007/1-
84628-173-3_10.

[12] Peter Marwedel. “Embedded System Design - Embedded Systems
Foundations of Cyber-Physical Systems,”. 321- 326. DOI
10.1007/978-94-007-0257-8.

[13] Lu, S., Chu, J. & Jang, H. “Development of a novel coordinate
transposing fixture system,” Int J Adv Manuf Technol 13, 350–358
(1997). https://doi.org/10.1007/BF01178255.

[14] Gómez, J., et al. "A robotic system for PCBS inspection based on
computer vision and mobile probes," IFAC Proceedings Volumes 40.3
(2007): 171-176.

[15] M. Baygin, M. Karakose, A. Sarimaden And E. Akin, "Machine vision
based defect detection approach using image processing," 2017
International Artificial Intelligence and Data Processing Symposium
(IDAP), Malatya, 2017, pp. 1-5, doi: 10.1109/IDAP.2017.8090292.

[16] F. Guo and S. Guan, "Research of the Machine Vision Based PCB
Defect Inspection System," 2011 International Conference on
Intelligence Science and Information Engineering, Wuhan, 2011, pp.
472-475, doi: 10.1109/ISIE.2011.47.

[17] Chuang, S., Chang, W., Lin, C. et al. “Misalignment inspection of
multilayer PCBs with an automated X-ray machine vision system,” Int
J Adv Manuf Technol 51, 995–1008 (2010).
https://doi.org/10.1007/s00170-010-2664-9.

[18] Richter, Johannes, Detlef Streitferdt, and Elena Rozova. "On the
development of intelligent optical inspections," Computing and
Communication Workshop and Conference (CCWC), 2017 IEEE 7th
Annual. IEEE, 2017.

[19] Wenting Dai, Abdul Mujeeb, Marius Erdt, Alexei Sourin. “Soldering
defect detection in automatic optical inspection,” Advanced
Engineering Informatics. Volume 43, January 2020, 101004.
https://doi.org/10.1016/j.aei.2019.101004.

[20] Y. Mamchur, V. Ivanova, G. Monastyrsky, T. Melnychenko, G. Zheng
and S. Voronov, "Thermography investigation of soldered joints for
LED mounting," 2020 IEEE 40th International Conference on
Electronics and Nanotechnology (ELNANO), Kyiv, Ukraine, 2020, pp.
143-147, doi: 10.1109/ELNANO50318.2020.9088886.

[21] Nabil El-Belghiti, Patrick Tounsi, Alexandre Boyer, Arnaud Viard .
“Upgrading In-Circuit Test of High Density PCBAs Using

Electromagnetic Measurement and Principal Component Analysis,”
Journal of Electronic Testing (2018) 34:749–762.
https://doi.org/10.1007/s10836-018-5763-4.

[22] Abdul Mujeeb, Wenting Dai, Marius Erdt, Alexei Sourin. “One class
based feature learning approach for defect detection using deep
autoencoders,”. Advanced Engineering Informatics. Volume 42,
October 2019, 100933. https://doi.org/10.1016/j.aei.2019.100933.

[23] Pengyang Zong ; Yichen Wang ; Feng Xie. “Embedded Software Fault
Prediction Based on Back Propagation Neural Network,”. 2018 IEEE
International Conference on Software Quality, Reliability and Security
Companion (QRS-C). DOI: 10.1109/QRS-C.2018.00098.

[24] P. Deep Singh and A. Chug, "Software defect prediction analysis using
machine learning algorithms," 2017 7th International Conference on
Cloud Computing, Data Science & Engineering - Confluence, Noida,
2017, pp. 775-781, doi: 10.1109/CONFLUENCE.2017.7943255.

[25] Manjula, C., Florence, L. “Deep neural network based hybrid approach
for software defect prediction using software metrics,” Cluster Comput
22, 9847–9863 (2019). https://doi.org/10.1007/s10586-018-1696-z.

[26] R. Moser, W. Pedrycz, and G. Succi. “A comparative analysis of the
efficiency of change metrics and static code attributes for defect
prediction,” In Proc. Int’l Conf. on Softw. Eng. (ICSE’08), pages 181–
190, 2008.

[27] José Paulo G. de Oliveira, Carmelo Bastos Filho, Sérgio Campello
Oliveira, “Non-invasive embedded system hardware/firmware
anomaly detection based on the electric current signature”. Advanced
Engineering Informatics, unpublished.

[28] N. El Belghiti Alaoui, P. Tounsi, A. Boyer and A. Viard, "Detecting
PCB Assembly Defects Using Infrared Thermal Signatures," 2019
MIXDES - 26th International Conference "Mixed Design of Integrated
Circuits and Systems", 2019, pp. 345-349, doi:
10.23919/MIXDES.2019.8787089.

[29] J. Liang, S. K. K. Ng, G. Kendall and J. W. M. Cheng, "Load Signature
Study—Part I: Basic Concept, Structure, and Methodology," in IEEE
Transactions on Power Delivery, vol. 25, no. 2, pp. 551-560, April
2010, doi: 10.1109/TPWRD.2009.2033799.

[30] FLIR Tools User Guide.
http://support.flir.com/answers/A1568/FLIR%20Tools%20User%20
Guide%20v2.1.1.pdf (last access 05 August 2021).

[31] Mayu Sakurada and Takehisa Yairi. “Anomaly Detection Using
Autoencoders with Nonlinear Dimensionality Reduction,” In
Proceedings of the MLSDA 2014 2nd Workshop on Machine Learning
for Sensory Data Analysis. Association for Computing Machinery,
New York, NY, USA, 4–11. DOI:
https://doi.org/10.1145/2689746.2689747.

[32] Robin Genuer, Jean-Michel Poggi, Christine Tuleau-Malot. “Variable
selection using random forests,” Pattern Recognition Letters. Volume
31, Issue 14, 15 October 2010, Pages 2225-2236.

[33] N. Saravanan, K. I. Ramachandran. “Incipient gear box fault diagnosis
using discrete wavelet transform (DWT) for feature extraction and
classification using artificial neural network (ANN),” Expert Systems
with Applications. Volume 37, Issue 6, June 2010, Pages 4168-4181.

[34] MAZIDI, Muhammad Ali et al. TI Tiva ARM Programming For
Embedded Systems: Programming ARM Cortex-M4 TM4C123G with
C (Volume 2). 2017.

[35] Y. Rimal, "Machine Learning Random Forest Cluster Analysis for
Large Overfitting Data: using R Programming," 2019 6th International
Conference on Computing for Sustainable Global Development
(INDIACom), New Delhi, India, 2019, pp. 1265-1271.

[36] Chollet, Francois. “Building Autoencoders in Keras,” Online 2016.
https://blog.keras.io/building-autoencoders-in-keras.html. Last access:
05-28-2020.

[37] Chollet, Francois. “Deep Learning with Python,” Manning
Publications, (2017).

[38] G. Acciani, G. Brunetti and G. Fornarelli. “A Multiple Neural Network
System to Classify Solder Joints on Integrated Circuits,” International
Journal of Computational Intelligence Research. ISSN 0973-1873
Vol.2, No.4 (2006), pp. 337-348.

[39] L. H. d. S. Silva, G. O. d. A. Azevedo, B. J. T. Fernandes, B. L. D.
Bezerra, E. B. Lima and S. C. Oliveira, "Automatic Optical Inspection
for Defective PCB Detection Using Transfer Learning," 2019 IEEE
Latin American Conference on Computational Intelligence (LA-CCI),
Guayaquil, Ecuador, 2019, pp. 1-6, doi: 10.1109/LA-
CCI47412.2019.9037036.

