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Abstract—Graph neural networks (GNNs) have become the de
facto approach for supervised learning on graph data. To train
these networks, most practitioners employ the categorical cross-
entropy (CE) loss. We can attribute this largely to the probabilis-
tic interpretation of CE, since it corresponds to the negative log
of the categorical/softmax likelihood. Nonetheless, recent works
have shown that deep learning models can benefit from adopting
other loss functions. For instance, neural networks trained with
symmetric losses (e.g., mean absolute error) are robust to label
noise. Perhaps surprisingly, the effect of using different losses
on GNNs has not been explored. In this preliminary work, we
gauge the impact of different loss functions to the performance of
GNNs for node classification under i) noisy labels and ii) different
sample sizes. In contrast to findings on Euclidean domains, our
results for GNNs show that there is no significant difference
between models trained with CE and other classical loss functions
on both aforementioned scenarios.

Index Terms—Graph neural networks, semi-supervised node
classification, loss functions, noise-tolerant networks.

I. INTRODUCTION

Graph neural networks (GNNs) [1], [2] have become the main
workhorse for analyzing graph-structured data. Similarly to
convolutional neural networks, GNNs architectures interleave
convolutional [3], [4], [5] and pooling layers [6], [7], [8] to
extract meaningful graph representations. Remarkably, these
models have led to breakthroughs in many tasks such as
antibiotic design [9], recommender systems [10], machine
translation [11], and physical systems simulation [12].

Similarly to classical deep learning models, the learning phase
of GNNs consists of minimizing a loss function using gradient-
based optimization (e.g., Adam [13]). Notably, the cross-
entropy (CE) loss function is the ubiquitous choice for classifi-
cation tasks. While the CE is arguably an intuitive choice, due
to its direct relationship to classical logistic and multinomial
regression models [14], there are many other options to choose
from — e.g., mean squared-error (MSE), mean absolute error
(MAE) and hinge-losses [15]. In fact, there is evidence from

research in traditional neural networks that choosing the CE
loss can lead to sub-optimal accuracy [16], [17].

For instance, Manwani and Sastry [18] show that the 0-1 loss
is robust to symmetric label noise, i.e., when the probability
of observing label i, given that the true label is j, is the
same for all i 6= j. Additionally, Ghosh et al. [16] show that,
in the context of multi-class classification, neural networks
trained using MAE are robust to symmetric label noise, while
networks trained using CE are not.

Despite the central role played by loss functions, to the best
of our knowledge, there is no work exploring the impact
of different loss functions on the performance of GNNs. In
this work, we focus on semi-supervised node classification
and evaluate the importance of different loss functions in two
distinct scenarios: i) varying amount of labeled data; and ii)
noisy training labels. The former reflects the reality of many
semi-supervised settings, in which labeled data are scarce. The
latter commonly applies when data are labeled by humans,
and are therefore inherently noisy. More specifically, we run
experiments using four loss functions: CE, MSE, MAE and the
Weston-Watkins hinge loss [15]. Our results show that all loss
functions result in similar accuracy for any amount correctly-
labeled data. In addition, our experiments suggest that MAE,
MSE and large-margin losses are not robust to symmetric label
noise on semi-supervised node classification tasks.

The remainder of this work is organized as follows. Section II
provides a brief review of GNNs and common loss functions.
Section III evaluates the impact of different loss functions
when node labels are noisy. Section IV gauges the performance
of choosing distinct losses when few labeled nodes are avail-
able. Section V discusses related works. Finally, Section VI
draws conclusions and points directions for future works.



II. BACKGROUND

A. Notation and problem definition

We represent a graph G with nodes V = {1, 2, . . . , n} as
a pair (A,X) where A ∈ {0, 1}n×n denotes a symmetric
adjacency matrix and X ∈ Rn×d is a matrix whose rows
comprise d-dimensional node features. Additionally, we define
the diagonal degree matrix D of G such that Dii :=

∑
j Aij .

Also, we denote the normalized graph Laplacian matrix of G
as ∆ := I −D−1/2AD−1/2.

In node classification problems, we are given a partially
labeled graph G with labeled nodes Vl and unlabeled nodes
Vu, such that Vu ∪ Vl = V . The goal is to correctly predict
the labels of Vu.

B. Graph Neural Networks

Although graph neural networks (GNNs) can come in different
flavors, they are usually introduced either from a message-
passing (spatial) or a spectral perspective. Here, we briefly
describe three representative GNNs: graph convolutional net-
works (GCN, [19]), simplified graph convolutions (SGC, [20]),
and graph attention networks (GAT, [21]).

From a spectral perspective, we can define convolutions in
graph domains via the eigendecomposition of the graph Lapla-
cian matrix [22]. Let U and Λ denote the eigenvectors and
eigenvalues of the graph Laplacian ∆, respectively. The graph
Fourier transform of a d-channel signal X ∈ Rn×d on the
vertices of the graph is given by X̂ = UᵀX , and its inverse
is X = UX̂ . Using these operations, we define the graph
convolution between a signal X and a filter g as

g ?X = U ((Uᵀg)� (UᵀX)) = UĜUᵀX (1)

where Ĝ = diag(ĝ1, ĝ2, . . . , ĝn) comprises the spectral filter
coefficients ĝi.

In practice, the non-parametric approach in Equation 1 is
undesirable, since it comprises a large number of parameters
and does not produce localized filters [3]. A solution is
to approximate the filter with polynomials of the Laplacian
eigenvalues, leading to polynomials of the Laplacian since
UΛkUᵀ = ∆k.

Let H(0) = X; at layer `, a generic polynomial spectral GNN
computes

H(`) = ReLU

(
K∑

k=0

∆kH(`−1)Θ
(`)
k

)
, (2)

where Θ(`) ∈ Rd`−1×d` are the coefficients of the spectral
filters. The output H(L) ∈ Rn×dL after L layers comprises
representations for each node in G.

Graph Convolutional Networks (GCN). Building upon the
spectral GNN in Equation 2, Kipf and Welling [19] propose
using a first-order polynomial approximation, i.e, K = 1. In
addition, GCNs apply two modifications: ii) adopting a single
parameter matrix per layer such that Θ(`) = Θ

(`)
0 = −Θ(`)

1 ; ii)

employing the normalized adjacency matrix with added self-
loops Ã = (D + I)−1/2(A+ I)(D + I)−1/2. As a result, the
GCN layer recursively computes

H(`) = ReLU
(
ÃH(`−1)Θ(`)

)
. (3)

Simplified Graph Convolutions (SGC). Wu et al. [20] further
simplify the GCN model. In particular, SGC removes the
nonlinearities and collapses the parameters of the resulting
stacked linear layers into a single matrix Θ. After L feature
propagation steps (or layers), SGC obtains node embeddings
H given by

H = ÃLXΘ. (4)

Notably, SGC has proven to perform on par with GCNs on
many node classification tasks while being much faster and
more interpretable [20].

Graph Attention Networks (GAT). From a message-passing
perspective, Velivckovic et al. [21] introduce an attention-
based mechanism for graph data. Given a query node i, GATs
compute attention weights over the neighbors of i. The repre-
sentation of the query node i is then updated with the weighted
average of the embeddings of its neighbors. Formally, we first
compute the attention weight matrix W (`) ∈ Rn×n at layer `.
More specifically, for each i, j such that Aij = 1, we set

W
(`)
ij = LeakyReLU

(
aᵀ
`

[
Θ(`)ᵀh

(`−1)
i ||Θ(`)ᵀh

(`−1)
j

])
(5)

and the remaining entries are set to zero. The matrix Θ(`)

and the vector a` denote the model parameters of each layer.
We then apply the softmax function to each row Wi: of W
to normalize the attention across the neighbors of each node
i ∈ V . Denoting the normalized attention matrix by W̃ (`), the
output of the `-th GAT layer is

H(`) = ReLU
(
W̃ (`)H(`−1)Θ(`)

)
. (6)

Note that Equation 5 and Equation 6 describe a single head,
but in practice GATs employ a multi-head attention scheme.
We refer to [21] for further details.

C. Loss functions

Loss functions are crucial components in supervised learning
settings. It consists of the measure a learner minimizes to ob-
tain a suitable hypothesis (model) for the problem at hand. For-
mally, let Y denote the space of targets (e.g., Y = {+1,−1}
for binary classification) and P|Y| denote the |Y|-dimensional
probability simplex. In a typical classification problem, a loss
function L : P × Y → R+ maps a pair target-prediction to a
non-negative scalar. We want to minimize over a given training
dataset D. In this minimization problem, the decision variable
consists of model parameters (in the parametric case).

In the following, we briefly review the loss functions con-
sidered in this paper. Without loss of generality, we assume
the target labels are represented as one-hot vectors of length
C — the number of classes. For simplicity of notation, we



TABLE I
COMPARISON OF DIFFERENT LOSS FUNCTIONS FOR 30% OF MISLABELED SAMPLES. THE BEST RESULTS FOR EACH METHOD AND DATASET ARE IN

BOLDFACE. THE LOSS EMPLOYED BY THE BEST PERFORMING MODELS CHANGE WITH THE METHOD AND DATASETS. THEREFORE, THERE IS NO CLEAR
BEST LOSS FUNCTION FOR THIS SETTING.

Model Loss Cora Citeseer Pubmed DBLP WikiCs

SGC

CE 67.0±3.2 58.5±4.2 64.6±4.0 75.9±0.4 70.1±0.5
HINGE 70.6±2.9 59.3±3.3 67.6±3.5 76.6±0.8 70.9±0.5
MSE 70.9±3.5 61.2±7.5 69.0±3.4 75.9±0.9 70.0±0.7
MAE 68.3±4.0 58.7±4.8 66.0±6.1 75.8±0.9 61.6±3.8

GCN

CE 68.5±3.0 58.9±3.8 63.9±6.3 76.5±0.4 68.3±0.7
HINGE 67.9±2.2 59.2±2.8 64.2±5.7 76.4±0.4 68.9±0.6
MSE 66.7±3.6 58.9±3.9 65.0±5.5 75.9±0.5 68.1±1.6
MAE 61.0±5.9 48.5±9.5 59.8±15.8 75.6±0.9 55.0±3.3

GAT

CE 73.4±2.0 64.6±3.6 67.3±4.2 76.8±0.3 71.7±0.4
HINGE 72.0±2.9 64.1±3.1 67.4±5.8 76.7±0.3 71.1±0.5
MSE 73.4±3.2 59.7±2.2 67.9±2.4 75.7±0.6 72.1±0.6
MAE 70.9±3.9 60.2±2.3 66.5±6.0 75.9±0.5 57.1±1.1

omit the explicit dependency of the predictions on the model
parameters and illustrate the loss equations for a single data
point.

Cross-entropy. By far, cross-entropy (CE) is the most com-
monly used loss function for classification problems. This loss
is the negative logarithm of a categorical likelihood parame-
terized by the output of a softmax. Assume p is the softmax-
transformed prediction of our model for a training sample
whose true label has one-hot encoding y. The categorical CE
can be expressed as:

LCE(y,p) = −
C∑
i=1

yi log pi. (7)

Mean squared error. Albeit more commonly used for re-
gression, the MSE can also be used for classification tasks.
Adopting a one-hot representation y for the target label, the
MSE loss can be written as:

LMSE(y,p) =

C∑
i=1

(yi − pi)2. (8)

Mean absolute error. Similarly to the MSE, the MAE is often
employed in regression tasks. While the MSE is the L2 norm
between predictions and targets, the MAE corresponds to the
L1 norm:

LMAE(y,p) =

C∑
i=1

|yi − pi|. (9)

Hinge-loss. Hinge loss functions play an important role in
large-margin methods for binary classification. Here we con-
sider the multiclass extension by Weston and Watkins [15]:

Lhinge(y,p) =

C∑
i=1

max (0, γ + pi − pj∗), (10)

where j∗ = argmaxj yj and γ is a hyper-parameter.

Importantly, we follow Gosh et al. [16] and assume that, for
all loss functions, the prediction p is the output of a softmax
activation function.

III. IS ANY LOSS BETTER FOR NOISY LABELS?

In this section, we assess the impact of different loss functions
under the noisy label regime. To simulate this setting, for each
labeled example: i) we sample a value z from Uniform(0, 1),
and ii) if z is greater than a constant p ∈ (0, 1), which governs
the amount of noise, we switch the node label by a different
one sampled uniformly. This regime is known as symmetric
label noise and has been thoroughly studied outside graph
domains [16], [17].

Datasets. We consider data from five popular benchmarks:
Cora, Citeseer, Pubmed [23], DBLP [24] and Wiki-CS [25].
While the first four datasets represent classic citation networks,
Wiki-CS comprises Wikipedia posts as nodes and hyper-links
(edges) between these posts. All datasets have textual node
features. We provide further details and dataset statistics in
the Appendix.

Experimental Setup. We evaluate three representative GNNs
in our experiments: GAT, GCN and SGC. Following guidelines
from their original works, all models act on a 2-hop neigh-
borhood in the graph. We train all models for 104 epochs
using Adam [13] and repeated the experiments 10 times,
using different seeds. To simulate different levels of label
noise, we randomly re-assign the labels of a fraction of the
training nodes. This type of noise is often referred to as
symmetric, since the flipping probability does not depend on
the original label nor the re-assigned one. We analyze the
performance of each model using four loss functions: CE,
MSE, MAE and the Weston-Watkins hinge-loss. We provide
further implementation details in the Appendix.

Results. Table I presents the average test accuracy and
standard deviation for p = 0.3. Notably, no loss clearly
outperforms the others. For instance, most loss functions (CE,
Hinge and MSE) are optimal for at least one method/dataset
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Fig. 1. Average test accuracy for SGC, GCN and GAT using different losses as a function of label noise (proportion of misslabeled nodes). Overall, there is
no clear best loss function. As expected, the test accuracy drops as the noise increases.

pair. Additionally, Figure 1 corroborates these findings with
results for different values of p.

IV. IS ANY LOSS BETTER WHEN LABELS ARE SCARCE?

In this section, we assess the impact of different loss functions
when labeled data is scarce, a defining feature of semi-
supervised node classification settings.

Again, we consider three GNNs: SGC, GCN and GAT; and
four loss functions: MSE, MAE, CE, and Hinge loss. We train
these models using different loss functions on Cora, Citeseer
and Pubmed, for a varying number of labeled nodes per class
in {5, 10, 20, 30, 60}.

Results. Figure 2 shows the average test accuracy for SGC,
GCN and GAT trained with different loss functions and
amounts of labeled data. Again, no loss is cearly better than
the others. For instance, using only five labeled nodes, the
Hinge loss achieves the highest performance for SGC on Core.
However, the same method performs better on Pubmed when
trained using MSE, given the same amount of data.

V. RELATED WORKS

Learning from noisy labels. While learning from noisy labels
has been extensively studied on regular domains (e.g.,image
classification), the topic has been less explored on graphs.
Hoang et al. [26] propose using a modified loss function
which takes into account an estimate of the (symmetric) noise

distribution, also learned by the model. Yayong et al. [27]
propose UnionNET-GCN , which leverages random walks to
learn importance weights for the labeled nodes and to correct
possibly corrupted labels.

Large-margin losses for GNNs. Wang et al. [28] employ
large-margin losses functions to learn efficient initializations
for GNNs in few-shot classification tasks, when only a small
amount of data is available. Recently, Zhao et al. [29] used
large-margin loss function to extract node representations
which can be used for anomaly detection when paired with
global patterns, learned using graph mining algorithms.

VI. CONCLUSIONS AND FUTURE WORKS

This work evaluates the impact of training GNNs using
different loss functions when labels are noisy and when labeled
data are scarce. Among the classical loss functions, we find
there is no choice that clearly outperforms the others in any
of these scenarios.

In particular, our results for noisy labels directly contrast with
prior findings for non-graph data [16], [17], [18]. We believe
this opens a venue to explore theoretical aspects of semi-
supervised node classification that lead to this discrepancy,
which we will explore in future works.

We also plan to assess the impact of losses on different graph
tasks (e.g. link prediction) and other predictive aspects of
GNNs, such as calibration.
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APPENDIX

A. Datasets

We used five datasets for node classification tasks, four of
which are citation networks: Cora, Citeseer and Pubmed,
DBLP, where nodes correspond to documents and the undi-
rected edges are citations. Wiki-CS is a dataset based on
Wikipedia in which nodes are Computer Science articles,
edges are hyperlinks, and classes represent different branches
of the field. All datasets have been divided into training,
validation and testing as specified in Table II. For the noisy
label setup on Cora, Citeseer, Pubmed and Wiki-CS, we use
the public split training set. For DBLP, we use random splits.
For the experiment with different numbers of nodes labeled per
class, we use random splits. Table II shows summary statistics
for each dataset.

B. Implementation details

For SGC, we apply a 2-hop neighborhood model. We train
SGC for 500 epochs. Regarding the GAT model, we employ
2 layers. The first layer comprises 8 attentions heads, followed
by exponential linear unity (ELU) [30] non-linearity. We train

TABLE II
SUMMARY STATISTICS FOR THE DATASETS USED IN OUR EXPERIMENTS.

#Nodes #Edges #Features #Classes #Train #Val #Test

Cora 2708 5429 1433 7 140 500 1000
Citeseer 3327 4732 3703 6 120 500 1000
Pubmed 19717 44338 500 3 60 500 1000
DBLP 17716 52867 1639 4 800 400 17516
Wiki-CS 11701 297110 300 10 580 1769 5847

GAT models for 10000 epochs. Regarding GCNs, apply a 2-
layer model, trained for 500 epochs. For all methods, we use
the Adam optimizer with learning rate and weight decaying as
specified in the Table III for each loss function. In addition, we
use early stop with patience 100 epochs and all experiments
were repeated 10 times to obtain mean and standard deviation
results. We implement all models using the PyTorch Geometric
Toolkit [31].

C. Additional results

Figure 3 depicts the performance of the loss functions with
noisy labels for the Wiki-CS and DBLP datasets. On the DBLP
dataset, the loss functions obtains results similar to those from
the cross entropy loss. On the Wiki-CS dataset, the MAE
function obtains poor performance.
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Fig. 3. Results (average accuracy) for SGC, GCN, and GAT using cross-
entropy, hinge-loss, MSE, and MAE loss functions on the DBLP and Wiki-
CS datasets. Except for MAE on Wiki-CS, all losses achieve very similar
performance as we increase the amount of noisy labels.

D. Hyper-parameters

Table III shows the hyper-parameters for all models and
datasets considered in this paper. We note that, for the ex-
periments with variable number of nodes labeled per class,
we use dropout as given in the original implementations of
the GCN and GAT methods.
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TABLE III
HYPER-PARAMETERS FOR EACH MODEL AND DATASET. LR STANDS FOR

LEARNING RATE; WD STANDS FOR WEIGHT DECAY.

GAT
Model Loss LR WD Heads Hidden

Cora
CiteSeer
Pubmed

Hinge 5e− 3 5e− 4 8 8
CE 5e− 3 5e− 4 8 8
MSE 1e− 2 5e− 6 8 8
MAE 1e− 2 5e− 6 8 8

DBLP

Hinge 5e− 3 5e− 4 8 8
CE 5e− 3 5e− 4 8 8
MSE 5e− 3 5e− 6 8 8
MAE 5e− 3 5e− 6 8 8

WikiCS

Hinge 7e− 3 5e− 4 5 14
CE 7e− 3 5e− 4 5 14
MSE 5e− 3 − 5 14
MAE 5e− 3 − 5 14

GCN
Model Loss LR WD Hidden

Cora
CiteSeer
Pubmed

Hinge 1e− 2 5e− 4 16
CE 1e− 2 5e− 4 16
MSE 1e− 2 5e− 6 16
MAE 1e− 2 5e− 6 16

DBLP

Hinge 1e− 2 5e− 4 16
CE 1e− 2 5e− 4 16
MSE 0.1 5e− 6 16
MAE 0.1 5e− 6 16

WikiCS

Hinge 2e− 2 − 33
CE 2e− 2 − 33
MSE 5e− 3 − 33
MAE 5e− 3 − 33

SGC
Model Loss LR WD Hidden

Cora
CiteSeer
Pubmed

Hinge 0.2 5e− 6 -
CE 0.2 5e− 6 -
MSE 0.1 - -
MAE 0.1 - -

DBLP

Hinge 0.2 5e− 6 -
CE 0.2 5e− 6 -
MSE 0.3 - -
MAE 0.3 - -

WikiCS

Hinge 0.2 5e− 6 -
CE 0.2 5e− 6 -
MSE 5e-3 - -
MAE 5e-3 - -
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