
Estimation of Safety Distance Between Vehicles on
Highways Using YOLOv4 from Aerial Images

Vitor Yeso Fidelis Freitas
Department of Computer Engineering

and Automation

UFRN, Natal-RN, Brazil

Richardson Santiago Teles de Menezes
Department of Computer Engineering

and Automation

UFRN, Natal-RN, Brazil

Francisco Vidal
School of Science and Technology

UFRN, Natal-RN, Brazil

Helton Maia
School of Science and Technology

UFRN, Natal-RN, Brazil

helton.maia@ufrn.br

Abstract—Traffic accidents are among the most worrying
problems in modern life, often caused by human operational
errors such as inattention, distraction, and misbehavior. Vehicle
speed detection and safety distance measurement can help reduce
these accidents. In this study, the computational development
conducted was based on Convolutional Neural Networks (CNNs)
and the You Only Look Once (YOLO) algorithm to detect
vehicles from aerial images and calculate the safe distance and
the vehicle’s speed on Brazilian highways. The investigation
was conducted to model the YOLO algorithm for detecting
vehicles in different network architecture configurations. The best
results were obtained with the YOLO Full-608, reaching a mean
Average Precision (mAP) of 97.44%. Additional computer vision
approaches have been developed to calculate the speed of the
moving vehicle and the safe distance between them. Therefore,
the developed system allows that, based on detecting the safe
distance between moving vehicles on the highways, accidents are
predicted and possibly avoided.

I. INTRODUCTION

Even with the development of modern cars with self-driving
capabilities [1], [2], traffic accidents remain a severe problem
for humanity. In recent years, security cameras, sensors on
highways, technology embedded in automobiles, and even
ethical discussions have been collaborating to reduce accidents
[3]. However, the World Health Organization (WHO) informs
that about 1.35 million people annually have their lives dis-
rupted due to traffic accidents [4].

The use of Unmanned Aerial Vehicles (UAVs) has been used
in several areas, such as in agriculture for mapping and iden-
tifying problems [5], in civil construction [6], allowing quick
and efficient access to carry out inspections and monitoring
of works, delivery services and logistics are being developed
[7], in addition to vehicle traffic control [8], [9].

The development of algorithms based on Deep Learning,
especially those based on Convolutional Neural Networks
(CNNs), have made it possible to achieve the state-of-the-art in
detecting and tracking objects with a high degree of accuracy
[9], [10]. In this way, a series of applications that combine
UAVs and their high-definition cameras under highways have
been widely developed [11].

Based on this scenario, this work aims to develop a system
capable of tracking and estimating the safe distance between
vehicles on highways from aerial images using the You Only
Look Once (YOLOv4) algorithm. Six models based on YOLO
[12] were trained and tested to perform vehicle detection,
four of which were selected from the smaller version of
YOLO, called Tiny YOLO, and two of them from the full
version, called YOLO Full. The model called YOLO Full-
608 achieved the best mAP. However, other configurations
obtained an accuracy close to the best result with ten times
less processing time, such as the 3-scale Tiny YOLO-416.

Finally, a tool was developed to calculate the safe distance



between moving vehicles from aerial images. For the system
user, it is possible to initially select a region of interest (ROI)
in which the system will perform the analyses. In this way, it
is possible to send security alerts about potential accidents in
real-time.

This paper is structured as follows. In Section II, we
describe the research method characterization. In Section III,
we present the results. Finally, in Section IV, we present the
conclusions.

II. METHODS

The dataset for this work was created with aerial images
from Brazilian highways captured by a DJI Spark drone. The
computational development was entirely performed using the
C/C++ programming languages and the YOLOv4 on Google
Colab instances which uses a GPU NVIDIA Tesla T4, CPU
Intel Xeon 2.20 GHz, 12GB of RAM, OS Ubuntu 18.04 LTS,
and CUDA 11.2.

The workflow and all development steps are shown in the
UML-based diagram in Figure 1.

Image Acquisition

(YOLOv4)

Vehicle Detection

Safe Distance

Between Vehicles

Full Yolo Tiny Yolo

Input

Dataset

Ground-Truth Boxes

Step 1

Step 2

Step 3

Output

Tracking

Fig. 1. UML activity diagram of the developed system for vehicle tracking
and safe distance detection.

At the first step, videos were recorded using the drone,
capturing aerial traffic on the highways. After that, were
performed frame extraction and a manual annotation of the
ground-truth boxes enclosing the objects of interest. In Addi-
tion, the appropriate dataset with vehicles and their respective
classes was developed.

In the second stage, different network architectures of
YOLOv4 Full and Tiny were trained and validated. Thus, the
detection and classification of vehicles were carried out in
order to evaluate the models.

During the third stage, the results obtained from the detec-
tions will feed the tracking system, allowing the estimation of
speed and safe distance between vehicles.

A. Image Acquisition and Dataset

The drone captured the videos at FHD 1920x1080 reso-
lution, 30fps, on different streets and altitudes. A sample
of 896 frames spaced in time was selected, avoiding similar
images. Figure 2 illustrates a couple of sample frames from
the assembled dataset.

a)

b)

Fig. 2. Images captured by the DJI Spark drone. (a) Highway BR-101 at an
altitude of 100m. (b) Streets near the campus of the Federal University of Rio
Grande do Norte - UFRN at an altitude of 80m.

2



The sample frames were randomly divided into training,
validation, and test sets, divided as 60% (636 images), 20%
(180 images), and 20% (180 images), respectively. Each
frame has multiple objects of different classes, with more
occurrence of cars than buses and motorcycles. Table I shows
the distribution of classes over the dataset.

TABLE I
DISTRIBUTION OF OBJECTS IN THE COMPOSITE DATASET

Dataset Training Validation Test
Images 536 180 180
Instances 10126 3265 3827
Car 8982 2888 3376
Bus 303 109 112
Motorcycle 841 268 339

B. Image Processing and Annotation

Supervised learning algorithms need labeled data to learn
patterns. For the object detection problem, that labels are
annotations for each image, containing the position of each
object in the image and your respective class.

Bounding boxes are used to separate objects in the images,
as seen in Figure 3. Each box has a certain width and height
given by ∆xi and ∆yi respectively, as well as its respective
centroid given by Ci = (xci , yci). In addition, that data should
be properly normalized to improve training and make the task
easier to learn [13]. All the dataset annotations were performed
using YoloMark and LabelMe [14] software.

Δx1

Δx2

y

x

0

0

Width

Height

Δy1

Δy2

yc1

yc2

xc1 xc2

Fig. 3. Graphical image annotation approach used for dataset construction.

C. Vehicle detection with YOLOv4

The state-of-the-art algorithms for object detection are deep
learning-based and can learn the feature extraction step. This
ability comes from the extensive use of convolutional neural
networks (ConvNet or CNN). In this context of CNNs, the
You only look once [12] is one of the aforementioned state-of-
the-art algorithms which targets real-time applications. Unlike
some of its competitors, it is not a traditional classifier re-
purposed as an object detector [15].

YOLO works by dividing the input image into a grid of
S × S cells, where each of these cells is responsible for five
bounding boxes predictions that describe the rectangle around
the object. It also outputs a confidence score, which measures
the certainty that an object was enclosed. Therefore, the score
does not relate to the kind of object present in the box, only
with the box’s shape.

For each predicted bounding box, a class is also predicted
to work just like a regular classifier, resulting in a probability
distribution over all the possible classes. The confidence score
for the bounding box and the class prediction combines into
one final score that specifies the probability for each box
includes a specific type of object. Given these design choices,
most boxes will have low confidence scores, so only the boxes
whose final score is beyond a threshold are kept.

As described in [12], the YOLOv4 network consists of the
CSPDarknet53 backbone, SPP or PAN neck and YOLOv3 [16]
head, and many other features, like Mosaic Data Augmenta-
tion, DropBlock Regularization, etc. An example of vehicle
detection is shown in Figure 4.

Fig. 4. Network outputs example for traffic on highway BR-101.

3



D. Safe distance between moving vehicles

Using vehicle positioning information over time returned by
the system, it is possible to calculate the speed of each object.
After 30 frames (1 per second second), the Euclidean distance
in pixels of the objects between the position of the initial and
final centroids is calculated. Thus, the speed of the moving
vehicle in pixels per second is obtained.

The traffic of vehicles close to each other can lead to
collisions, and this is a common type of problem all over the
world [17]. Therefore, drivers must keep a safe distance from
the car in front. There are laws in each country to determine
the safe distance between vehicles, which may vary according
to speed, weather, driving conditions, type of vehicle, etc.

In this context, a tool is proposed that considers both the
speed and the distance between vehicles, allowing to determine
a safe distance between them. An example can be seen in
Figure 5.

Fig. 5. Sample output of the safe distance tool. The bars on top of vehicles’
bounding boxes are proportional to their speed, high speeds combined with
small vehicle separation represent an unsafe driving situation.

III. RESULTS

A. Detection and Tracking

Three types of models, Full, Tiny, and Tiny 3 Scales, each
with two input resolutions (416 × 416 and 608 × 608), were
trained and tested. Full YOLOv4 network performs 3 scales
of detections and requires a size of 244.2MB. On the other
hand, Tiny YOLOv4, which uses a smaller backbone than
Full YOLOv4, performs 2 scales of detections and requires
22.4MB. The third model, called Tiny YOLOv4 3 Scales, use
the Tiny YOLOv4 backbone, performs 3 scales of detections,
and requires a size of 23.4MB.

In the training stage, we use the settings recommended by
YOLOv4, they are: batch size of 64, the learning rate of
0.001, the momentum of 0.949, and the decay of 0.0005 for
the optimizer algorithm to train all networks. The networks
was trained fine-tuning an Imagenet [18] pre-trained weights,
available on https://github.com/AlexeyAB/darknet.

The following metrics were used to evaluate these models:
Intersection Over Union (IOU) and Average Average Preci-
sion (mAP). The IOU is defined by the intersection area of
predicted and ground-truth boxes, divided by the union area
of them, as shown in Equation 1.

IOU =
BP ∩BT

BP ∪BT
(1)

where BP and BT are the predicted bounding box, and the
truth bounding box, respectively. In this way were delimited
true and false detections using an IOU threshold.

The Average Precision (AP) gets the area under the
Precision-Recall curve, defined by Equation 2.

AP =
∑
n

(Rn −Rn−1)Pn (2)

where Pn and Rn are Precision and Recall at a certain
threshold. The AP is the area under the interpolated recall-
precision curve, calculated using the Intersection Over Union
(IOU), with a threshold of 0.5, delimiting true and false
detections. Thus, the mAP was defined as a mean AP for all
classes.

The training curves of networks can be seen in details in
Figures 6-9.

0 2000 4000 6000 8000 10000

0

1

2

3

4

5

L
o

s
s

Number of Iterations

Fig. 6. Minimization of the loss function during the training process of the
tested Tiny YOLOv4 configurations.

4

https://github.com/AlexeyAB/darknet


Number of Iterations

m
A

P
 (

%
)

Tiny YOLOv4-416

Tiny YOLOv4-608

Tiny YOLOv4-416 3 Scales

Tiny YOLOv4-608 3 Scales

0 2000 4000 6000 8000 10000
0

20

40

60

80

100

Fig. 7. Optimization of mAP during the training process of the tested Tiny
YOLOv4 configurations.

Figure 8 shows the loss function over the iterations through
the training dataset for the YOLOv4 Full models. Were
observed that despite YOLOv4 Full 416 gets the lower loss,
YOLOv4 Full 608 achieves the best validation mAP, how
Figure 9 shows.

In the other models, were saw more stable loss curves
because they have considerably fewer weights to train , as
depicted in Figure 6. Tiny models get lower loss than Tiny
3 scales too, but Tiny 3 Scales presents best validation mAP,
how were expected, as shown in figure 7.

Number of Iterations

L
o

s
s

0 2000 4000 6000 8000 10000

0

1

2

3

4

5

6

Fig. 8. Minimization of the loss function during the training process of the
tested Full YOLOv4 configurations.

0 2000 4000 6000 8000 10000
0

20

40

60

80

100

Full YOLOv4-416

Full YOLOv4-608

Number of Iterations

m
A

P
 (

%
)

Fig. 9. Optimization of mAP during the training process of the tested Full
YOLOv4 configurations.

The models were expected to generalize well for objects of
different sizes and in regions with higher object density. Thus,
608× 608 models filed better accurate results than 416× 416.
This point is fundamental for the knowledge of the dataset
used, as it has some small objects (motorcycle class) that can
appear in a large amount in a compact area. Table II shows
the difference in training and inference time for the networks.

TABLE II
TRAINING AND INFERENCE TIMES FOR THE TESTED YOLOV4

CONFIGURATIONS.

Network Training Time (hrs) Inference Time (ms)
Tiny 416 3 4.96
Tiny 608 6 8.25
Tiny 416* 4 5.48
Tiny 608* 6 8.47
Full 416 20 32.76
Full 608 26 62.75

Were observed that Tiny 3 Scales models achieve similar
time scores as Tiny models, but outperform in mAP, as shown
in the table III. 608 × 608 models get the best IOU, Full
608 gets the best mAP, and Tiny 3 Scales models archive
considerably better mAP than the Tiny models.

B. Safe Distance Tool

The tool developed begins with a region of interest (ROI) in
the image, defined by the user. Thus, the detection of the safe
distance between vehicles and velocity will be inside the ROI,
as shown in Figure 10. The ROI is the blue box in Figure 10

5



TABLE III
ACCURACY COMPARISONS OF THE TESTED YOLOV4 CONFIGURATIONS.

Network mAP(%) Car(%) Bus(%) Mot.(%) IOU(%)
Tiny 416 52.48 50.54 99.02 7.90 52.48
Tiny 608 89.68 92.60 99.57 76.88 73.04
Tiny 416* 96.54 95.42 98.89 95.31 68.47
Tiny 608* 96.83 96.61 99.17 94.73 70.00
Full 416 97.28 96.81 99.43 95.61 70.80
Full 608 97.44 98.33 99.11 95.61 71.35

Fig. 10. Sample image of the Safe Distance Tool for two-way traffic.

The detected vehicle class, index, and distance to the closest
vehicle are shown above each bounding box, and by the side,
the vehicle velocity is displayed, as seen in Figure 10. Vehicles
on different lanes can stay close and pose no danger. To avoid
that, the vehicles are considered to be in the same lane and
share very similar values for the y-coordinate of the center
of mass, so this problem is solved by adding a limit for the
y-coordinate.

The distance calculated with the tool proposed here is in pix-
els. Therefore, to be translated into real-world measurements,
a series of calibration steps must be performed [19]. With
proper software calibration, a safe distance is then defined, so
whenever a vehicle in the video is at a shorter distance, the
bounding box and line for the nearest vehicle will turn red,
alerting the user to the infraction, and stay green for a safe
distance, as is shown in Figure 10.

IV. CONCLUSION

The results presented show promising results, with high
accuracy mainly using the YOLOv4 algorithm in the Full

YOLOv4-608 and 3-scale Tiny YOLOv4-416 architectures.
This allows proper tracking of vehicles from cameras with
the superior vision on highways or even using drones.

The computational development presented in this work
showed how it is possible to calculate the speed of vehicles
in real-time. In this way, the risk of collision can be predicted
in advance by calculating the safe distance between vehicles.

Finally, using techniques that relate computer vision and
machine learning in their state of the art for object detection
allowed the development of a system that, even preliminary,
brings to discussion the development of technologies to reduce
the high accident rates of traffic on the highways.

ACKNOWLEDGMENT

This work was supported by the School of Sciences and
Technology at the Federal University of Rio Grande do Norte
(ECT-UFRN).

REFERENCES

[1] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp,
P. Goyal, L. D. Jackel, M. Monfort, U. Muller, J. Zhang et al., “End
to end learning for self-driving cars,” arXiv preprint arXiv:1604.07316,
2016.

[2] M. Daily, S. Medasani, R. Behringer, and M. Trivedi, “Self-driving cars,”
Computer, vol. 50, no. 12, pp. 18–23, 2017.

[3] N. J. Goodall, “Can you program ethics into a self-driving car?” IEEE
Spectrum, vol. 53, no. 6, pp. 28–58, 2016.

[4] W. H. Organization, “Global status report on road safety,” 2008.
[5] J. Kim, S. Kim, C. Ju, and H. I. Son, “Unmanned aerial vehicles in agri-

culture: A review of perspective of platform, control, and applications,”
IEEE Access, vol. 7, pp. 105 100–105 115, 2019.

[6] W. W. Greenwood, J. P. Lynch, and D. Zekkos, “Applications of uavs
in civil infrastructure,” Journal of infrastructure systems, vol. 25, no. 2,
p. 04019002, 2019.

[7] K. T. San, S. J. Mun, Y. H. Choe, and Y. S. Chang, “Uav delivery
monitoring system,” in MATEC Web of Conferences, vol. 151. EDP
Sciences, 2018, p. 04011.

[8] A. Koubaa and B. Qureshi, “Dronetrack: Cloud-based real-time object
tracking using unmanned aerial vehicles over the internet,” IEEE Ac-
cess:10.1109/ACCESS.2018.2811762, 2018.

[9] M. E. da Silva Bastos, V. Y. F. Freitas, R. S. T. de Menezes, and H. Maia,
“Vehicle speed detection and safety distance estimation using aerial
images of brazilian highways,” in Anais do XLVII Seminário Integrado
de Software e Hardware. SBC, 2020, pp. 258–268.

[10] S. Albawi, T. A. Mohammed, and S. Al-Zawi, “Understanding of a
convolutional neural network,” in 2017 International Conference on
Engineering and Technology (ICET). Ieee, 2017, pp. 1–6.

6



[11] D. Fernández Llorca, A. Hernández Martínez, and I. García Daza,
“Vision-based vehicle speed estimation: A survey,” IET Intelligent
Transport Systems, 2021.

[12] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “Yolov4: Op-
timal speed and accuracy of object detection,” arXiv preprint
arXiv:2004.10934, 2020.

[13] M. Shanker, M. Y. Hu, and M. S. Hung, “Effect of data standardization
on neural network training,” Omega, vol. 24, no. 4, pp. 385–397, 1996.

[14] K. Wada, “labelme: Image Polygonal Annotation with Python,” https:
//github.com/wkentaro/labelme, 2016.

[15] R. S. T. de Menezes, R. M. Magalhaes, and H. Maia, “Object recognition
using convolutional neural networks,” in Recent Trends in Artificial
Neural Networks-from Training to Prediction. IntechOpen, 2019.

[16] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,”
arXiv preprint arXiv:1804.02767, 2018.

[17] S. E. Lee, E. Llaneras, S. Klauer, and J. Sudweeks, “Analyses of rear-
end crashes and near-crashes in the 100-car naturalistic driving study
to support rear-signaling countermeasure development,” DOT HS, vol.
810, p. 846, 2007.

[18] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in 2009 IEEE conference on
computer vision and pattern recognition. Ieee, 2009, pp. 248–255.

[19] M.-C. Lu, C.-C. Hsu, Y. Y. Lu et al., “Improvements and application
of the image-based distance measuring system,” in Proc. WSEAS Int.
Conf.(CISST), 2007, pp. 17–19.

7

https://github.com/wkentaro/labelme
https://github.com/wkentaro/labelme

	Introduction
	Methods
	Image Acquisition and Dataset
	Image Processing and Annotation
	Vehicle detection with YOLOv4
	Safe distance between moving vehicles

	Results
	Detection and Tracking
	Safe Distance Tool

	Conclusion
	References

