Detection of Osteosarcoma on Bone Radiographs
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Abstract—Osteosarcoma is the most common type of bone
cancer. We propose a computer-aided diagnosis system based on
convolutional neural networks (CNNs) for the identification of
osteosarcoma on bone radiographs. The CNN should indicate
regions of the image that may contain tumors. In order to
indicate these regions on the image, we propose to split the
image in windows and individually classify them by using a CNN.
Techniques for pre-processing, such as window exclusion and
labeling, are proposed. Two CNNs are compared in the proposed
system. The first one is trained from scratch, while the second
one is a pre-trained CNN (VGG16). The CNNs are compared
to four machine learning models that use features extracted
from the image windows as inputs: multilayer perceptron (MLP),
decision tree, random forest, and MLP with feature selection. In
the experiments, the best performance was obtained by the pre-
trained CNN.

Index Terms—Artificial neural networks, Radiography, Deci-
sion support systems

I. INTRODUCTION

Bone tumors are usually discovered incidentally on imaging
exams taken to investigate other medical problems. Many
of these tumors are benign. Malignant bone tumors usually
originate from metastasis of other cancers. Osteosarcoma is
the most common type of primary malignant bone tumor,
occurring most often in adolescents and young adults. Medical
images are important for the early detection of malignant
tumors. In addition, images are helpful for estimating malig-
nancy [1] and, as a consequence, for planning treatments.

In a near future, computer-aided diagnosis systems may
be used to inform the health professional about possible
occurrence of osteosarcoma on routinely generated images.
As there is an abundance of bone radiographs (X-ray images),
such systems will be extremely useful. A characteristic often
seen in these images in patients with osteosarcoma is the
Codman triangle, which is basically a lesion formed when
the periosteum is elevated due to the tumor [2], [3]. This
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characteristic, as well as others that characterize osteosarcoma,
should assist in the automatic classification of the tumor.

In a scenario without automation, the radiologist must care-
fully examine all images to identify regions that may indicate
the presence of tumors, even if the objective is to identify
other occurrences in the image, e.g., fractures. Considering
that several exams are performed daily and that there are
few radiologists, in relation to the demand for specialized
professionals, an automated screening would be of great help
to identify possible regions containing tumors.

In several tasks, classification of medical images based
on Artificial Intelligence (Al) presents excellent performance,
sometimes with similar or superior quality to that of human
experts (in [4], clinical task performance with and without
Al aid systems are compared and discussed). Currently, there
has been a great interest in the use of Convolutional Neural
Networks (CNNs) for the analysis of medical images [5]-[9].
The traditional approach for classifying medical images is to
extract characteristics using pre-defined filters. An example of
the traditional approach is the method for classifying malig-
nant and benign vertebral compression fractures in magnetic
resonance images by using machine learning models in [10].
The vertebral bodies are manually segmented, and predefined
shape and texture features are extracted and then used as inputs
of the classifiers. An alternative approach was adopted in [9],
where CNNs are used to classify the vertebral bodies. In this
case, the segmented images are directly presented as inputs of
the CNN. The great advantage of CNNs is that they are able to
automatically extract interesting characteristics for classifying
a given dataset [11]. As a consequence, it is not necessary to
used pre-defined filters.

Shen et. al. [12] proposed to classify benign tumor and
osteosarcoma by using both plain X-ray image features and
metabolomic data. The features extracted from the images
and the metabolomic data are classified by random forests
or support vector machines. A similar approach was proposed
in [13], but using plain X-ray image features and RNA-seq
data. There is need to segment images in both approaches.
In [14], deep learning is used, but for detecting osteosarcoma



from histological images, and not from radiographs.

We propose a computer-aided diagnosis system based on
CNNs for the classification of osteosarcoma on radiographs
(plain X-ray images). The CNN should classify bone radio-
graphs detecting the presence of osteosarcoma. The system
should also indicate regions of the image that may contain
the tumor. In order to indicate these regions on the image,
we propose to split the image in windows and individually
classify them by using the CNN.

In order to automatically generate the image windows and
use them in training and testing the CNN, techniques for
pre-processing, such as window exclusion and labeling, are
proposed. By doing this, an advantage of the proposed method
is that no manual pre-processing steps, e.g., segmentation and
extraction of features, are necessary. Two CNNs are compared
in the proposed system: i) a CNN trained from scratch; ii)
a pre-trained CNN (VGGI16). The traditional approach for
classifying images is to extract features using predefined filters
(features) and to use them as inputs of machine learning
models. The CNNs are compared to four traditional machine
learning models that use features extracted from the image
windows as inputs: i) multilayer perceptron (MLP); ii) deci-
sion tree; iii) random forest; iv) MLP with feature selection.

The proposed computer-aided system based on CNNss is pre-
sented in Section II. In Section III, the results of experiments
are presented. Finally, in Section IV, the paper is concluded.

II. MATERIALS AND METHODS

In the proposed system, a CNN classifies windows of ra-
diographs containing bones. The CNN classifies the windows
into one of two classes: normal and tumor (osteosarcoma).
Next (Section II-A), the dataset used in the experiments is
presented. The pre-processing procedures are also described.
The system based on CNN is described in Section II-B, while
the system based on machine learning models using predefined
features is described in Section II-C.

A. Dataset and Pre-processing

The images dataset is composed of anonymized bone radio-
graphs of patients diagnosed with osteosarcoma. The dataset
was originally employed in a PhD research of one of the
authors of this study at University of Sdo Paulo. The use
of the dataset was previously approved by the Ethics and
Research Committee of the university. The original images
were obtained using Computerized Radiography (CR) and
were in the Digital Imaging and Communications in Medicine
(DICOM) format. Each image was converted to the Portable
Network Graphic (PNG) format. Figure 1 shows an example
of the image in the PNG format.

A methodology for generating the inputs of the CNN similar
to that adopted in [15] is used, in which each image is divided
into small rectangular windows. Here, the objective is to
classify each of the image windows into two classes: normal
and osteosarcoma. In [15], the objective was to classify Focal
Cortical Dysplasia in windows of brain images obtained by
Magnetic Resonance Imaging.

Fig. 1. Example of radiography in the PNG format.

Procedures were developed for automatically creating and
labeling the image windows. In the windowing procedure, the
radiography is cut into smaller square segments (windows),
which are here used for training and testing the CNN. Figure
2 shows an example of the windowing procedure applied to
the radiography shown in Figure 1.

Experiments (not shown here) were performed in order to
compare the performance of the system for 50 x 50 pixels and
100x 100 pixels windows. Best results were obtained for 100 x
100 windows; this size is used in the experiments presented
in Section III. The 50 x 50 windows resulted in incorrectly
classifying all examples with osteosarcoma, i.e., the model was
unable to learn the relevant characteristics for the classification
of tumors. Despite resulting in more examples for training,
the 50 x 50 windows have a smaller amount of information
relevant for the classification. This can be seen in the example
presented in Figure 3, where it is easier to identify relevant
characteristics in the window with 100 x 100 pixels.

In the labeling procedure, the windows used for training
and testing the classifier are automatically labeled into one of
two classes. The labels indicate the presence (0) or absence
(1) of a tumor in the window. In order to create the dataset for
training and testing the CNN, a radiologist manually marked
the regions of the radiographs with tumor (osteosarcoma).
These regions are represented in green in Figure 2. Using the
image marked by the radiologist and the windowing procedure,
the labeling procedure checks the percentage of the green color
in the window. If the percentage is higher than a threshold,
the window is marked with O; otherwise it is marked with 1
(Figure 2). The threshold is equal to 19% in the experiments
presented in Section III. This threshold was obtained in initial
experiments (not shown here), where it was observed that
thresholds with higher values resulted, for some radiographs,
in the labeling of any window with tumor. The threshold equals
to 19% ensures that at least one window is labeled with tumor
on each of the images of the dataset.

The next procedure automatically eliminates windows with
no relevant information, i.e., those windows that do not contain
parts of the patient’s body. The exclusion procedure counts
all pixels with color in the range related to black and dark
gray. If the window contains 95% or more black or dark gray



Fig. 2. Example of the application of the windowing procedure (left). The figure also shows the mask (in green) created by the radiologist and the labels

(right) automatically generated.

-
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Fig. 3. Windows with 50 x 50 pixels and 100 x 100 pixels.

pixels (those with values between O and 5 on the luminance
scale), the window is eliminated. Using a threshold smaller
than 100% is necessary due to the presence of eventual noise
in the images. Figure 4 shows an example of the exclusion
procedure applied to the radiography shown in Figure 1.

B. CNNs

Python libraries and routines, such as TensorFlow [16] and
Keras [17], were used in this work for implementing the
CNNs. The open source library Pillow was used for image
manipulation [18] and Google Colab [19] for running the
CNNs. Google Colab is a free cloud service that offers free
access to GPUs and easy sharing of codes. We propose two
approaches for generating the CNN in the computer-aided
diagnosis system.

1) CNN trained from scratch: The input of the CNN is
the 100 x 100 pixels images and one single output indicates
the presence or absence of osteosarcoma in the window.
Experiments (not shown here) with a single radiography were
carried out to select the architecture and hiper-parameters of
the CNN trained from scratch. Accuracy was used to evaluate
CNNs with different hiper-paramenters and architecture. The
model with best results has five convolutional layers with
3 x 3 windows. The first two convolutional layers have 128
filters each, while the third and fourth layers have 64 filters
each and the fifth layer has 32 filters. After the second,
fourth and fifth convolutional layers, one MaxPooling layer is
applied. MaxPooling layers have 2 x 2 windows. Finally, three

fully connected layers, with respectively 8, 4 and 1 neurons,
are added. In all convolutional and dense layers, the ReLu
activation function is used, except in the last dense layer, where
sigmoid function is used. Batch normalization is applied. The
Adam optimizer with default parameters for TensorFlow is
employed for adjusting the weights of the CNN.

2) Pre-trained CNN: Instead of creating and training a
CNN from scratch, the pre-trained model employs a CNN with
pre-defined architecture and pre-trained using a huge set of
images. By doing this, features relevant for classifying a large
number of types of images are discovered during training.
These features are represented by convolutional and pooling
layers. Here, the pre-trained CNN is VGGI6, proposed by
[20]. VGG16 obtained very good performance on the 2014
ImageNet Competition; it obtained 92.7% top-5 test accuracy
on a dataset with more than 14 million images belonging to
1000 classes. An advantage of using pre-trained CNNss is that
large architectures can be employed because we do not need
to train the artificial neural network from scratch. VGG16
has many convolutional and pooling layers, and about 138
million parameters. Here, the VGG16 is combined with a fully
connected hidden layer of 32 neurons, with ReLU activation
function, and a last layer with 1 neuron for classification, with
sigmoid activation function. The CNN was re-trained with
the bone radiographs dataset by using default parameters for
TensorFlow.

C. Machine Learning Models using Predefined Features

As an alternative to using CNNs, we can use traditional ma-
chine learning classifiers with inputs provided with predefined
radiomic features. The radiomic features are extracted from
the windows by using the pyRadiomics Library [21], that is
an open source Python library for extracting radiomic features
from medical images [21]. Here, pyRadiomics is applied to
each 100 x 100 pixels image and the extracted features are
used as inputs for the classifier. All features extracted from
pyRadiomics are used, with the exception of 3D shape-based
features. The features are:

 First Order Statistics: 19 features;
e Gray Level Co-occurence Matrix: 23 features;



Fig. 4. Example of the application of the procedure for automatically eliminating windows with no relevant information (in red).

o Gray Level Size Zone Matrix: 16 features;

o Gray Level Run Length Matrix: 16 features;

o Neighboring Gray Tone Difference Matrix: 4 features;
e Gray Level Dependence Matrix: 14 features.

The classifiers are: decision tree, MLP, MLP with feature
selection, and random forest. In the MLP with feature selec-
tion, the features extracted by the decision tree are used as
inputs of the MLP. All models were implemented with default
parameters of the Scikit-Learn Library [22].

III. EXPERIMENTS

The CNNs (Section II-B) are compared to four machine
learning models that use features extracted from the image
windows as inputs (Section II-C). All experiments were per-
formed on a computer with 6GB of RAM and an Intel Core
15-4200U 1.6GHz processor.

A. Experimental Design

Radiographs of 45 patients were labeled by the radiologist,
resulting in 2448 windows of 100 x 100 pixels. The exclusion
procedure eliminated 1407 windows, resulting in a dataset
with 1041 examples for training and testing the CNN. Ten-
fold cross validation is used to evaluate the classifiers. Cross-
validation is applied considering the division by patients and
not by windows. In other words, the classifiers are trained
using the windows of a subset of patients and tested using the
windows of another subset of patients. This is done so that
it is possible to observe the performance of each model for
all the windows of a radiography, in the same way that it is
done in a real-world situation. In addition, some windows on
a radiography are expected to be similar; dividing the subsets
by patient does not result in bias, that could be generated if
windows of the same patient are used for training and testing
the classifiers. There are 189 windows with tumor and 852
without tumor. In order to balance the dataset for training
the models, the same number of windows (189) is used for
each class during training. However, all 1041 examples of the
dataset are used for testing the classifiers in cross-validation.

B. Results

The accuracy for the CNN trained from scratch was 74%.
Table III-B shows the confusion matrix, while Figure 5 shows
the classification results for the 6 first radiographs of the
dataset. Figure 6 shows the ROC curve; the area under the
curve (AUC) was 0.7307.

TABLE I
CONFUSION MATRIX OBTAINED BY THE CNN TRAINED FROM SCRATCH.
Predicted Class
Tumor  Normal
Real Class Tumor 134 55
Normal 211 641

Table III-B shows the confusion matrix for the pre-trained
CNN. The accuracy for the pre-trained CNN was 77%. The
results of the pre-trained CNN for both classes were better
than the results of the CNN trained from scratch. The pre-
trained CNN uses a larger and more complex architecture
than the CNN trained from scratch. This architecture showed
to be more effective for this image classification problem. In
addition, the pre-trained CNN was previously trained with a
large image dataset that allowed to discover features useful for
the classification of different types of images. Those features
were useful for classifying the dataset used in the experiments.
Better results could be obtained by the CNN trained from
scratch if a larger dataset were employed.

TABLE I
CONFUSION MATRIX OBTAINED BY THE PRE-TRAINED CNN.

Predicted Class

Tumor  Normal
Real Class  Tumor 159 30
Normal 209 643

The accuracy, sensitivity, and specificity for all models are
presented in Table III-B. The pre-trained CNN obtained the
best performance among all models. It obtained the better
accuracy and sensitivity (tied with the MLP with feature
selection), and the second better specificity (0.75 against 0.76
of the MLP).



Fig. 5. Classification results of the CNN trained from scratch for the 6 first radiographs of the dataset. The windows in green represent true-positive examples
(windows with tumor that are correctly classified). The windows in red represent false-positive examples (windows without tumor that are classified as with
tumor). The windows in blue are false-negative examples (windows with tumor that are classified as with tumor). The non-colored windows are true-negative
(windows without tumor that are correctly classified).

True Positive Rate

TABLE III

TEN-FOLD CROSS VALIDATION RESULTS FOR ALL MODELS. THE BEST RESULTS ARE IN BOLD.

Decision Tree ~ Random Forest ~MLP

MLP with Feature Selection

CNN trained from scratch  Pre-trained CNN

0.69
0.66
0.69

0.71
0.79
0.69

0.76
0.75
0.76

Accuracy
Sensitivity
Specificity

0.71
0.84
0.69

0.74
0.71
0.75

0.77
0.84
0.75
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Fig. 6. ROC curve for the CNN trained from scratch.

The CNNs employed here have one output with sigmoid
activation function. The criterion adopted here for classifying
the windows is that a tumor is detected if the output is smaller
than 0.5, and the class is normal otherwise. Alternatively, the
radiologist can analyze the value of the output as a confidence
indicator for the presence of tumor. An example is presented
in Figure 7; figures like this can be automatically generated,
helping the radiologist when making a decision.

IV. CONCLUSIONS

A computer-aided diagnosis system based on CNNs for the
classification of osteosarcoma on radiographs is proposed. In
order to indicate the regions with tumor, the image is divided in
windows. These windows are individually classified by using



Fig. 7. Classification generated by the CNN (right) for the radiography shown on the left. Outputs smaller than 0.5 are colored in green. The stronger the
intensity of the green, the smaller the CNN output. The output of the CNN can be used as a confidence indicator for the presence of tumor.

the CNN. The output of the CNN can also be used as a
confidence indicator for the presence of tumor, helping the
radiologist when making a decision.

The main attraction of the proposed methodology is that,
after training, all pre-processing steps are automatic, i.e., the
radiologist does not need to segment the images, extract fea-
tures or perform any manual pre-processing steps. Procedures
were proposed here for automatically creating the windows,
excluding irrelevant windows, and labeling the examples for
training and testing the models. The best results were obtained
for windows with 100 x 100 pixels, but the classification
system can be used with different windows size.

When compared to the CNN trained from scratch and to
4 machine learning models that use pre-defined features as
inputs, the best performance was obtained by the pre-trained
CNN. The accuracy obtained by the pre-trained CNN was
0.77, while the sensitivity and specificity were respectively
0.84 and 0.75. For future work, it would be interesting to
increase the dataset with more radiographs, including those
with fractured bones. In addition, an overlapping strategy for
generating the windows can be investigated.
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