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Abstract—This paper presents a genetic algorithm (GA) to
solve Optimal Power Flow (OPF) problems, optimizing electricity
generation fuel cost. The GA based OPF is a derivative free
optimization technique that relies on the evaluation of several
points in the parameter search space strictly on the objective
function. A 3 bus system and the IEEE 30 bus test system are
used to validate the developed GA based OPF by means of
comparisons with an interior point based optimal power flow.

Index Terms—Electric Power Systems, Power Flow, Optimal
Power Flow, Nonlinear Optimization, Genetic Algorithm, Interior
Point

I. INTRODUCTION

Since the emergence of electric power systems, there has
always been a search for increasingly efficient methods to
solve the power flow problem. The power flow consists of
solving a set of nonlinear algebraic equations with quadratic
and trigonometric terms. When its solution is found, state vari-
ables of a power system are available and several information
about the system may also be used, for example, to system
planning and stability studies. Among the most successful
algorithms applied on the power flow solution are those that
use the Newton-Raphson method, proposed by Van Ess and
Griffin [4]. This method underwent improvements in [5], who
introduced matrix techniques using sparsity as a means of
implementing the Newton-Raphson method for large networks.
Early developments of digital power flow calculations were
reviewed by Tinney and Powell [6]. Currently there are several
books and computer programs that explain and solve the power
flow problem [7]–[9], [19].

Prior to the development of algorithms for the power flow
solution, there was already a concern with increasing the
operational efficiency of electrical power systems [1], since
the costs, mainly of fossil fuels, increased the price of tariffs
of electricity. In order to optimize operating costs, in [2]
the economic dispatch of generating units was presented.
The economic dispatch problem, as it takes only generation
costs, was extended by Carpentier [3], in order to take into
account not only the generation costs, but also the losses in
the transmission systems. That’s where the term optimal power
flow [10], [12]–[14] arose and since then, the use of new
techniques for solution have been proposed over the years
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[15], [16], [21]. The Alternating Current Optimal Power Flow
(ACOPF) is at the heart of Independent System Operator (ISO)
power markets, and is solved for system planning, day-ahead
markets and even at every 5 minutes. Even nowadays, 60
years after the problem was formulated, there are not a fast
and robust solution technique available for its full solution.
Depending on the amount of electric energy production of a
country, finding a good solution technique for the full ACOPF
could save tens of billions of dollars annually. The OPF
problem is a large, highly nonlinear, multimodal, constrained
optimization problem that may have nonconvex, nonsmooth,
and nondifferentiable objective functions, in which there may
be more than one optimal local solution.

The methods or techniques that have been implemented to
optimize the OPF are divided into two categories: deterministic
methods and evolutionary methods. Deterministic methods in-
clude linear, nonlinear programming, quadratic programming
and interior point method [17], [18]. These methods may
have problems in handling many local minima because of
the nonconvexity of OPF problems. Due to limitations of
deterministic methods, evolutionary methods such as genetic
algorithm (GA) and particle swarm optimization have been
proposed for solving the OPF as alternative [24], [26]–[29].
Genetic algorithms offer a powerful approach to these opti-
mization problems, because their global search techniques are
more likely to converge toward the global solution. Also GA,
simultaneously, evaluates several points in the parameter space
strictly on the objective function and do not need to assume
that the search space is differentiable or continuous.

This work aims to develop an OPF algorithm whose solution
is based on the use of Genetic Algorithm. The development
of such a program takes into account the fact that writing
nonlinear optimization programs with restrictions applied to
electrical power systems is a cumbersome process, mainly
due its dimensions. Also, the use of evolutionary algorithms
in OPF solution is not such a widespread idea in Brazil if
compared to deterministic methods. To validate the developed
program, Matpower [19], which uses interior point method to
solve OPF will be used. Two test systems are used for this.

The document is structured as follows: in Section II, the
problem formulation is presented. In this Section the conven-
tional power flow and the optimal power flow are described.
In Section II-C, a general ideia of the developed Genetic
Algorithm Optimal Power Flow (GAOPF) is presented. In



Section III, the 3-bus and 30-bus test systems are presented
together with the obtained results, which validates the devel-
oped GAOPF program. Finally, comments and conclusions are
presented.

II. PROBLEM FORMULATION

In this section, the basic idea and formulation of the power
flow and optimal power flow are presented. Also the basic idea
of how to implement a Genetic Algorithm based Power Flow
is explained.

A. Basic Power Flow Problem

The load flow or power flow problem consists of finding
the steady-state operating point of an electric power system.
The the aim is to obtain all bus voltages and complex power
flowing through all network components such as generating
units, transmission lines and loads. The power flow is the
most widely used application in electric power systems, both
in operating and in planning environments, either as a stand-
alone tool or as a subroutine within more complex processes
such as stability analysis, optimization problems, etc. It can be
formulated as a set of nonlinear algebraic equality or inequality
constraints. These constraints represent both Kirchhoff’s laws
and network operation limits.

Pi(V, θ) = PGi − PDi ∀i = 1,m (1a)
Qi(V, θ) = QGi −QDi ∀i = 1,m (1b)

PGimin ≤ PGi(V, θ) ≤ PGimax ∀i = 1, NG (1c)
QGimin ≤ QGi(V, θ) ≤ QGimax ∀i = 1, NG (1d)

Vimin ≤ Vi ≤ Vimax ∀i = 1,m (1e)

where
PGi: is the generator real power output at to bus i;
QGi: is the generator reactive power output at to bus i;
PDi: is the real load power at bus i;
QDi: is the reactive load power at bus i;
Pi: is the real net power injection at bus i;
Qi: is the reactive net power injection at bus i;
Vi: is the voltage magnitude at bus i;
θi: is the voltage angle at bus i;
NG is the number of generators on the system;
m is the number of power system buses.

Also (1a) and (1b) are the power flow equations represented,
respectively, as follows:

Pi(V, θ) = Vi

m∑
j=1

Vj(Gij cosθij +Bij sinθij) (2a)

Qi(V, θ) = Vi

m∑
j=1

Vj(Gij sinθij −Bij cosθij) (2b)

where [8], [9]:
Gij : is the series conductance between buses ij;
Bij is the series susceptance between buses ij;
The inequalities (1c) − (1d) reflect the limits on physical
devices and (1e) the limits created to ensure system security.

Each bus provides two equations and four unknowns, which
means that two variables per bus must be specified to solve the
resulting load flow equations. Depending on which variables
are specified, three main types of buses can be distinguished:
Load or PQ buses: Both active P sp

Di
and reactive Qsp

Di
power

absorbed by the sum of loads connected at the bus are
specified. It must be verified if the difference between the
specified power and the evaluated power through equations is
null. This leads to the following bus constraints:

Pi = P sp
i = −P sp

Di
; Qi = Qsp

i = −Qsp
Di
. (3)

leaving the phasor voltage components, V̇i = Vi∠θi, as the
remaining unknowns.

Generation or PV buses or also voltage controlled bus:
These are buses where the voltage regulator of a local gener-
ator keeps the voltage magnitude to a specified value (Vspi

).
Furthermore, the active power P sp

Gi
injected by the generator

is specified. This specification may be according to certain
economic criteria. Taking into account the possible local load
demand, the resulting net constraints are:

Pi = P sp
i = P sp

Gi − P
sp
Di

; Vi = V sp
i . (4)

leaving Qi and θi as unknowns. A particular case of PV bus
arises when a reactive power compensator (rotating or static),
equipped with voltage regulator, is connected to a bus. In such
case, P sp

Gi = 0.
If only those two types of buses were considered, all injected

complex powers should be specified a priori, which requires
that active and reactive losses be known in advance. However,
power losses depend on the resulting power flows and cannot
be accurately determined until the load flow itself is solved.
Therefore, the complex power of at least a generator should
be left as an unknown. For convenience, the voltage phasor of
the generating bus whose complex power remains unspecified
is taken as reference for phase angles. This particular PV bus,
is the third type of bus and it is known as the slack or swing
bus. Such bus is usually chosen among those generating buses
with largest capacity, frequently being in charge of frequency
regulation duties. For the slack bus, the complex voltage is
fully specified whereas both power components, active and
reactive, belong to the set of unknowns. Thus, the solution
of the set of nonlinear algebraic equations (1a) − (1e), is
only possible if there exists a slack bus. On the slack bus
the generation level is calculated so as to meet the active and
reactive power balance of entire power system using (5), with
Si = Pi ± jQi:

SGenSlack
=

m∑
j=1

SDj
+

m∑
j=1

Slossj −
NG−1∑
j=1

SGenj
(5)

Such condition, if attended, assures that the power system
operates at its nominal frequency 60 Hz or 50 Hz. The slack
bus concept is a mathematical artifact, without any direct link
to the real world, as no bus in the system is explicitly in charge
of balancing (5).



In order to solve the power flow problem, several itera-
tive methods where employed through the years, but one of
the most effective is the Newton-Raphson method [5], [7],
[8]. This method successively improves the unknown values
through first-order approximations of the set of nonlinear alge-
braic equations. For initial guess values x0, close to the solu-
tion, also known as flat start, i.e., V̇i = Vi∠θi = 1, 0∠0 pu, the
Newton–Raphson method converges quadratically. Irrespective
of the network dimension, starting from the flat voltage profile,
takes from three to five iterations to attain convergence [11].

B. Optimal Power Flow Problem
An OPF is an optimization problem applied to power flow,

which determines the optimal settings of the power system
variables in a way that the equality and inequality constraints
are satisfied [3], [10], [12], [14]. OPF objective function and
constraints can be formulated as (6a) − (6f)

min F =

NG∑
i=1

fi(PGi) (6a)

s.t.: Pi(V, θ) = PGi − PDi ∀i = 1,m (6b)
Qi(V, θ) = QGi −QDi ∀i = 1,m (6c)

PGimin
≤ PGi(V, θ) ≤ PGimax

∀i = 1, NG (6d)
QGimin

≤ QGi(V, θ) ≤ QGimax
∀i = 1, NG (6e)

Vimin
≤ Vi ≤ Vimax

∀i = 1,m (6f)

where equality and inequality constraints, functions and vari-
ables are the same defined in the Basic Power Flow Problem,
Section II-A. There are several kinds of objective functions,
among the most common are: Generation cost objective func-
tion, Active power loss objective function, Pollutant Gases
Emission objective function and combinations of the men-
tioned ones in order to obtain multi-objective functions [29].

In this work, the generator cost function was chosen to
minimize the total energy production cost of the power system.
This kind of objective function for the OPF reflects the
costs associated with generating power in the system. The
quadratic cost model for thermal power generation will be
used and is defined in (7), fi(PGi) represents the active power
generation cost by each generator and ai, bi and ci, the ith

cost function coefficients of the quadratic cost model at each
thermal generator.

fi(PGi) = ai + biPGi + ciP
2
Gi (7)

Such objective function (6a), where NG is the total number
of generation units, is used to minimize the total system costs
associated with active power generation PGi

, and does not
necessarily minimize the costs for a particular area within the
power system.

As a nonlinear optimization problem, several solution meth-
ods have been proposed through the years [5], [12], [14]–[18].
In order to solve the classical OPF problem, in this work
the Matlab Toolbox Matpower [19] was used for comparison
purposes. Matpower has interior point method for nonlinear
optimization [18], [20], [21] as default algorithm for the OPF
solution.

C. Genetic Algorithm Optimal Power Flow Problem

The Genetic Algorithms (GAs) are part of the evolutionary
algorithms family which in turn are inspired in the Nature.
Such algorithms are powerful stochastic search tools based on
natural selection and genetics [22], [23]. They offer a powerful
approach to nonlinear constrained optimization problems solu-
tions such as ACOPF and have found extensive applications in
solving global optimization searching problems. Their advan-
tage relies on the evaluation of many points in the parameter
space and such search space does not need to be differentiable
or continuous as methods in [17], [18].

To solve ACOPF with a simple GA, some details must
be addressed: First it is necessary to generate an initial
binary string (chromosome) which associates a binary code
to each active power (PGi) for all the system generators. An
initial population is created with several (PGi ∈ PGimin <
PGi < PGimax ) and these chromosomes originate the initial
search space or population. Then the initial population passes
through the processes of reproduction, crossover, mutation and
immigration so that new intermediate populations are created.

In the reproduction process, the chromosomes (or possible
combinations of solutions PGi) are evaluated in the objective
function and the best chromosomes are selected. These se-
lected chromosomes (sets of PGi) then pass to the crossover
process where segments of their bits are exchanged with each
other to generate their offspring. The chromosomes with larger
scores have more chances to be mixed with other ones.

Mutation is the secondary operator and prevents the pre-
mature stopping of the algorithm in a local solution. The
mutation operator is defined by a random bit value change
in a chosen string (chromosome) with a low probability of
such change. The mutation adds a random search character to
the genetic algorithm, and it is necessary to avoid that, after
some generations, all possible solutions become very similar
ones [23], [25].

Another procedure which may be used in GA is the process
of immigration [30]. This process raises the fitness of the
population as a whole and enriches its diversity, i.e., random
chromosomes are created and added to the population in order
to improve its diversity and the possibility of finding a better
minima.

After these procedures, the resulting chromosomes (PGi)
that belong to the next Generation/population are tested on
the objective function. If this is the optimum Generation, the
best/optimal chromosome (P ∗

Gi) is chosen and the process is
stopped as the optimum solution is found, otherwise it is nec-
essary to repeat the steps above. In Fig. 1 there is GA-Based
Optimization Approach Flowchart. Finally, if is necessary to
know all the active and reactive power flowing through the
system, a conventional power flow must be performed. All
the simulations by GAOPF on this work have used the Matlab
ga(x) function as well all as the following control parameters:

• Population size: 50
• Number of generations: 300
• Crossover probability: 0.8 - Matlab default



Fig. 1. GA-Based Optimization Approach Flowchart.

• Mutation probability: 0.01 - Matlab default

III. TEST SYSTEMS

In this section two test systems are presented in order
to validate the developed GAOPF. The developed algorithm
objective is to optimize the active power dispatch in order to
reduce the cost of electricity production. The first test system
has 3 bus and is a fictitious electric power system, the second
one is the IEEE 30 bus system [12]. Results of the developed
GAOPF and Matpower [19] are compared. Matpower is a
software whose main purpose is to solve optimal power flows,
using by default, the interior point method for that.

A. 3 Bus System

The 3 Bus test system is the same one presented in [9]. It
is a fictitious system, composed by 2 synchronous generators,
3 branches and a single load located at bus 2. Bus 1 is the
slack bus, the PV (voltage controlled bus) is bus 3 and the PQ
bus is bus 2. The one-line diagram is given in Fig. 2.

Fig. 2. 3 Bus Test System.

Generators data and Cost coefficients are given on Table I.
According to the presented nomenclature, Section II-B, the
nonlinear optimization problem (6a)-(6f), has NG = 2, m = 3
and the objective function is a sum of two distinct second order
polynomials given by (7).

The prime objectives of using the 3 Bus system is to
compare results of an optimal load-flow solution, which gives
the optimal active and reactive power dispatch for a static
power-system loading condition, with the ones obtained by
the developed Genetic Algorithm Optimal Power Flow. This
comparison is made in order to validate the developed GAOPF,
besides understanding some important aspects of the OPF
problem. The validation of the GAOPF was done comparing
some crucial results with the ones obtained by the Matpower
[19].

TABLE I
3 BUS SYSTEM GENERATOR DATA

Bus PGmin
PGmax QGmin−max

Cost coefficients ∗

No. MW MW MVAr a b c
1 50 300 −200 to 200 0.0 2 0.00375
3 50 250 −200 to 200 0.0 1.75 0.0175

∗ fi(PGi) = ai + biPGi + ciP
2
Gi in $/hr.

The results of OPF and GAOPF are summarized in Table II
and Table III. Both optimization algorithms led to almost the
same results in active power generation as can be observed in
Table II. It is possible to note that PG1 achieved its maximum
allowed capacity, limited by the PG1max bound, highlighted
in bold, when the using NLOPF. On the other way, PG1

≈
PG1max

when GAOPF was performed. Despite that, in both
situations, the necessary condition imposed by (5) was satisfied
[8], [9].

TABLE II
POWER GENERATION - 3 BUS SYSTEM

Optimization G1 G3 G1 G3

Method MW MW MVAr MVAr
NLP-OPF 300.00 119.47 90.06 199.79
GA-OPF 299.14 120.35 112.95 176.94

Also the voltage magnitudes of the 3 Bus system have
almost the same profile, as seen on Table III. It is important
to note that a slight difference between |V̇3| voltages in
OPF and GAOPF implies in a quite significant change on
the reactive power generated by G1 and G3, Table II. In
both cases the imposed bus voltage inequality constraints are
0.95 pu < Vm < 1.05 pu and there were not violations at the
end of the optimization processes.

Recalling (5) is possible to verify the active and reactive
power system losses (Sloss). Such power losses agree with
the ones presented on Table IV. Also it is easy to see why the
production cost ($/hr) calculated by the GAOPF is bigger than
the one calculated by NLOPF. The c cost coefficient, Table I,
of cG3 ≈ 4, 66cG1 and it is proportional to P 2

G3, Table II.



TABLE III
3 BUS SYSTEM BUS VOLTAGES

Optimization |V̇1| |V̇2| |V̇3|
Method pu pu pur

NLP-OPF 1.05 0.975 1.044
GA-OPF 1.05 0.972 1.040

TABLE IV
3 BUS SYSTEM PRODUCTION COST AND LOSSES

Optimization Total Cost PLosses QLosses

Method $ /hr MW MVAr
NLP-OPF 1396.00 19.47 39.84
GA-OPF 1397.90 19.46 39.88

B. IEEE 30 Bus System

An adaptation of the IEEE 30-bus standard test-system,
Fig. 3, is used to compare the Matpower [19] OPF solution
with the developed GAOPF algorithm in Matlab. The data
used to represent the 30 Bus System may be found in [12].
The objective function to be minimised is again the total
system active-power generation cost, allowing all the generator
(PGi) MW-outputs to be controllable and considered as one
of the inequality constraints. The IEEE 30 Bus System has
6 generators, 41 branches and its total amount of load is
SD = 283.4 + j126.2 MVA. Observing the nonlinear opti-
mization problem, set of equations (6a)- (6f), with NG = 6
and m = 30 it is possible to determine the problem dimension
and envision the complexity that may arise when applying
nonlinear optimization methods in a real electric power system
such as the Brazilian Interconnected Power System (BIPS).

Fig. 3. IEEE 30 Bus Power System.

The 30 Bus System generator data are presented on Table V.
All the complex power (SGi) limits are presented as the

respective Cost Coefficients to be used. These data are used
on inequality constraints (6d), (6e) and also on the objective
function (6a), respectively.

TABLE V
IEEE 30 BUS SYSTEM GENERATOR DATA

Bus PGmin
PGmax QGmin−max

Cost coefficients ∗

No. MW MW MVAr a b c
1 50 200 −20 to 250 0.0 2 0.02
2 20 80 −20 to 100 0.0 1.75 0.0175
5 15 50 −15 to 80 0.0 1.0 0.0625
8 10 35 −15 to 60 0.0 3.25 0.00834
11 10 30 −10 to 50 0.0 3.0 0.025
13 12 40 −15 to 60 0.0 3.0 0.025
∗ fi(PGi) = ai + biPGi + ciP

2
Gi in $/hr.

The optimal power flow was performed with Matpower
(NLP-OPF) and also with the developed algorithm (GA-OPF).
On Table VI it is possible to compare the optimal resulting
active power generation by generator and method. The bold
numbers in Table VI indicate that the maximum active power
(PGmax

) was reached and limited by its respective constraints
presented on Table V. Optimal MW-outputs achieved by both
algorithms were quite similar. It can be observed that only G1

and G5 are far from their respective maximum active power
limits, mainly because of their contribution to the total amount
cost of energy production.

TABLE VI
POWER GENERATION - IEEE 30 BUS

Optimization G1 G2 G5 G8 G11 G13

Method MW MW MW MW MW MW
NLP-OPF 70.95 80.00 33.17 35.00 30.00 38.88
GA-OPF 70.12 80.00 32.85 35.00 30.00 40.00

The IEEE 30 Bus System voltage profiles, by bus number
and algorithm, are presented in Fig. 4. The voltage profiles
are very similar, which implies that the reactive power (QGi

)
injected by each generator, established by the optimization
method, in the system also have close values. It is also
important to mention that the voltage inequality constraints
(0.95 pu < Vm < 1.085 pu) were not violated at the end of
the optimization processes.
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Fig. 4. Voltage Profile by Bus - IEEE 30 Bus System.



As the active and reactive power generated and also the
voltage profiles are very similar, it is expected that the total
cost of energy production

∑6
i=1 fi(PGi) on the objective

function (6a) will also be. The minimum optimal energy
production cost are shown on Table VII as well as active and
reactive power losses through the 30 Bus System.

TABLE VII
IEEE 30 BUS SYSTEM PRODUCTION COST AND LOSSES

Optimization Total Cost PLosses QLosses

Method $ /hr MW MVAr
NLP-OPF 987.37 4.59 22.42
GA-OPF 986.63 4.51 22.46

IV. CONCLUSIONS

Results of the developed GA based OPF has been shown
in this work. Solutions to the OPF problem has been applied
and presented to a 3 bus and to the IEEE 30 bus electric
power systems. The developed algorithm main objective is to
optimize the active power dispatch. Results such as optimal
fuel costs, complex generated power, voltage magnitudes as
well systems losses were compared with the ones obtained
by Matpower, which solves optimal power flows using an
interior point method. Comparison between both algorithms
results shown that all were quite similar. An advantage of
GA over interior point optimization method is the fact that
GA is derivative free and may be applied to nonconvex cost
functions, besides the possibility of being coded to work on
parallel computers. On the other way, the main disadvantage
of GA is its stochastic nature, which means that not always
the solution they provide to the OPF problem is guaranteed
to be the optimum. As compared with the results obtained by
the interior point method, which always finds the same deter-
ministic solution, the GAOPF optimal solutions are always in
a region that presents small deviations at the vicinity of the
optimum solution points.
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