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Abstract—The quality of images obtained from video surveil-
lance systems is a decisive aspect when performing investigations
at the Forensic Science. Features such as scars, tattoos, and skin
marks are great examples of details that allow to consolidate
an investigation at certain scenarios in which there is the
necessity to identify individuals captured in a video or image
footage. However, the low quality of images could affect the
results of the investigations. In this sense, this work proposes
the study of a computational model to address the problem
of increasing the resolution of Low-Resolution (LR) images,
also known as the problem of super-resolution of images. The
main idea is to train a Generative Adversarial Network (GAN)
so that it can be able to enhance low-quality images. The
hypothesis is that a variant model of a GAN, named Super-
Resolution Generative Adversarial Network (SRGAN), is capable
to produce High-Resolution (HR) images from LR ones. The
proposed methodology is based on experimental research with
the aid of the hypothetical deductive method, where two well-
recognised state of art methods were used, which proposes the
use of convolutional neural networks and deep learning. For the
model validation, were conducted four different experiments:
two to avail the capacity of the GAN to produce images with
enhanced resolution and two other experiments to evaluate the
quality of the results produced by the SRGAN. The quantitative
results of our experiments are promising, with performances
that are similar to those obtained by state-of-the-art approaches.
Moreover, the qualitative results based on performing a visual
analysis of the images produced by our approach suggest a
interesting performance in terms of visual quality.

Index Terms—Super-Resolution of Images; Generative Adver-
sarial Network; Convolutional Neural Networks; Deep Learning.

I. INTRODUCTION

In recent decades, technological advances, both in hardware
and in software, have allowed significant improvements in
the quality of digital images, from low-quality images to
images of comparable quality to photographic ones. This is
currently observed in most smartphones and digital image
capture equipment. In this sense, an area that accompanies
such development, although at a slower pace, is the field of
surveillance camera systems.

In spite the presence of surveillance systems available in
high definition resolutions (full HD), factors such as their
purchase price and maintenance cost often makes it difficult to
access this equipment for use of families, small businesses and
places where there is a need of a high number of monitoring
equipment. Another reason that often influences the decision
of which image resolution to use in surveillance equipment is

the amount of storage capacity that is required for the videos
and images. These devices, in general, need to store images for
long periods and for many days, which ends up limiting the
space that can be used for recordings. Low-quality captures
take up considerably less space, which makes it an important
factor to consider when choosing which quality level will
be employed for surveillance systems, generally resulting in
choosing the path of the use of low-resolution images.

In the area of forensics and criminal investigations, one
of the most important resources that can influence (both
positively and negatively) an investigation, are visual resources
used for such purpose, including photographs and footage
from surveillance cameras. Graphic details such as tattoos or
unusual marks can help during the investigative work for the
necessary clarifications.

Due to the sensitivity required for the correct analysis and
interpretation of images, low-resolution captures often end up
affecting forensic science and its sub-areas. This issue could
even hinder the progress and results of investigations that
could be promising. According to [1], footage of robberies
and kidnappings released by the police is usually so blurry
and pixelated1 that specific details are practically non-existent.
In [1] it is also mentioned that better monitoring video qualities
would make investigations much more effective and sharper. In
the Brazilian scenario, difficulties persist and are often even
more aggravating, as demonstrated by [2], where the Bahia
state police say that many cameras used on bus lines are of
such poor quality that they do not allow for identification of
criminals. Although there are techniques and tools that allow to
improve image quality, most are manually-based, which means
that a human must insert one image at a time in the tool to
obtain results, which could become an expensive task in terms
of time and resources. Furthermore, most of these methods
are based on the use of pre-arranged High-Resolution (HR)
images to make a pairing and mapping with the inserted Low-
Resolution (LR) images. Therefore, if the input image does not
have a similar pair in the database that is used for comparison,
the results generated do not show significant improvements in
relation to the input images.

Taking these aspects into account, it is common that many
of the recently proposed methodologies, such as Generative
Adversarial Network (GAN) for super image resolution [3],

1Clear visualisation of large squares (pixels) in a digital image.



[4], try to circumvent the problems specified before. However,
they end up using approaches in which the pairing between HR
and LR images is necessary. Therefore, they are not directly
applicable to real-world problems, especially when it comes to
surveillance camera systems, since the images in their coun-
terpart2 are non-existent, as in the aforementioned approaches.
Some proposals [5], [6] seek to increase the resolution of LR
images without the existence of its counterpart, making it a
more viable method for real-world problems.

This work aims at targeting the issue described before
through the use of GANs to increase image quality (super
resolution) in surveillance camera systems. The main working
hypothesis is that, with a computational model that uses
GANs, it is possible to reconstruct a LR image into an HR
image even without having a counterpart image available. In
this sense, the main objective of this work is to propose a
computational model for the improvement of LR images using
GANs, which can serve as a tool to aid at performing computer
forensics tasks. The following specific objectives are derived
from the initial main objective:

• to propose a methodology for improving forensic images
through the use of GANs;

• to assess the ability of a GANs to generate synthetic HR
images from LR images;

• to verify the ability of a GANs to generate HR images
from known LR images;

• to quantitatively and qualitatively analyse the quality of
HR images generated by a trained GAN model;

• to evaluate the computational model designed using pub-
licly available datasets.

This paper is organised as follows: the related work is pre-
sented in Section II. The Methodology, which describes step-
by-step the strategy to overcome the problem, in addition to
the GAN architecture, data preparation and model evaluation
metrics, are presented in Section III. The computational exper-
iments, as well as their results and discussions are presented
in Section IV. Finally, Section V presents the conclusions of
this work and possible future research directions.

II. RELATED WORK

In general, recent works in literature that propose to over-
come the image super resolution problem use a paired ap-
proach, where the idea is to use a pair of HR and LR images,
whose LR image is the counterpart of the HR image. For
works that use this premise, HR images are interpreted as
being true samples and are used as input to the Discriminative
Network (DN), while LR images are used as input to the
Generative Network (GN) in order to produce HR images that
could be accepted by DN. Examples of works that use this
methodology are proposed by Ledig et al. [3], Li et al. [4]
and Wang et al. [7].

Ledig et al. uses a GAN variant where LR images have
their resolution increased by means of up-scaling convolution

2Counterpart refers to the opposite plane of the mentioned image. If an
image is in HR, its counterpart is the same image in LR and vice-versa.

layers. The model is composed of both GN and DN networks,
where GN is trained with the LR images to produce HR
images, which are confronted with the counterpart by the
RD model. The reported results show that the approach
outperforms reference methods by a large margin and defines
a new state-of-the-art for super resolution at photo-realistic
images. In this way, Li et al. proposes a work using the original
architecture proposed by [3], to be applied to the problem of
reconstructing textile images, and to the failure recognition.
Here authors present a comparison of GAN-based approach
with two other image enhancement techniques, i.e, bi-linear
and CNN-based. Results suggest that both GAN and CNN
approaches stand out when compared to the bi-linear method.
Besides, GAN-based method is able to present visually more
detailed image, while the image obtained by CNN model
is smoother. As evaluation metrics, authors suggest the use
of both Structural Similarity (SSIM) [8] and Peak Signal to
Noise Ratio (PSNR) [9] due to their capability to compute the
distance between the real and generated images, thus providing
quantitative results that may be used as parameters in a visual
comparison. Wang et al, in turn, propose an “enhanced”
version of the GAN-based approach proposed by [3]. The
work idea is to propose improvement strategies to the network
architecture and also to optimise both the model loss function
and the adversarial function, with the objective of improving
the overall performance of the model.

More recently, Ren et al. [10] proposes a method in-
spired by [7] to circumvent the image SR problems, and
Alam et al. [11] propose an SRGAN approach, supported by
model introduced by [3], for imaging microscopy. On the other
hand, Lin et al. [12] uses a SRGAN approach to circumvent the
previous problem regarding multiple degradation on GANS,
where the method idea is to use three discriminators, at the RD
training, for improving the accuracy. The obtained results show
that the proposed model deals well with multiple degradation
and produce images with wealthy features.

Important mentioning that aforementioned works use paired
approach. However, these models are not suitable for real-
world problems, since images in real-world contexts do not
have a counterpart in HR and, if they did, there would be
no purposes to perform artificial images in HR. Thus, to
circumvent this problem Lian et al. [5] propose a ’feature-
guided’ approach, which uses as input to the DN images
previously generated by a GAN. The problem here is that the
images used for training the GAN are part of a pre-defined
HR image dataset, which can limiting the work scope. The
interesting aspect of this approach is the use of the “feature-
guided” module, which increases the model performance.

Notwithstanding, Shocher et al [6] propose an unpaired
GAN-based model to be used in super resolution image
problems (SRGAN). Although results obtained by this ap-
proach are slightly inferior compared to other paired GAN-
based approaches, this model becomes more attractive due
to the perspective of using it at real-world problems, where
there are no counterpart images in HR. To circumvent the
counterpart problem, authors propose the use of Zero-Shot



strategy, which is composed of a CNN trained specifically
for each input image, thus allowing the approach to adapt to
different application contexts. The CNN is trained to learn
the complex relationships between both HR and LR domains,
which are then applied to the input LR image in order to
produce an output HR image. It is important mentioning that,
despite the training cost, the results produced are similar to
those obtained by state-of-the-art approaches that use synthetic
LR datasets and surpass those whose counterpart in HR is non-
existent.

In short, the idea of this work is to use approaches proposed
by [6] and [5], with respect to the unpaired GAN-based
super resolution images and the use of “features-guided”,
respectively, as a starting point to propose an unpaired image
enhancement model (image up-scaling) that can be used in
real-world problems, e.g images from surveillance cameras.

III. METHODOLOGY

This section presents methods to circumvent the problem
introduced in this work, which refers to the use of a GAN
for increasing the quality of images (super resolution) from
surveillance camera systems. To better understand the pro-
posed method, this section is divided into subsections as
follows.

A. Model Overview

The suggested method is composed of three main steps,
which are Data Preparation, Training and Tests, and Eval-
uation and Analysis, as illustrated on Figure 1. The Data
preparation step is concerned with how the data needs to be
prepared and pre-processed for the next steps. At the Training
and testing stage, the GAN architecture, training procedures
and the test protocol are defined. Finally, at Evaluated and
analysis step, metrics that will be used to assess the model
performance are described.

Fig. 1. Overview of the proposed model.

B. Data Preparation

First, images need to be resized to the 32×32 size, since it
is the standard input resolution to the GAN. After, the dataset
need to be split into training and test subsets, which for this
work we choose a ratio of 70% for training and the remaining
30% to test.

C. Model Details

This section presents all necessary steps to generate High-
Resolution (HR) images from Low-Resolution (LR) images. In
short, the model is composed of Zero-Shot Super Resolution
(ZSSR), Discriminative Network (DN), Generative Network
(GN) and a Mediator Module (MM). ZSSR will be responsible
for producing synthetic HR images, whose will be fed as
training samples to the DN. On other hand, original images
(in LR) will be fed to the GN and at MM is computed the
loss function, thus extracting features from images learned
from both DN and GN. The training process is achieved by
minimising the loss between DN and GN outputs.

1) GAN architecture: The GAN architecture used in this
work is based on the works [6] and [5]. From the first one we
use the idea of generating HR images without the need of using
a previous dataset that may be used as synthetic counterpart of
the LR images. From the other one, the proposal of using the
intermediary module (MM) to minimise the space of possible
mapping functions will be adopted, allowing the GAN to learn
a intrinsic mapping function from LR to HR domain.

In order to better understand the GAN architecture for HR
purposes, the design of the network is shown at Figure 2.
First, LR images are forwarded to the ZSSR module, whose
result will be ’synthetic’ HR images, to suppress the needed
counterpart samples. With the synthetic dataset, the DN is
trained at the same time that the original images in LR are fed
to the GN, thus carrying out the GN training. The trend is that
during the training progress, the GN learns how to generate
better images, i.e learns images more similar with synthetic
HR images, and then in fact one HR image is produced from
another in LR. Finally, the MM is a VGG network used for
extracting features from both GN and DN outputs, in order to
limit the space of learned features, thus increasing the GAN
performance.

Fig. 2. Scheme of the Generative Adversarial Network for Super-Resolution
in images.

2) Zero-Shot Super Resolution: The ZSSR is composed
of a small Convolutional Neural Network (CNN), which is
trained on sub-samples produced from LR images [6]. Given
an input image I , a specific (tailored) CNN is built to perform
the super resolution for that I image. The sub-samples are
obtained by reducing the scale of the image I , thus generating
a new version with LR, denoted by I ↓ s, where s is the
scale parameter. When the CNN training process is finished,
the LR image I (original size) is fed to the CNN in order



to produce its HR counterpart, which is formally denoted as
I ↑ s. An illustration of how ZSSR is performed may be
seen in Figure 3.

Fig. 3. An Illustrative Model of the ZSSR.

During the training process, a data-augmentation strategy is
performed with purposes of increasing samples, since initial
image is just one. This step is computed with an alternation
of four different rotations, 0, 90, 180 and 270, respectively,
and the use of mirror reflection in both vertical and horizontal
rotation. Due to these procedures, each I LR image resulting
in another 8 samples in HR for training step, thus tending to
produce better results, once the model has more generalisation
capability.

3) Discriminative and Generative Networks: The DN ar-
chitecture is composed of an input layer, 8 blocks with 3
layers each (Conv2D, LeakyRelU and BatchNormalisation),
which are related with the feature extraction step, and both
flatten and dense layers that composes the classifier. Re-
garding the GN architecture, it is composed of a amount
of 86 layers: 1×Conv2D layer, 1×PrelU layer, 16×Residual
blocks, 1×Conv2D layer, 1×BachNormalisation layer, 2×Up-
scaling blocks, and 1×Conv2D layer. The Residual block,
in turn, is composed of 5 layers, i.e, 1×Conv2D layer,
1×BatchNormalisation layer, 1×PReLu layer, 1×Conv2D
layer, and 1×BatchNormalisation layer. It is worth mentioning
that at Residual blocks there is a skip connection strategy,
where layers are skipped randomly every epoch training.
The idea of this scheme is to avoid the network saturation
problem. On the other hand, the Up-scaling block is composed
of 1×Conv2D layer, 1×UpSampling2D layer, and 1×PRelU
layer. Notice that the UpSampling2D is a layer that aims to
double dimensions from an input 2D data. Details of both DN
and GN architectures can be seen at the work of Ledig et
al. [3].

4) Mediator Module: The MM consists of a VGG-19 Net-
work, which is a variant of the VGG3 model, and is composed
of 19 layers (16 convolution layers, 3 Fully connected layer,
5 MaxPool layers and 1 SoftMax layer) [13]. VGG-19 was
pre-trained on ImageNet, which is a dataset that encompasses
over 14 million of images from various categories.

3VGG is a kind of a CNN. More detail can be found at
https://neurohive.io/en/popular-networks/vgg16/.

D. Training Stage

The training process of both DN and GN occurs concur-
rently during a certain number of epochs, using parameters that
will be addressed in Subsection IV-C. First, the DN is trained
for some epochs and then GN is also trained for some epochs.
The objective of the DN training is to make this network able
to learn to identify real data, besides learning how to recognise
possible failures produced by GN. Note that since the training
process is concurrent, while the first one architecture is being
trained (e.g DN), the last one remains with the fixed weights
(e.g GN), alternating after a number of epochs is done. This
alternating process is repeated until the end of the training.

E. Test and Evaluation Stage

After the GAN training is completed, the model testing is
carried out. The test is performed only with the samples from
the test subset as described in III-B. Next, the Evaluation
and Analysis step is performed, for which two metrics are
used: SSIM and PSNR. The SSIM measures the structural
similarity between two samples, while the PSNR calculates
the signal noise peak from the two samples. Although there
are other metrics that may be used to evaluate the GAN
results, we chose these for their capability to compute the
distance between the real and generated image, thus providing
quantitative results that we can use as comparison parameters
for visual analysis of the improvement of GAN image in HR
compared to the original LR image.

IV. EXPERIMENTS AND RESULTS

This section describes the technologies used to implement
the proposed approach, the datasets used for the experiments,
the parameter settings for the training and testing phases of the
model, and the computational experiments that were proposed
to verify the working hypothesis introduced in Section I.

A. Technologies

The implementations presented in this section were devel-
oped using Python [14], version 2.7. Although there exists a
newer version of the language (3.7.x), an older version was
chosen to be compatible with the ZSSR, which was developed
for Python 2.7 only. We also used the TensorFlow library,
version 2.0, together with Keras [16]. The choice was made
due to the possibility of Keras to act as an interface for several
machine learning frameworks, including TensorfFlow, and due
to its ease of use and its capacity to be extended.

For both experiments IV-D and IV-E, a General Purpose
Graphic Processing Unit (GP-GPU) was used, given the fact
that the work encompasses the use of a dataset with a large
amount of images, where the number of calculations and
processing required are high. The GP-GPU used in this work
was the Nvidia Geforce Titan XP, with 12 GB of RAM,
and performance of up to 12 Teraflops. On the other hand,
for experiments IV-F and IV-G, Google Collaborator was
used, a free code execution environment in the cloud. Each
environment provides 12GB of RAM, 50GB of cloud storage,
and available GP-GPUs for resource-demanding processing.



Google Collaborator was selected since it is easy to use and
does not require any additional configurations.

B. Dataset

For this work, two publicly available datasets have
been used, entitled QMUL-TinyFace4 [17] and QMUL-
SurvFace5 [18]. The Tinyface set consists of 169, 403 native
images in LR containing faces of people, with an average
resolution of 20 × 16 pixels per image. The images were
captured in a large variety of scenarios, with different variables
of pose, occlusion, angles, lighting and background. The
Survface set consists of 463, 507 original LR images, also
containing faces of people, captured in non-cooperative (non-
ideal) scenarios of real-world surveillance camera systems.
Both sets share characteristics that are common for footage
obtained from surveillance camera systems: their images have
low quality and very low resolution.

Since there are two architectures that make up the GAN
(DN and GN) two subsets of data were used. For the DN, the
training set consists of images sent to the ZSSR for resolution
enhancement, interpreted as real data. The remaining images
are directed to the GN, which generates synthetic samples that
are then forwarded to the DN to be tested. Since the GN uses
the same dataset for its training phase and to later test the DR,
a training-test dataset split is not necessary in this scenario.

C. Training Settings

1) Zero-Shot Super Resolution: As parameter of the ZSSR,
the scaling rate was set to be equal to 2 × 2, this implies
that every image inserted in the network has its resolution
doubled. For instance, given an image with an initial resolution
of 26 × 29 pixels, its final resolution in HR will be 52 × 58
pixels.

For the learning rate6, the initial value suggested by [6]
was used for our experiments: 0.001. Periodically, a linear
adjustment of the reconstruction error is performed, and if the
standard deviation value is greater than the slope of the linear
adjustment, the learning rate is divided by 10. The stopping
criterion is defined according to the learning rate, defined for
when its value reaches to 10−6.

Adam is used as optimisation function7, which was orig-
inally introduced by [19]. The number of epochs has an
undefined value, given the fact that the ZSSR training stopping
criterion is based on stopping the training when a certain value
for the learning rate is reached.

2) Super Resolution Generative Adversarial Network: The
resolution increase rate defined for the SRGAN is the same as
defined for the ZSSR, that is, a scale of 2×2 pixels. Likewise,
all images inserted in the GN have their final resolutions
doubled. The number of epochs defined for both the DN and

4Available at: https://qmul-tinyface.github.io
5Available at: https://qmul-survface.github.io
6A fitting rule in an optimisation algorithms that determines the step size

in each iteration, while moving to minimise the function of model loss.
7Responsible for adjusting the weight parameters to minimise the loss

function of the model.

GN training phases was equal to 2, 000,as suggested in the
work by [20].

The value that was defined for the Batch Size, which is
the number of examples used in each iteration during the
training phase, is equal to 50. Although a high-performance
GP-GPU often allows for higher batch Size values, other
factors must be considered when dealing with a GAN. As
pointed out by [21] and [20], a value of batch Size that is
too large for a GAN could significantly increase training time
and affect the overall performance of the model, potentially
causing a decrease of its performance. Therefore, small values
are recommended to be used so as to obtain better performance
of the network.

Same as for the ZSSR is used, the Adam optimiser was
chosen to train the model. As for the loss function, we used
Binary Cross-entropy. This function was chosen since the
SRGAN has only two possible classes: an image can belong
or not to the synthetic HR set.

D. Experiment 1: HR Images Generation using ZSSR

The first experiment was based on producing a set of
synthetic HR images from the ZSSR. The objective of this
experiment was to verify if it is possible to use the ZSSR to
reproduce images in HR, which can be used to train the DN as
a synthetic dataset, in order to suppress the lack of an original
HR images required to train the SRGAN.

After data preparation (see Section III-B), a group of 14, 000
native images in LR were fed to the ZSSR. Although the
datasets add up to a total value of 632, 910 samples. The
number of instances has been reduced so as to reduce the time
needed for the ZSSR to produce all the images. Moreover, this
allows to not compromise the performance of the SRGAN in
the training phase. Figure 4 illustrates some samples used as
input to the ZSSR.

Fig. 4. Examples of images that were fed to the ZSSR to generate the
synthetic dataset.

The training/test stage of the ZSSR was divided into two
distinct procedures. First, a set of 7, 000 images was used as
input to the model, coming from the QMUL-Tinyface dataset.
This procedure took about 120h for the network to be trained
and also to test the entire dataset. Due to the fact that the ZSSR
tests its inputs at the same time it trains, it was possible to
make the individual visualisation of each result as they were
being tested.

The second step was to use 7, 000 samples from the QMUL-
Survface dataset. As a result, 14, 000 images were produced
in HR, with their respective final resolutions doubled, being
64 × 64 pixels each. This set produced later is forwarded to
the DN. Figure 5 demonstrates some of the results produced
by ZSSR.



Fig. 5. Samples of the dataset composed of synthetic images produced by
the ZSSR.

Figure 5 shows that, in addition to the increase in resolution,
the characteristics of the images remain more visibly remark-
able. Moreover, it is also possible to observe more clearly
the details of the images. The result was satisfactory, thus
the generated images were used as a synthetic dataset of HR
images to train the SRGAN.

E. Experiment 2: HR Images Generation using SRGAN

Once the set of synthetic HR images were generated, the
second experiment took place. This experiment consisted of
training and test the SRGAN. The objective of this experiment
was to study the capability of a SRGAN to produce HR images
from real-world low quality images.

All images from the synthetic HR dataset were fed to the
DN, and a set of 6, 000 samples from the initial LR dataset
were fed to the GN. The main idea was to train the GN to
produce better and better images with each epoch, in order to
achieve the capability to ’deceive’ the DN so that its results
could be accepted as an original HR image by the DN. Figure 6
demonstrates some sample images that were used as input for
this experiment.

Fig. 6. Samples of the dataset used to train the SRGAN.

After the SRGAN training, 6, 000 HR images were ob-
tained, each with a resolution equal to 64 × 64pixels. Some
examples of the results produced by SRGAN are shown in
Figure 7.

Fig. 7. Examples of HR images produced by the SRGAN using the input
images shown in Figure 6.

Figure 7 shows that some details from the original im-
ages were blurred. Notwithstanding, it is possible to visually
notice a large improvement of the quality of the images.
A more detailed analysis of these results is presented in
sections IV-F and IV-G, where the results obtained by model
are discussed from quantitative and qualitative perspectives,
respectively.

F. Experiment 3: Quantitative Analysis of the Results

This section presents an evaluation experiment that consists
of using two image reconstruction evaluation metrics: SSIM
and PSNR. The objective of this experiment is to infer if the
results produced by SRGAN are optimistic. For this purpose,
images in LR are used, which also compose the set of
images inserted in the ZSSR. This is done because, for these
measurements to be used, there must be a real image (R),
in HR, and a generated image (G), which was produced by
SRGAN.

The SSIM-PIL [22] is implemented to calculate the SSIM.
In this approach, two images of the same resolution are
compared, and as a result, a value between 0 and 1 is obtained.
A value close to 0 means that the images are completely
distinct and a result close to 1 implies that the images are
identical. On the other hand, the PSNR is implemented through
a function of Scikit-learn [23], where the real image (original),
the test image (generated) and the minimum and maximum
possible range of the result are passed as parameters for the
function. As a result, the PSNR between the two images is
returned in decibels (dbs).

Table I illustrates a comparison of the images of the set
in synthetic HR and the images in HR generated by SRGAN
considering the metrics mentioned before.



TABLE I
COMPARISON BETWEEN THE SYNTHETIC HR IMAGES AND THE HR

IMAGES GENERATED BY THE SRGAN.
ID Synthetic Image SRGAN Image SSIM PSNR

1 0,9132 31,5044

2 0,8568 31,6848

3 0,8951 31,9378

4 0,8668 31,2329

5 0,8566 31,1281

6 0,8715 31,2964

7 0,9462 38,9739

8 0,8835 32,9032

As shown in Table I, for the SSIM index, the results
obtained have similar values, ranging between 0.85 and 0.89,
with emphasis on the sample ID 7, which obtained a SSIM
the value of 0.94, very close to 1. In the context of the SSIM
metric, this value suggests that the images are very similar. On
the other hand, according to [24], the typical values for noisy
or small images are between 30 and 50 dB when the PSNR
metric is considered. Therefore, it can be considered that a
satisfactory result has been achieved for all tested images.

It worth mentioning that a higher SSIM or PSNR index for

a certain images does not necessarily indicate that, in terms of
visual quality, it was the best generated image. This is possible
to verify by inspecting the image with ID equal to 7 in Table I,
which achieved SSIM and PSNR equal to 0.89 and 38.9 dbs,
respectively. The image does not seem to have best quality, if
a visual inspection is performed. Although its resolution has
been increased, some of the image details are blurry, making
it difficult to see.

G. Experiment 4: Qualitative Analysis of the Results

The fourth and last experiment was based on performing
a visual analysis of a set of HR images produced by the
SRGAN, whose counterparts in LR were not fed to the ZSSR.
The aim of this experiment is to investigate the capability
of the SRGAN to produce good HR images (from a visual
perspective). As these images do not have original counterparts
in HR, it is not possible to use metrics like those implemented
in the Experiment IV-F.

Table II presents a comparison between images in synthetic
HR, extended versions of these (using zoom) and finally the
HR image results produced by the SRGAN.

As shown in Table II, the HR images produced by SRGAN
achieved a considerable improvement in terms of visual qual-
ity, level of detail, and resolution. It is important to emphasise
that in this case it is not possible to perform a quantitative
analysis using the image reconstruction evaluation metrics
used in the previous section, since there is no set of original
HR images for comparison.

V. CONCLUSION

This paper introduced a method to transform Low-
Resolution (LR) images into High-Resolution (HR) ones. This
is an issue that is specifically relevant to aid during the analysis
of footage extracted from surveillance camera systems. The
hypothesis of our work states that the use of a Generative
Adversarial Network (GAN) allows to reconstruct a LR image
into an HR image, even without having a counterpart image
available. The architecture proposed in this work was inspired
by two previous works. The first one, referred to here as ZSSR,
was used to generate synthetic images in HR. The second
one, called Super-Resolution Generative Adversarial Network
(SRGAN), inspired the use of an intermediate module to
reduce the space of possible mapping functions. Specifically,
the VGG-19 network was used pre-trained in this work. For
quantitative assessment of the results, two image reconstruc-
tion functions were used: Structural Similarity (SSIM), and
Peak Signal to Noise Ratio (PSNR). Moreover, a qualitative
assessment based on visual inspection was also performed.
The results obtained in this work suggest that the proposed
approach is promising and it can be applied in contexts where
the generation of high-resolution images is necessary, such as
forensic areas. This approach suggests that a GAN model can
be useful as an aid tool in analysing poor resolution images,
such as those that are found in most surveillance camera
systems.



TABLE II
COMPARISON BETWEEN ORIGINAL LR IMAGES AND HR ONES

GENERATED BY THE SRGAN.
LR Extended LR HR

Future work could aim at the development and application
of a software that can deploy the SRGAN in an industrial
scenario. Moreover, tests of the software tool with the aid of
professionals in the Forensic area could be performed with the
objective to validate how useful the tool can be for eventual
forensic investigations. Likewise, the use of down-scaled ver-
sions of high-res images can be addressed to build a dataset
that allows to check the quality of the super resolution versions
of those down-scaled images. In addition, a comparative work
can be proposed between the SRGAN proposed in this work
and other methodologies that are considered as state-of-the-art,
such as [3], [25] and [6].

ACKNOWLEDGEMENT

All authors thanks NVIDIA for the donation of Titan-Xp
GPU boards used in this work.

REFERENCES

[1] A. Carter. (2014) Why is security camera video still so terrible?
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