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Abstract—New SARS-CoV-2 variants and the delay in immu-
nization hinders COVID-19 mitigation. The pressure on health-
care systems caused by the disease has been a challenge for
hospital managers. Thus, rapid assessment of hospitalization risk
can support the management of hospital resources, increasing
treatment opportunities for patients at higher risk, especially in
case of huge demands for hospitalizations. In this retrospective
study, we propose a hospitalization prediction model based on
classical Machine Learning algorithms: Logistic Regression (LR),
k-Nearest Neighbors (KNN), Decision Tree (DT), and Support
Vector Classifier (SVC). Our proposed classifier combines the
results of the two algorithms, which have the best accuracies
in order to reduce true-positive misclassification. We included
6,967 COVID-19 patients from São Paulo, Brazil, who had
been admitted at the Hospital Sı́rio Libanês from February 26th

to December 28th, 2020. The achieved accuracy was 90.4%,
with only 7% of false-negative patients (NPV=0.82). Our results
suggest that the prediction model proposed can be an efficient
tool in screening COVID-19 hospitalization risk patients.

Index Terms—COVID-19 Diagnosis, Machine Learning, Hos-
pitalization Risk.

I. INTRODUCTION

Although there are a number of COVID-19 vaccines be-
ing produced, distributed, and administered worldwide, many
regions still suffer high levels of transmission [1]. The lack
of controlling virus transmission raises hospital admissions.
In low and middle-income countries, where the healthcare
systems are frequently strained, the burden is even worse
[2]. In addition, the rise of new variants linked to the delay
in immunization of the entire population hinders disease
mitigation.

Brazil is currently the country with the third-largest number
of COVID-19 cases. Still, it surpasses the first and second
places regarding the number of deaths per million inhabitants
[3]. These numbers demonstrate the need for a better-prepared
healthcare system. Furthermore, rapid identification of the
risk of hospitalization allows providing more resources and
adequate treatment for the most severe patients.

Previous studies have shown promising results when apply-
ing machine learning algorithms to predict hospitalization [4],
[5]. Blankers, van der Post and Dekker [4] found Gradient

Boosting to be the best performing algorithm (Area Under
the Curve (AUC)=0.774) including 39 variables related to
patients’ socio-demographics, clinical characteristics, and pre-
vious mental health care. Wong et al. [5] found Generalized
Additive Models (GAM) to be the best model (AUC =
0.70, 95% confidence interval = 0.62−0.79) for hospitalization
prediction, including nutritional and inflammation indicators,
demographics, comorbidities, and slopes all continuous vari-
ables over 6 months as model predictors. In addition, radio-
logical findings at hospital admission are also good predictors
of Intensive Care Unit (ICU) admission, as in [6].

Jehi et al. [7] found an AUC of 0.900(95% confidence
interval of 0.886 − 0.914) in the development cohort and
0.813(0.786, 0.839) in the validation cohort applying a least
absolute shrinkage and selection operator (LASSO) logistic re-
gression algorithm and using statistics of demographic, expo-
sure, clinical, laboratory, social characteristics, and medication
history of COVID-19 positive patients who were hospitalized
as predictors. Similar to other studies that determine hospital-
ization risk [7], the rate increased for older people. However,
the dataset presented has a low proportion of young patients,
suggesting a possible underestimation of the risk found in this
population.

We aim to develop a classification model to predict if a
COVID-19 suspect patient will be attended to a hospital within
two days after realizing a COVID-19 test. We use demograph-
ics and clinical characteristics applying an ensemble machine
learning methodology. Our model presents reliable results with
less complexity than the ones described above. This study
can assist physicians in the rapid identification of COVID-
19 infected patients at high risk of hospitalization, avoiding
further harm.

The paper is organized as follows. Section II-A presents the
study design. Section II-B presents the data acquisition and the
data pre-processing steps. Section II-C presents the Machine
Learning methods used to solve the proposed problem and the
grid search optimization parameters for the algorithms. Section
III presents the results achieved by the proposed ensemble
model. Finally, Section IV discusses the results and presents



the conclusions and perspectives of future works.

II. MATERIALS AND METHODS

A. Study design and population

We performed a retrospective study of patients who attended
the Hospital Sı́rio Libanês (São Paulo, Brazil) with suspicion
of COVID-19 infection from February 26th to December
28th, 2020. The hospital is an international reference center in
healthcare, providing treatment for more than 120, 000 patients
annually [8]. We only included adult patients that lived in
São Paulo state with RT-PCR-confirmed COVID-19 infection,
because children usually have clinical behaviour different from
adults [9].

B. Data collection

The data was obtained from the brazilian
repository COVID-19 Data Sharing/BR, available at
https://repositoriodatasharingfapesp.uspdigital.usp.br/ [10].
The database comprised anonymized registers with features
of the clinical spectrum related to the evolution of each
COVID-19 patient. It contains demographic data, such as age
and gender, and results of laboratory exams regarding blood,
vital signs, and hormonal tests.

1) Outcomes and variables: Our main interest was the hos-
pitalization risk, that is, whether a patient should be admitted
or not anytime within two days of a positive COVID-19 test.
Whereas the prioritization of the first attendance to this patient
profile allows for the most appropriate use of resources and
physician dedication on the most severe cases. Our goal was to
identify clinical indications and individual factors associated
with the need for hospitalization. Hence, we collected and
assessed participant demographics (age, gender) and clinical
characteristics of each patient.

2) Dataset: Since we concentrated the study in people from
São Paulo, of the 8, 971 COVID-19-suspected patients who
attended the hospital, 1, 731 were excluded because they lived
outside of São Paulo state, and 273 were excluded because
they were younger than 18 years old. Thus, 6, 967 patients
were included in the study (Fig. 1).

Of the 6, 967 included in the study, 501 were hospitalized
and 5, 713 were not hospitalized. The negative class has the
greatest number of registers, and we noticed that most of them
present clinical characteristics not observed in hospitalized
patients. Aiming to select the most important features, we
investigated the recurrence of clinical characteristics among
the hospitalization risk cases. It is expected that the most
recurrent clinical tests are the best predictors. So we evaluated
the absolute frequency of each laboratory examination and set
a threshold: all the tests whose absolute frequency was less
than 400 were excluded, resulting in 35 clinical characteristics.
Among the 501 patients with hospitalization risk, 39 patients
were excluded because their clinical characteristics were not
in the 35 previously selected, and 4 patients were excluded
because their clinical characteristics were outliers. Then, the
number of patients with hospitalization risk included in the
study is 458.

Fig. 1. Inclusion and exclusion criteria flowchart.

TABLE I
SELECTED VARIABLES FOR THE PROBLEM.

Variables
Age MCH

Morphology, SVE MDRD (afro-descendant-adjusted)
Sex Hematocrit

Neutrophils CKD-EPI (non-African descent-adjusted)
Creatinine Hemoglobin

Neutrophils (%) MDRD (non-African descent-adjusted)
Basophils Leukocytes
Platelets MPV

Basophils (%) Lymphocytes
MCV Potassium

MCHC Lymphocytes (%)
RDW Sodium

Eosinophils Monocytes
C-reactive protein ALT
Eosinophils (%) Monocytes (%)

Urea AST
Erythrocytes Morphology, SB

CKD-EPI (afro-descendant-adjusted) Fibrin Dimers

Of the 5, 713 patients who were not admitted to the hospital,
5, 034 were excluded because less than 33 from 35 clinical
characteristics were not null. The remaining 679 patients were
sorted by a clinical characteristic ranking that sorted them from
the one with fewer null test results to the one with more null
test results. It resulted in 432 patients with 35 non-null clinical
testing results, 75 with 34 non-null clinical testing results,
and 172 with 33 non-null clinical testing results. So, in order
to create a balanced database and avoid bias from missing
values, the 432 patients with 35 non-null results were joined
with 26 from the 75 patients with 34 non-null results. The
variables selected (clinical and demographic characteristics)



are available in Table I.
The final dataset comprises 916 patients, whereby 458 are

classified as patients with hospitalization risk and 458 are
classified as patients with no hospitalization risk. The missing
values were replaced with an average value based on the lab-
oratory examination references. It was supposed that missing
results for clinical characteristics means that the physicians do
not expect nonstandard results. The final database was shuffled
and split into two: 738 registries (80%) for training/validation
and 178 (20%) for testing. All the features were normalized
to a standard normal distribution [11].

C. Machine Learning Algorithms

We assessed the hospitalization risk in COVID-19 patients
using four different machine learning algorithms: Logistic
Regression (LR) [12], K-Nearest Neighbors (KNN) [13], Deci-
sion Tree (DT) [13], and Support Vector Classifier (SVC) [12].
The models were implemented with the open-source package
Scikit-learn provided for Python programming language. The
evaluation metrics include accuracy, area under the ROC curve
(AUC), Specificity, Sensitivity, F1 score, PPV and NPV. The
ReliefF algorithm [14] was employed in order to investigate
the most important features in the problem. II-C1, II-C2, II-C3,
II-C4 and II-C5 will briefly discuss the employed models and
the feature selection algorithm.

1) Logistic Regression: In spite of the name, Logistic
Regression (LR) is a linear model for classification rather than
regression. Considering a data set where the targets Y falls into
the categories 1 or 0, the Logistic Regression models the class-
posterior probability that Y belongs to a particular category
instead of modeling the response Y directly. In other words,
Logistic Regression models the probability p of a sample x
belonging to a class y by the relationship p(x) = P (y|x). The
probabilities that describe the possible outcomes of a single
trial are modeled using a logistic function, also known as the
Sigmoid function [12].

2) k-Nearest Neighbors: The K-Nearest Neighbors (KNN)
classification algorithm is a type of instance-based learning
that is memory-based and requires no model to be fit [13].
Given an instance (or query point) x0, the algorithm finds the
k training points x(r), r = 1, ..., k closest in distance to x0.
Then x0 is classified by the majority vote among the k nearest
neighbors. In other words, x0 is assigned to the majority data
class within their nearest neighbors [13]. k is an integer value
specified by the user.

3) Decision Tree: Decision Trees (DT) are supervised
learning methods applied in both regression and classification.
One of the most popular algorithms is called CART (Classifi-
cation And Regression Trees) and it builds a decision tree that
recursively partitions the feature space such that the samples
with the same labels or similar target values are grouped. The
CART algorithm splits the database into several nodes and, in
order to evaluate the quality of a particular split, either the Gini
index or the Cross-entropy are employed [13]. This quality is
usually called node impurity and it measures the proportion
of different class observations in the node. When the impurity

value is zero (or the lowest as possible) a leaf node is reached.
The majority class of the observations classifies the samples
assigned to a node in the node [12].

4) Support Vector Classifier: When it is possible to con-
struct a hyperplane that separates the training observations
perfectly according to their class labels, it is possible to
construct a very natural classifier: a test observation will be
assigned to a class depending on which side of the hyperplane
it is located [12]. However, when the data cannot be perfectly
separated using a hyperplane, it is desired to find a classifier
that does not perfectly separate the two classes: it can mis-
classify a few training observations in order to do a better job
in classifying the remaining observations. The Support Vector
Classifier (SVC), also called soft margin classifier, does this,
allowing some observations to be on the incorrect side of the
margin, or even the incorrect side of the hyperplane. Since
SVC classifies a test observation depending on which side of
a hyperplane it lies, observations on the wrong side of the
hyperplane correspond to training observations that will be
misclassified. Thus, it prevents overfitting the training data and
provides greater robustness to individual observations [12].

5) ReliefF: According to [14], the ReliefF (or Relief-F)
algorithm is not limited to two-class problems, is more robust,
and can deal with incomplete and noisy data. ReliefF randomly
selects an instance Ri, then searches k of its nearest neighbors
from the same class, called nearest hits Hj , and also k nearest
neighbors from each of the different classes, called nearest
misses Mj(C). It updates the quality estimation W [A] for
all attributes A depending on their values for Ri, hits Hj ,
and misses Mj(C). If instances Ri and Hj have different
values of the attribute A then the attribute A separates two
instances with the same class which is not desirable so the
quality estimation W [A] is decreased. On the other hand, if
instances Ri and Mj(C) have different values of attribute A
then attribute A separates two instances with different class
values which are desirable so the quality estimation W [A] is
increased. The whole process is repeated m times, where m
is a user-defined parameter. This update formula is similar to
that of Relief, except that the contribution of all the hits and
all the misses are averaged. Selection of k hits and misses is
the basic difference to Relief and ensures greater robustness
of the algorithm concerning noise. User-defined parameter k
controls the locality of the estimates.

D. Methodology

1) Proposed Approach: Aiming to reduce the misclassi-
fications of high hospitalization risk patients, we propose a
classifier that combines the results of the two models that
achieve the best performances. Unless the two models catego-
rize the sample as no hospitalization risk, our proposed model
will assign it to a hospitalization risk class. This approach can
clearly increase the false-positive rate. However, it is a safe
way to treat the cases whose clinical characteristics suggest a
positive class sample.

2) Parameters: We employed the grid search approach
with standard 10-fold Cross-Validation on the training and



validation set for adjusting hyper-parameters. The evaluated
grid search parameters for the four employed models are
presented in Tables II, III, IV and V.

TABLE II
GRID SEARCH PARAMETERS FOR LR.

Param Values
penalty ’l1’, ’l2’, ’elasticnet’, ’none’

dual True, False
C .5, .6, .7, .8, .9, 1.0, 1.2, 1.4, 1.6, 1.7, 1.8, 1.9, 2.0

fit intercept True, False
intercept scaling 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 5.0, 6.0, 8.0, 10.0

random state None, 42
solver ’newton-cg’, ’lbfgs’, ’liblinear’, ’sag’, ’saga’

TABLE III
GRID SEARCH PARAMETERS FOR KNN.

Param Values
n neighbors 2, 3, 4, 5, 6, 7, 8, 9, 10

weights ’uniform’, ’distance’
algorithm ’ball tree’, ’kd tree’, ’brute’
leaf size 15, 20, 25, 30, 40, 50

p 1, 2

TABLE IV
GRID SEARCH PARAMETERS FOR DT.

Param Values
max depth 2, 3, 4, 5, 6, 7, 8, 9, 10

max features 2, 3, 4, 5, 6
min samples split 5, 6, 8, 10, 15, 20, 25, 30, 40, 50
min samples leaf 2, 5, 8, 10, 12, 15, 20

TABLE V
GRID SEARCH PARAMETERS FOR SVC.

Param Values
C .5, .6, .7, .8, .9, 1.0, 1.2, 1.4, 1.6, 1.7, 1.8, 1.9, 2.0

kernel ’linear’, ’poly’, ’rbf’, ’sigmoid’
degree 1, 2, 3, 4, 5, 6
gamma ’scale’,’auto’
coef0 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9

III. RESULTS

Tables VI and VII show the parameters related to the best
cross-validation performances obtained with each algorithm.
The overall validation accuracies obtained for each model
using the parameters described in Tables VI and VII are
presented in Table VIII. LR presented better results than other
classifiers, which suggests a good linear relationship between
the features and the output.

Since LR achieved the best overall accuracy value, consid-
ering the mean value of validation (cross-validation), it was
chosen as the first model to be employed on the test data
set. Fig. 2 shows the confusion matrix for the LR model on
the test set. This model obtained a classification accuracy

TABLE VI
BEST PARAMETERS FOR LR AND KNN MODELS.

LR KNN
dual=False algorithm=’ball tree’

fit intercept=True leaf size=15
intercept scaling=1.0 n neighbors=8

penalty=’none’ p=1
random state=None weights=’uniform’
solver=’newton-cg’

TABLE VII
BEST PARAMETERS FOR DT AND SVC MODELS.

DT SVC
max depth=10 C=1.7
max features=5 coef0=0.9

min samples leaf=10 degree=3
min samples split=25 gamma=’scale’

of 89.3% and an AUC of 0.97. However, there is a large
false-negative rate (18%) representing a misclassification of
higher hospitalization risk patients. Due to the nature of
the problem, the hospitalization risk should be as low as
possible. Otherwise, it can lead to inappropriate treatments
and aggravate the patient’s condition.

Therefore, aiming to assess the trade-off between false
positives and false negatives, we employed the SVC model
on the test data as a second classification model. This model
achieved the second-best overall accuracy on training and
validation data sets (Table VIII). The obtained results for the
LR and SVC models evaluation metrics are presented in Table
IX. Fig. 3 shows the confusion matrix for the SVC model.

Although the overall training and validation accuracy of
the LR model is greater than the accuracies achieved by
the other three models, it is not much bigger than the one
achieved by the SVC model. An interesting result is that the
test classification accuracy of the SVC model is better than
the one achieved by the LR model. On the other hand, the LR
AUC is greater than the SVC AUC (Fig. 4).

Fig. 2. Confusion Matrix of LR model.



TABLE VIII
MODEL’S ACCURACIES FOR TRAINING AND VALIDATION DATASETS.

Model Train (%) Validation (%)
LR 98.2 95.5

KNN 90.0 87.0
DT 85.9 78.7

SVC 97.2 93.7

TABLE IX
EVALUATION METRICS FOR LR, SVC AND PROPOSED MODELS FOR TEST

SET.

Classifier
LR SVC Proposed

Accuracy 0.893 0.904 0.904
AUC 0.974 0.959 0.959

Specificity 0.824 0.924 0.924
Sensitivity 1.000 0.883 0.883
F1 score 0.88 0.91 0.91

PPV 0.787 0.933 0.933
NPV 0.824 0.929 0.929

Fig. 3. Confusion Matrix of SVC model

Fig. 4. ROC curve and AUC for LR and SVC models

Our proposed classifier integrates the two results by the
following rule: whenever a model’s result indicates hospital-
ization risk, it is treated as hospitalization risk, regardless of
the model of origin. It is an approach that aims to reduce the
true-negative misclassifications. The confusion matrix for the
proposed classifier is presented in Fig. 5.

Fig. 5. Confusion Matrix of the proposed model for test set

As one can see, the confusion matrix presented in Fig. 5 is
the same obtained by the SVC model (Fig. 3). It is an expected
result because since LR performed more false positives than
SVC, our proposed model will classify the samples labeled as
negative by LR but positive by SVC as positive. However, on
the other hand, since SVC performed more false negatives than
LR, these samples will be labeled as positive by our model as
well.

The performance metrics’ values presented in Table IX
indicate that the choice of the proposed model as the hos-
pitalization risk predictor is aligned with our expectations.
Our proposed model presented the same positive predictive
value (PPV) and negative predictive value (NPV) metrics as
the SVC model, which means that it has at least the same
performance as obtained by SVC on testing (Fig. 3 and Fig.
5). Compared with the LR model, the misclassification of the
positive class (hospitalization risk) is lower in ours than in
LR. Therefore, concerning the true positive and true negative
prediction rates, our model has a lower misclassification rate
as SVC, which means, this model is preferable as it avoids the
misclassification of a patient with higher hospitalization risk
rates

We applied a feature selection strategy to improve the
overall accuracy of the method. The algorithm used was the
ReliefF. It returns a feature importance rank by sorting the
feature matrix columns from the most important feature to
the less important feature. Contrary to our expectations, the
algorithm indicated leukocytes (responsible for maintaining
the immune system) as the worst predictor attribute. Even
so, we followed this recommendation, and this attribute was
removed. The accuracy reduced to 61.8%, confirming the
expectation mentioned above. Therefore, for this reason, all



attributes were kept, and we concluded that the feature selec-
tion approach using the ReliefF algorithm did not result in any
improvements.

IV. CONCLUSION

We developed models that can predict the hospitalization
risk among COVID-19 suspect patients. Our prognostic model
could help clinical decision-makers in resource allocation,
designating order for exams, and prioritizing patients with
higher hospitalization risk. We analyzed the main predictors
(demographics, vital signs, and laboratory results) associated
with the hospitalization risk in COVID-19 suspect patients.
Our approach allows the identification of patients with higher
chances of hospitalization and guides decision-makers in better
resource allocation. We applied four different machine learning
models and we chose the LR and the SVC model as the base
of our proposed classifier. Any other models in pairs would
have resulted in lower performance because the other models
presented lower accuracy.

According to these findings, the hospitalization risk in-
creased for patients recently diagnosed with COVID-19 who
are older, black, male, have comorbidities and low economic
status [7], [15]. Our models considered age and sex, other
variables could not be accessed due to the lack of information.

Our proposed model performed an accuracy of 90.4%, an
AUC of 0.959, a PPV of 0.933 and a NPV of 0.929 including
35 features. This result is better than the one found by [4],
that found an AUC=0.774 including 39 features, and the one
found by [5], that found an AUC=0.7. Our result is also better
than the one found by [7], that found an AUC=0.813 in the
validation cohort using 48 features.

Despite the good results, the following questions should be
considered: 1) we could not include patients not infected by
COVID-19 due to the lack of data; 2) there is no information
about which department the patient was admitted (ward or
ICU), making it impossible to know the case severity and the
level of attention and resources intended for the patient; and
3) the registers do not indicate timing, resulting in inaccuracy
in the chronological order of the results. There might also be
selection bias because private hospitals present particularities
not common to other establishments, specially compared to
public hospitals.

For future works, we suggest assessing the hospitalization
risk, also considering non-infected patients, and applying the
models in datasets from other hospitals, which can provide
information not available in the dataset used such as radiologic
data.
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