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Abstract—This work aims to delimit the Direct Hydrocarbon
Indicators (DHI) zones using the K-means and mostly the Gaus-
sian Mixture Models (GMM) algorithm, unsupervised machine
learning methods, over the FS8 seismic horizon in the seismic
data of the Dutch F3 Field. The dataset used to perform the
clustering analysis was extracted from the 3D seismic dataset. It
comprises the following seismic attributes: Sweetness, Spectral
Decomposition, Acoustic Impedance, Coherence, and Instanta-
neous Amplitude. The Principal Component Analysis (PCA)
algorithm was applied in the original dataset for dimensionality
reduction and noise filtering, and we choose the first three
principal components to be the input of the clustering algorithm.
The cluster analysis using both K-means and Gaussian Mixture
Models was performed by varying the number of groups from 2
to 20. The Elbow Method suggested a smaller number of groups
than needed to isolate the DHI zones. Therefore, we observed that
four is the optimal number of clusters to highlight this seismic
feature. Furthermore, it was possible to interpret other clusters
related to the lithology through geophysical well log data.

Index Terms—Direct Hydrocarbon Indicators, Gaussian Mix-
ture Models, Principal Component Analysis, Seismic Attributes,
Cluster Analysis

I. INTRODUCTION

The pattern recognition activity is essential for interpret-
ing seismic data, whether related to studies of depositional
environments or hydrocarbon reservoirs. Its major purpose
is partitioning seismic data according to some similarities.
The main challenge for interpreters is to recognize these
patterns in a large seismic dataset that makes their quick
interpretation, without intelligent algorithms, infeasible. These
algorithms support determining rock physical parameters, data
interpretation, noise elimination, and ambiguity analysis in
geophysical models [1]–[3].

Barnes and Laughlin (2002) [4] carried out a comparative
study between K-means, Hierarchical Clustering, and Self-
Organizing Maps (SOM) and attested the good performance
of these techniques in 3D seismic volumes. Zhao (2015)
[5] conducted studies applying supervised and unsupervised

methods in the Barnett Shale geological formation, known to
be one of the main shale gas reservoirs in the United States.

The use of clustering analysis algorithms on 3D seismic data
increases recurrently and has become even more necessary due
to the abundance of available seismic data and the need for
faster and more reliable interpretation. This paper presents an
application of the Gaussian Mixture Model (GMM) algorithms
over the FS8 seismic horizon, obtained from F3 block 3D
seismic data, located in the North Sea - Netherlands. The K-
Means algorithm was also implemented in order to compare
with the technique mentioned above. We extracted some at-
tributes that enhance the Direct Hydrocarbon Indicators (DHI)
on the surface to perform the cluster analysis and generate a
probability map of this anomaly from the seismic clustering.

II. GEOPHYSICAL SETTINGS

A. Seismic Method

The seismic method is the most important among all
geophysical techniques regarding investments, expenditures,
and the number of professionals involved, mainly in the
hydrocarbon industry. It is mostly employed due to its high
accuracy, high resolution, versatility, and high penetration in
the subsurface [6].

The main idea behind seismic methods consists of con-
trolled generation of seismic waves by a known source to
obtain an image of the subsurface by recording the seismic
waves travel-time from depth [7]. Once the seismic waves
start to propagate in all directions through the subsurface, they
suffer reflection, refraction, or diffraction when the wavefront
encounters elastic contrasts at the boundaries between rocks.
The interaction amongst the seismic wave and high contrasts
of elastic properties is presented as a high-amplitude reflector
in seismograms.

The velocity of seismic waves is essential in seismic meth-
ods. According to Shuck and Lange (2007) [7], this parameter
mainly depends on the rock elastic properties and varies with
the mineral content, lithology, porosity, pore fluid saturation,



Fig. 1. Direct Hydrocarbon Indicators present in F3 seismic survey in the
Netherlands, North Sea. A low amplitude anomaly represents the Bright spot,
while a horizontal high amplitude event represents the Flat spot.

and degree of compaction. In ordinary geological situations,
velocity also varies as a function of depth due to physical
properties contrasts between layers. Horizontal variations are
also common due to lithological changes within the individual
layers [8].

Imaging complex structures as salt domes and major faults
or estimating thickness and bed attitudes become possible
tasks through studies of seismic waves arrival times and
amplitude, frequency, phase, and wave shape variations [6].

B. Direct Hydrocarbon Indicator

Direct Hydrocarbon Indicators (DHI) are anomalous fea-
tures in seismic amplitude typically caused by gas and oil in
the reservoir. We can highlight two types of DHIs anomalies:
Bright Spots and Flat Spots. Bright spots (Fig. 1) are caused
by the high acoustic impedance contrast between the seal rock
and the porous rock filled with hydrocarbon. Nevertheless, if
the reservoir is thick enough, a high amplitude event can occur
at the bottom of the bright spot - called a flat spot due to the
oil-water contact [9], [10].

C. Seismic Horizon

According to Aykroyd and Hamed (2014) [11], seismic hori-
zons can be defined as a three-dimensional surface originating
from a strong reflecting interface and indicates a stratigraphic
boundary between two regions with distinct elastic properties.
As stated by Wu and Hale (2016) [12], the determination
of the seismic horizons is essential obtained from seismic
interpretation. Allied to mapped fault systems and unconfor-
mities, these surfaces provide subsurface structural maps and
a chronostratigraphic framework of the survey region.

D. Seismic Attributes

The estimation of rock physical properties through the
acquisition and processing of seismic data and its vertical and

lateral variations in the time and space domain constitutes the
basis for seismic interpretation [13]. In this sense, seismic
attributes are quantities derived from seismic data based on
recorded time, amplitude, frequency, and attenuation, that
support seismic interpretation [14].

Among other objectives, calculating these attributes al-
lows the interpreter to increase the Signal-Noise ratio, detect
discontinuities, enhance the continuity of seismic reflectors
and emphasize direct hydrocarbon indicators (DHI). In this
sense, Machine Learning algorithms, especially unsupervised
techniques, can be helpful to reveal important features related
to oil and gas reservoirs [15]. Hence, seismic attributes are
excellent tools for seismic data analysis that reduce ambiguity,
supporting the interpreters to correct seismic events with real
geological features.

III. EXPERIMENTAL SETUP

A. K-means

K-means is a clustering algorithm that uses the distance
between the clusters samples and centroids to partition data.
It starts by choosing K representative points as the initial
centroids. Each point is then assigned to the closest centroid
ck based on a particular proximity measure chosen [16].
Subsequently, the position of the centroids is updated to the
center of samples on their domain.

Let X be a dataset matrix represented as a matrix (Eq. 1),
in which D is the number of attributes, and N is the number
of objects:

X =


x11 x12 · · · x1D
x21 x22 · · · x2D

...
...

. . .
...

xN1 xN2 · · · xND

 , (1)

as stated by James (2013) [17], the idea behind K-means
clustering is that a good clustering is one for which the within-
cluster variation (Eq. 2) is as small as possible.

V ar =
1

N

Nk∑
n=1

∀xn∈K

K∑
k=1

‖xn − ck‖2. (2)

B. Gaussian Mixture Models

According to Bishop (2006) [18] and Deisenroth (2020)
[19], a Gaussian Mixture Model (GMM) is a weighted sum of
K Gaussian densities components which can be written as a
linear superposition of Gaussian distributions (Eq. 3), so that:

p(X) =

K∑
k=1

πkN (X|µk,Σk), (3)

where µk is the D-dimensional mean of the matrix X, Σk

is the co-variance matrix and πk are the Gaussian weights.
These parameters can be reached by an iterative process called
Expectation-Maximization (EM), whose algorithm’s goal is to
maximize the following likelihood function (Eq. 4):



L = log p(X|π, µ,Σ) =

N∑
n=1

log

K∑
k=1

πkN (xn|µk,Σk), (4)

and the best parameters can be computed using the gradient
method, where every step in the EM algorithm increases the
log-likelihood equation [20]. Thus, we can describe each step
of the algorithm as follow:

1) The initial parameters πk, µk, and Σk are obtained using
the K-means algorithm:

2) (Loop start) Evaluate responsibilities rnk of each dataset
sample xn using current parameters:

rnk =
πkN (xn|µk,Σk)∑K
j=1 πjN (xn|µj,Σj)

(5)

3) Update the parameters: πk, µk, and Σk:

πk =
1

N

N∑
n=1

rnk =
Nk

N
, (6)

µk =

∑N
n=1 rnk · xn

Nk
, and (7)

Σk =
1

Nk

N∑
n=1

rnk(xn − µk)(xn − µk)
T . (8)

The responsibility, rn = [rn1, rn2, ..., rnK ]T , is a normal-
ized probability vector, and it represents the probability that
a sample has been generated by the kth mixture component
[19].

C. Principal Component Analysis

Principal Component Analysis is an unsupervised algorithm,
often used for dimensionality reduction, which performs a
linear transformation to project the dataset onto a lower-
dimensional subspace [21]. However, due to the number of
features and the correlation between them, high-dimensional
data is often overcomplete, and many dimensions are re-
dundant [19]. Therefore, conforming to James (2013) [17],
PCA provides an optimal representation of the original data
whilst maintain as most of the information as possible using
a smaller number of variables, the principal components, that
collectively explain most of the variability in the original set.

Let us consider a dataset X (Eq. 1), with mean 0 that posses
the data covariance matrix (Eq. 9):

SX =
1

n− 1
XXT . (9)

We can obtain a matrix P able to represent the dataset X
in the principal component domain:

PX = Y, (10)

where Y =
[
y1, . . . , yD

]T
contain the principal

components and the matrix P =
[
p1, . . . , pD

]T

represents the eigenvectors of the covariance matrix Sx. The
matrix P is responsible for rotating and stretching the original
attributes. Furthermore, the variance of the data projected
onto the principal components is equals to the eigenvalues
associated with the basis vector [19].

D. Validation

The criterion adopted to choose the best number of clusters
using a statistical validation was the Bayesian Information
Criterion (BIC) combined with the Elbow Method. A brief
discussion of them is presented as follows.

1) Intra-cluster Variance: The intra-cluster variance, also
known as within-cluster variation, is the distance between
cluster members rather than between two clusters. Applying
this concept to all the centroids using the summation of
each one, we can measure the clustering dispersion (Eq.2).
Therefore, high values indicate that the samples are not close
enough to the centroids and, consequently, the groups are not
well defined.

2) Bayesian Information Criterion (BIC): The Bayesian
Information Criterion is a probabilistic statistical measure to
evaluate the best model concerning the number of mixture
components. The BIC tends to define a small value for a model
with a low-test error, and so generally we select the model that
has the lowest BIC value [17]. According to Charu (2014)
[16], the chosen kth value is the one that minimizes the BIC
function:

BIC =
1

N
× log

(
Nk

L2

)
(11)

where N is the number of samples, L is the likelihood
function (Eq. 4), and k is the number of clusters.

3) Elbow Method: This technique is adopted to determine
the optimal number of groups in clustering analysis. The elbow
method plots the value of a cost function produced by different
values of K, and the intra-cluster variance (Eq. 2) for K-means
cluster analysis or BIC function (Eq. 11) to evaluate the cluster
results obtained by the Gaussian Mixture Models algorithm.
As the value of K rises, the distortion decreases because the
clusters will divide their samples with the new ones, generating
smaller and well-defined groups. However, there is a threshold
where the improvement in distortion declines the most, and the
data should not be divided into further clusters [21]. When the
optimal value is achieved, the cost reaches a plateau, and the
cost slowly decreases. Therefore, indicating that adding more
clusters will not improve the model.

E. Dataset

The dataset used to extract the seismic attributes in the
present work, which will be the input of the cluster analysis, is
the F3 Block located at the Offshore region of the North Sea
in the Netherlands [22] (Fig. 2). This dataset consists of 386
km2 of 3D time migrated seismic, with 651 inlines, and 951
crosslines sections in a time range of 1,848 ms with a sampling
rate of 4 ms. Furthermore, four well logs are available with



petrophysical information - Gamma Ray, Vagarosity, Density,
and Resistivity - and they were used to interpret the cluster
analysis. The FS8 seismic horizon alongside a cross-line, an
in-line, and the four wells are shown in Fig. 3.

Fig. 2. F3 Seismic Survey delimited by the red rectangle, and the well logs
location used to interpret the cluster analysis results.

According to Schroot and Schüttenhelm (2003) [9], in the
Netherlands North Sea, the geological formations contain-
ing the gas are mostly unconsolidated clastic sediments of
Miocene. The FS8 seismic surface chosen for the analysis is
in a region characterized by plane-parallel reflectors of high
amplitude in the context of marine transgression deposited
during the Cenozoic.

Concerning the Seismic Attributes, the following features
were extracted from the 3D seismic dataset using the Opend-
Tect software from dGB Earth Science to emphasize the DHI
anomaly in the cluster analysis. Conforming to Barnes (2016)
[23], the attributes employed in the analysis can be described
in the following way:

Sweetness: The attribute is meant to identify places that
are oil and gas prone. Sweetness is defined as the amplitude
divided by the square root of frequency.

Spectral Decomposition: This attribute is generated
through filter banks characterized by a center frequency. These
attributes are especially useful to distinguish reflections and
thin beds on the basis of their tuning response.

Acoustic Impedance: A rock property that quantifies the
resistance offered to propagate compressional seismic waves.
This attribute is usually associated with lithologies and DHI
anomalies.

Coherence: The attribute is often used to reveal breaks
caused by faults, diapirs, channels, and other structures. It
is relevant to highlight Faults that can compartmentalize
pressures and fluids in producing reservoirs [24].

Fig. 3. FS8 Seismic horizon amplitude, in-line section amplitude number 722,
cross-line section amplitude number 1065, and the well logs in the original
dataset. The DHI anomalies are related to the high amplitudes in this horizon
(red color).

Instantaneous Amplitude: Also known as reflection
strength, it refers to the magnitude of the trace envelope
obtained from the Hilbert transform. Its polarity and phase in-
fluence the brightness of a seismic reflection, but Instantaneous
Amplitude removes the difference, rendering hydrocarbon
indicators more visible.

F. Workflow

The code used to perform the experiments was implemented
in Python Language, and the Scikit-learn library [25] was
adopted to run the cluster analysis. The workflow employed
is illustrated by Fig. 4, and each step is scrutinized as follow:

1) Seismic Horizon Pick: The chosen seismic surface
was the FS8, from the F3 survey, due to its location
concerning the appearance of the direct hydrocarbon
indicator.

2) Seismic Attributes Generation: the seismic attributes
used in the analysis ought to stand out the gas anomaly
in this distinct region. The attributes mathematically
derived from the 3D dataset were: Acoustic Impedance,
Spectral Decomposition 10Hz, Coherence, Instantaneous
Amplitude, and Sweetness.

3) Preprocessing: the null values and outliers present in
each seismic attribute were removed in this step.

4) Principal Component Analysis: as mentioned in
sec.III-C, the PCA is chiefly applied for dimensional-
ity reduction, but this algorithm also provides a noise
filtering effect depending on the number of principal
components selected. This technique was applied, and
the first three principal components were the input data
of the clustering algorithm.

5) Clustering Analysis: the K-means and Gaussian Mix-
ture Model algorithms were performed, varying the



Fig. 4. Workflow used to perform the seismic clustering analysis in the FS8
seismic surface.

number of centroids and mixture components, respec-
tively, from 2 to 20.

6) Probability Map Generation: according to sec.III-B,
the GMM algorithm generates a normalized probability
vector for each kth mixture component vector. Thus, the
results of the seismic maps, generated using the GMM
labels, were scrutinized, and the nth label correspond-
ing to the gas anomaly was recognized. Hereafter, the
probability map was produced using the values from the
responsibility of the cluster correspondent to the DHI
anomaly.

7) Export Results: finally, the results were displayed on
maps to be analyzed using the OpendTect software.

IV. RESULTS

As described in the workflow (subsection III-F), we per-
formed several experiments using different values of the
parameter K of the K-means and Gaussian Mixture Models
technique to analyze the effects of the number of clusters’
increases in the direct hydrocarbon indicator anomaly isola-

tion. Although the validation criterion is a helpful technique to
select the value of K, geological characteristics should also be
considered. The Elbow Method suggested four as the optimal
cluster number for the K-means and three for the GMM algo-
rithm. Therefore, our analysis demonstrated that the number
of groups equal to four was able to isolate the DHI anomaly
and showed a high correlation to the geomorphological setup,
which will be the clustering model adopted to present the
analysis about the FS8 seismic horizon (Fig. 5 and 6). The K-
means results where the label designated for the DHI anomaly
represents an extensive area on the seismic surface that is
not necessarily related to the DHI (Fig. 5). However, the
GMM algorithm was the most accurate on delimiting the
interest zone through clustering analysis (Fig.6), according to
the geophysical interpreter.

Fig. 5. Cluster analysis map obtained from the K-means algorithm, with
K = 4, including the interpretation of the groups over the FS8 seismic
horizon.

Geophysical well log data support the interpretation of the
cluster’s distribution unrelated to direct hydrocarbon indica-
tors. The physical properties measurements guided the analysis
of the lithology that characterizes each of the other groups.
The FS8 seismic horizon crosses the well log F06-1 at a
depth of 772 meters, and, in this region, the lithologies present
low proportions of clay content. The composite well log
indicates that the labeled cluster 0 (purple) is characterized by
sandstones. Similarly, the composite well log F03-5 suggests
that the lithologies in group 2 (displayed in yellow) over the
studied seismic horizon are sandy mudstone. Lastly, the well
log F03-4 points out that the dominant lithology present in
cluster 1 (exhibited in blue) is composed of mudstones.

Endorsed by the previous analysis [26], [27], the direct
hydrocarbon indicators anomalies samples were assigned to
cluster 3 (shown in red). Consequently, the values for the
cluster 3 responsibility, generated from the GMM density
function, can be used to produce a normalized probability
map displayed in Fig.7. This map shows the likelihood that
each sample has to be a member of group 3, revealing the



Fig. 6. Cluster analysis map obtained from the Gaussian Mixture Models
algorithm, with K = 4, including the interpretation of the groups over the
FS8 seismic horizon.

regions that were classified already as anomalies linked with
hydrocarbons and the domain with an intermediary to low
probability to be a DHI anomaly domain. In addition, the
algorithm also highlighted some areas with high probabilities
of DHI occurrence close to the faulted areas.

Fig. 7. Direct Hydrocarbon Indicator normalized probability - cluster 3 (red)
- obtained from the interpreted Gaussian Mixture Models clusters of the FS8
seismic horizon. Note that the warmer colors are associated with a higher
probability of the cluster to be a DHI anomaly.

V. FINAL REMARKS

Nowadays, clustering algorithms, such as K-means, have
been an extremely useful tool to generate interpretable maps
for seismic analysis and hydrocarbon exploration. Neverthe-
less, unsupervised machine learning algorithms based on the
Bayesian approach can provide a probabilistic approach. In
this sense, the Gaussian Mixture Models can be employed to

determine the uncertainty about clusters related to Direct Hy-
drocarbon Indicators anomalies in seismic data. The algorithm
validation process and the delivered cluster maps indicate
the effectiveness of the method. Furthermore, the specialist’s
knowledge combined with petrophysical measurements and
lithological observation derived from well logs contributed to
interpreting the Hydrocarbon Indicator anomaly and clusters
unrelated to the DHI anomaly. Thus, the methodology pro-
posed achieved the goal of this research, and similar studies
can be performed in other sedimentary basins with occurrences
of oil and gas.
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