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Abstract—Computer Aided Detection software relies on an
annotated data set of X-rays to be developed. The annotation
task requires extensive know-how and it is very time-consuming.
This work presents a sampling method to select the most relevant
images which will be annotated for the development of Tubercu-
losis screening platform based on machine learning algorithms.
The sampling task optimizes the annotation process by reducing
the number of images to be analyzed without compromising the
diversity and the significance power of the images in the dataset.
In this context, the image relevance is based on similarity and
dissimilarity measurements. The experiment consisted in a deep
learning feature engineering step, followed by topological analysis
based on Self-Organizing Map and K-Means.

Index Terms—Deep Learning, CNN, SOM, Clustering, CAD

I. INTRODUCTION

In recent years, Computer Aided Detection (CAD) software
packages have been used to support radiologists during clinical
practice in detecting potential abnormalities on diagnostic
exams [1].

In some applications, the CAD software is also used to
produce a numerical score indicating the likelihood that
a chest X-ray (CXR) image represents a specific disease
process [2]. Recently, the World Health Organization (WHO)
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has recommended for the first time that CAD applications could
be used as an alternative to human interpretation of digital
CXR for screening and triage of subjects with Tuberculosis
(TB) [3].

CAD applications based on Artificial Intelligence (AI)
algorithms rely on an annotated database of images that will be
used to train those algorithms [4]. However, in most cases, the
X-ray images are not properly annotated, while the process to
generate new annotations requires extensive domain knowledge
to catalog and index the images manually.

Therefore, the process of sampling images to enter the new
annotation phase must follow a selection criterion that priori-
tizes high diversity images to maximize the data information.
In this context, this work presents a sampling method to select
images based on similarity and dissimilarity measurements to
decrease redundancy and maximizing representativeness in the
CXR images selected for the annotation process.

In the first part of the analysis, we trained a Convolutional
Neural Network (CNN) [5] to perform a binary classification
of CXR images into TB or not TB. After the training phase,
we discard the last layer of the network in order to get its
embeddings, found during the training process, of the second
to last layer.

Those embeddings are the fed into a Self Organizing Map
(SOM) [6] that will be responsible for projecting those samples



into a 2D grip map. The final part of the analysis consists of a
clustering algorithm used to sampling CXR images based on
similarity and dissimilarity criteria.

II. BACKGROUND MATERIAL

This section overviews the machine learning techniques for
developing the aimed data sampling method for picking chest x-
ray images. The developed method, shown in Figure 1, consists
in the following 3-steps pipeline:

∙ extract a set of discriminative features in order to exploit
different aspects of x-ray images.

∙ project data in a non-linear way for both reducing
dimensionality and representing the data set in fewer
elements, preserving the topology of the observations.

∙ Group observed samples (or projections) into clusters
according to similarity measures.

A. Feature Extraction

Feature extraction is one of the most important steps of
medical image processing which requires extensive domain
knowledge [7]. For many unsupervised learning techniques,
replacing raw images with features extracted by convolutional
neural networks (CNN) leads to better results as this kind
of architecture can efficiently produce a set of discriminative
features without any expert guidance [7], [8].

1) Convolutional Neural Networks (CNN): CNN is a class
of deep neural network architecture widely used in image
analysis and it consists of an input layer, hidden layers and
an output layer. This specialized type of neural network
performs convolution operations on images due the way
weights are shared throughout the network. After passing
through a convolutional layer, the image becomes abstracted
to a feature map, also called an activation map. At each
layer, the input image is convoluted with a set of 𝐾 kernel
𝒲 = {W1,W2, . . . ,W𝑘} and added biases ℬ = 𝑏1, . . . , 𝑏2,
each generating a new feature map 𝒳‖. This features are
subjected to an element wise non-linear transform 𝜎(.) [9].
The model does not need to learn separate detectors for the
same object occurring at different locations of a image. For
this reason, CNN provides the flexibility of extracting intrinsic
and discriminative features from X-ray images [7].

B. Data projection methods

Projection methods are mainly meant for reducing the
data dimensionality by representing the observation in a
subspace (lower number of directions) that describes the
data structure in a concise way and features are preserved
faithfully [10]. Principal Component Analysis (PCA) [11] is
widely used due to its simplicity and the possibility to reduce
the data dimensionality in a controlled way: each extracted
component (dimension) is ranked by how much data variance
it represents.

In summary, PCA searches in an unsupervised way for
uncorrelated directions. The eigenvectors of the data covariance
matrix represent the principal directions for which the variance
of data has the maximum values. The corresponding eigenvalues

define how much energy the component retains. In Equation 1,
if the principal directions are represented by 𝑢𝑗 , we can define
a linear orthogonal transformation of data 𝑥 as:

𝑎𝑗 = 𝑢𝑇
𝑗 𝑥 = 𝑥𝑇𝑢𝑗 , 𝑗 = 0, . . . , 𝑛− 1 (1)

where 𝑎𝑗 is the data projection onto a principal component. In
order to reduce the original data dimension, one may use only
the major 𝑛 projections, discarding the projections of smaller
variance. It is important to notice that PCA only considers the
second-order statistics. Here, the PCA is used among with the
Self-Organizing Map (SOM), a computational data analysis
method which produces nonlinear mappings of data to lower
dimensions [12].

1) The Self-Organizing Map: The SOM algorithm consists
of an unsupervised trained neural network with the Kohonen
layer [6]. The algorithm uses a similarity measure (usually
based on the Euclidean distance) between data samples to
embed a low dimensional space (typically two dimensions) into
the original data. The 2D grid embedded into the data space is
called the code-book. The result is a topological organization of
the input data where their most relevant aspects are preserved,
revealing hidden structures throughout the non-linear mapping.

The SOM computes the Euclidean distance of the input
vector to each neuron, and find the winning neuron, denoted
neuron, using the nearest-neighbor rule (competition phase).
The winning node is called the excitation center and it deter-
mines a neighborhood of excited nodes (cooperation phase). All
the input vectors that are closest to the winning neuron adjust
the weights in order to strengthen its response (adaptation
phase) [13].

The input data space is fully connected to each neuron from
the Kohonen layer, and the weights are computed iteratively
using:

𝑤𝑗(𝑛+ 1) = 𝑤𝑗(𝑛) + 𝜂(𝑛)ℎ𝑖𝑗(𝑛)(𝑥(𝑛)− 𝑤𝑗(𝑛)) (2)

where 𝜂(𝑛) stands for the learning rate and ℎ𝑖𝑗(𝑛) is the
neighborhood kernel. In this application, we used a Gaussian
kernel:

ℎ𝑖𝑗(𝑛) = exp(
−𝑑2𝑖𝑗
2𝜎2(𝑛)

) (3)

where 𝑑2𝑖𝑗 denotes the similarity measure, and 𝜎(𝑛) is the
monotonically decreasing width of the kernel. In the end, after
the training procedure, the network outputs are calculated for
each neuron using the Equation 4.

𝑢𝑖 = 𝑥𝑇𝑤𝑖 (4)

where the vector 𝑤𝑖 represents the weight that connects the
input data to the neuron 𝑖. Hence, the vectors 𝑤𝑖,𝑖=1,𝑚 form
the SOM code-book.

The obtained map offers powerful tools for data exploration
due its bi-dimensional (on most of cases) nature, which allows
to identify cluster borders, projection directions and possible
dependencies between variables [10].
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Figure 1: Proposed unsupervised sampling pipeline.

C. Data clustering

Clustering methods are widely used for grouping observa-
tions into smaller subsets (clusters) defined by a similarity
measure. In other words, samples belonging to a cluster should
be as much as similar between each other and quite differ from
observations from other clusters.

The most common clustering technique is the 𝑘-Means
algorithm, which is described in [14]. The SOM can be viewed
as a clustering algorithm which produces a set of clusters
organized on a regular grid [13].

D. Clustering consistency measures

The 𝑘-Means clustering procedure does not provide any
measure of how consistent the estimated clusters. Hence, the
silhouette index [15] provides a measurement of consistency
of the estimated clusters through the following equation:

𝑠(𝑖) =
𝑏(𝑖)− 𝑎(𝑖)

max{𝑎(𝑖), 𝑏(𝑖)}
where 𝑎(𝑖) is the average dissimilarity between the 𝑖 − 𝑡ℎ
sample from a given cluster and the other samples in the same
cluster and 𝑏(𝑖) is the lowest average dissimilarity of the 𝑖− 𝑡ℎ
sample to the remaining clusters. The above expression can be
rewritten as:

𝑠(𝑖) =

⎧⎪⎨⎪⎩
1− 𝑎(𝑖)/𝑏(𝑖), if 𝑎(𝑖) < 𝑏(𝑖)

0, if 𝑎(𝑖) = 𝑏(𝑖)

𝑎(𝑖)/𝑏(𝑖)− 1, if a(i) > b(i)

It can be seen that −1 < 𝑠(𝑖) < 1. If the 𝑖 − 𝑡ℎ sample
is well-represented in its cluster, then 𝑠(𝑖) is closer to 1.
Otherwise, 𝑠(𝑖) is closer to −1. Data samples with silhouette
values close to zero are in the border of two or more clusters.
The average silhouette index, considering all data samples, is
used to measure the performance of the clustering configuration.

III. EXPERIMENT SETUP

This section describes the proposed pipeline to deliver the
most representative CXR images from a extensive database,
which will be used in a later annotation task. This pipeline is
designed to select images based on similarity and dissimilarity
measurements.

Firstly, the CXR images are resized to 128 × 128 and
decoded to gray-scale single channel, where each value varies

between 0.0 (black) and 1.0 (white). The resulting vectors
are normalized by the standard deviation. Then, a deep
learning-based feature engineering is performed using a CNN
architecture.

The CNN setup uses an 6-layer network structure, which is
consist of four convolutional layers and two fully-connected
layers, as shown by the schematic diagram in Figure 2. Dropout
and ReLU are deployed to address over-fitting and convergence
issues [16]. The model was trained using Adam optimization
algorithm [17] with 10 epochs and batch size equals to 64.

The available dataset was divided into 10 separated partitions
using a stratified cross-validation split [18] procedure assuring
that we have well-balanced classes in each train and validation
subset. Also, an early stopping strategy was used by motoring
the validation set using the SP (Equation 5) index [19] in each
iteration.

𝑆𝑃 =

√︃√︀
𝑃 × (1− 𝐹 )×

(︂
𝑃 + (1− 𝐹 )

2

)︂
(5)

where 𝑃 denotes the true positive rate and 𝐹 the false positive
samples.

After the training process, the last dense layer is removed
from the CNN model and the CXR images are fed forward
through the network. The representations found by this pro-
cedure will have size 𝑛samples×128, since the dense layer has
128 neurons, and will be used in subsequent models: PCA and
SOM.

The SOM model built for exploring the nonlinear statistical
relationships among the extracted features was optimized to a
15× 9 (135 neurons) grid using a rectangular topology. The
number of neurons is calculated from the number of data
points of the training dataset using the Equation 6, as proposed
by [20]:

𝑁 ≈
√
5𝑀 (6)

where 𝑁 represents the number of neurons, rounded to the
nearest integer, and 𝑀 is the number of CXR images.

The SOM network weights were initialized by spanning
the first two principal components. This initialization does
not depend on random processes, making the training process
much faster [20]. As training parameters for building the map,
the learning rate was set to 0.5, the spread of neighborhood



Figure 2: CNN architecture proposed using 6 layers: 1) Conv2D
(32 filters), kernel (3x3), ReLU, Max Pooling (2x2) 2) Conv2D
(64 filters), kernel (3x3), ReLU, Max Pooling (2x2) 3 and 4)
Conv2D (128 filters), kernel (3x3), ReLU, Padding Same, Max
Pooling (2x2) 5) Fully-connected (128 units), ReLU, DropOut
(0.5) 6) Fully-connected (1 unit), Sigmoid

function was equal to 2 and the maximum number of 1000
epochs. Euclidean distance was used as activation function and
the Gaussian function was used to weight the neighborhood
of a position in the map.

Later, the SOM code-book was clustered using the K-Means
algorithm varying the number of centroids from 2 to 20
centroids and the results were compared using the silhouette
index. At this point, we are not interested on finding the
very best clustering model (with higher silhouette values). In
fact, the clustering configurations are exploited in order to
understand the intrinsic structures evidenced by performed non-
linear mapping. This task aims to select samples according
to similarity and dissimilarity parameters and the silhouette
index will help to understand how well-fitted the given model
is and how well the clustered samples are conformed inside it.
In other words, how similar a given sample is to its neighbors.
The next section will show the obtained analytic results.

IV. DATASET

Some of the difficulties in building CAD software for lung
diseases are due to the small datasets (<103) publicly available,
which also presents some additional artifacts created by
radiologists, like text and symbols written in different parts of
the image. Nevertheless, this work used training data, provided
by the U.S. National Library of Medicine [21], containing
normal and abnormal chest X-rays with manifestations of
TB, also including associated radiologist readings and initial
classification labels used to train the CNN III.

Model SP PD (NOT TB) FA (NOT TB) PD (TB) FA (TB)

1 81,70% 88,04% 24,70% 75,30% 11,96%
2 81,44% 84,36% 21,73% 78,27% 15,64%
3 80,64% 87,12% 25,89% 74,11% 12,88%
4 81,44% 84,66% 22,02% 77,98% 15,34%
5 80,52% 84,97% 24,11% 75,89% 15,03%
6 80,19% 86,20% 25,89% 74,11% 13,80%
7 82,64% 87,12% 22,02% 77,98% 12,88%
8 83,51% 89,88% 22,92% 77,08% 10,12%
9 84,61% 87,12% 18,15% 81,85% 12,88%
10 81,12% 86,20% 24,11% 75,89% 13,80%

Table I: Results after passing all data (train and valid)
throughout the trained CNN.

The used data set contains 662 frontal chest X-rays, of which
326 are normal cases and 336 are cases with manifestations
of TB, including pediatric X-rays (anteroposterior). The chest
X-rays are from outpatient clinics and were collected from
the Shenzhen No.3 People’s Hospital, Shenzhen, China. The
images are provided in PNG format as 12-bit gray level images
and their size is approximately 3000× 3000 pixels.

V. RESULTS AND DISCUSSION

In order to obtain the performance measurements of the CNN,
the entire dataset (train and validation) is passed throughout
the models trained in each phase of the cross-validation
procedure III. Table I shows the results of SP index, Probability
Detection (PD) and False Alarm (FA) for each class. The CNN
trained in the partition #9 was chosen to be put into production
due to its better results in the SP index compared with the
other cross validation folds.

The two first principal components were computed and
together they represented 80 % of the PCA explained variance
and the ratio between them is approximately 3.6. As said
before, the two components are used for initializing the SOM
neuron weights.

Then, the features are projected over the SOM map and the
result can be seen as the graphical representation displayed
in Figure 3. Each neuron is represented by a circle (neurons
with no hits are hidden from the graphic) which shows the
ratio between CXR images of patients with and without TB
that hit the neuron. Fully filled circles represent neurons hit by
vectors extracted from CXR of TB patients. On the other hand,
hollow circles demonstrate neurons reached only by vectors
from CXR images with no TB detected.

The graph clearly shows a cross-sectional band (from lower
left to upper right) which divides two regions, one with mostly
CXR images of TB-infected patients and other with non-TB
patients. Yet, both regions presented neurons hit by both kind of
patients. These “mixed neurons” might represent images with
high degree of dissimilarity, as they were excited by images
from distinct classes; while neurons hit only one type of patient
might represent a degree of similarity, specially when located
in region with similar neighbors.

At this point, K-Means is applied in order to surface the
intrinsic relations. Figure 4 shows the silhouette index values
for several clustering initialization. The number of centroids
were varied from 2 until 20 and each setup was initialized



Figure 3: Graphical representation of the SOM topological map.
Each neuron is represented by a circle and colored according
to the ratio of “not TB” and “TB” hits.

100 times. In the box plot, the line within the box marks the
median. The boundaries of the box indicate the 25𝑡ℎ and 75𝑡ℎ

percentiles. Whiskers above and below the box indicate the
10𝑡ℎ and 90𝑡ℎ percentiles. Points above and below the whiskers
indicate outliers. The best fitted models have 2 centroids (as
it could be foreseen from the cross-sectional band analysis
described earlier) with silhouette index slighted over 0.50, with
minimal variance. Models with 3 and 4 centroids present a
silhouette over 0.42 for all initializations, with picks of 0.48 and
0.47, respectively. These three configurations were considered
for the exploitation analysis since from 5 clusters the silhouette
value drops to below 0.40 on average, with little variation as
we increase the number of centroids.

At this stage, the idea is to exploit the intrinsic relations
uncovered by all nonlinear methods applied in sequence. For
this purpose, the following characteristics will be observed: the
samples best conformed within a cluster (indicating similarity);
samples with higher silhouette values, but placed in a cluster
with neighbors labeled differently (indicative of dissimilarity);
and samples located at the borders of the clusters, in transition
areas with little activated neurons (indicative of dissimilarity).
This analysis is performed on the best models with 2, 3 and 4
centroids. In this way, samples were chosen until completing
50 samples. Figure 5 displays four examples sampled after the
proposed procedure.

Figure 6 shows the SOM Maps for different clustering
settings and each one allowed the detailed analysis according
to different aspects, describe as follows:
A) Figure 6a displays 2 clusters and TB patients are pointed

by hollow circles varying their sizes according the silhou-
ette value. Bigger the circle, better the CXR is fitted inside
the cluster. The predominance of circles in the cluster on
the left of the map is visible, mostly with values between
0.4 and 0.7 (with the exception of objects located in the
border area between the clusters). This region is mostly
composed of neurons that were excited by images of

Figure 4: K-Means clustering evaluation over the SOM code-
book. Each clustering setup was initialized 100 times. In the
box plots, the silhouette index variance is shown for each
clustering model.

(a) (b)

(c) (d)

Figure 5: Examples of Chest X-Ray images selected by
similarity and dissimilarity patterns.



(a) Two clusters - TB patients (b) Two clusters - Non-TB patients

(c) Three clusters - TB patients (d) Three clusters - Non-TB patients

(e) Four clusters - TB patients (f) Four clusters - Non-TB patients

Figure 6: Self-Organizing map for the features extracted using the CNN network. The images shows how TB and non-TB
patients are projected onto the map and how different clustering models divide the SOM code-book.



patients diagnosed with tuberculosis. Therefore, objects
(20 images ) with higher silhouette values with this class
can be chosen as good representatives for the criterion of
similarity with TB. Figure 5a displays an example of this
group of images.

B) Figure 6b also displays 2 clusters, but it shows only
non-TB patients (cross marker sized proportional to the
sample’s silhouette values). As expected, the crosses are
mostly located in the right side of the map. There are
some objects located on the Cluster 0 with high silhouette
values. These are interesting cases, as it would be expected
that only images of TB patients were in the center of this
cluster. The cluster result shows there are features that turn
non-TB patients similar to infected ones. Hence, these
images (like the one displayed by Figure 5b) are good
examples of dissimilarity for non-TB images and, for this
reason, will be picked for the final sampling. (20 images)

C) Figures 6c and 6d exhibit the SOM map split onto
three clusters. It is possible to notice neurons presenting
well fitted samples for both TB and non-TB patients,
specially in the center part of the 𝐶𝑙𝑢𝑠𝑡𝑒𝑟1. Those samples
are interesting for representing images that don’t share
similarity with the target classes. This way, they were
picked as dissimilarity examples. (40 images)

D) Figures 6e shows the map divided into four clusters.
Cluster 3 shows some samples of TB patients in a region
mainly activated by non-TB ones. Therefore, those are
sampled as exemplary of images with high dissimilarity to
other TB images. One example may be seen in Figure 5c.
(14 images)

E) Finally, Figure 6f presents the non-TB images split into the
same four clusters. Cluster 0 is located in a region where
no CXR image labeled as a TB patient was projected. All
samples are from non-TB patients, high silhouette values
around 0.6. These samples might present relevant features
to distinguish and differentiate them from positive-TB
X-Rays. Hence, they are picked for final sampling by
their similarity to non-TB samples. An example may be
seen in Figure 5d(36 images).

VI. CONCLUSION

This paper described how images from a popular CXR
dataset were sampled using a machine learning pipeline. In the
end, 120 images were chosen after an extensive exploitation
of the non-linear relations among the entire dataset due the
deployment feature engineering, data projection and clustering
techniques working in conjunction. Section V describes step-
by-step how the final images were sampled.
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