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Abstract—Decision making is a complex task and requires a lot
of cognitive effort from the decision maker. Multi-criteria meth-
ods, especially those based on pairwise comparisons, such as the
Analytic Hierarchic Process (AHP), are not viable for large-scale
decision-making problems. For this reason, the aim of this paper
is to learn the preferences of the decision-maker using machine
learning techniques in order to reduce the number of queries
that are necessary in decision problems. We used a recently
published parameterized generator of scalable and customizable
benchmark problems for many-objective problems as a large-
scale data generator. The proposed methodology is an iterative
method in which a small subset of solutions are presented to the
decision-maker to obtain pairwise judgments. This information is
fed to an algorithm that learns the preferences for the remaining
pairs in the decision matrix. The Gradient Boosting Regressor
was applied in a problem with 5 criteria and 210 solutions.
Subsets of 5, 7 and 10 solutions were used in each iteration.
The metrics MSE, RMSE, MAPE and R2 were calculated. After
the 8th iteration the ranking similarity stabilized, as measured
by the tau distance. As the main advantage of the proposed
approach is that it was necessary only 8 iterations presenting 5
solutions per time to learn the preferences and get an accurate
final ranking.

Index Terms—Preference learning, Multicriteria decision mak-
ing, Many-objectives optimization, Machine Learning, Scalability

I. INTRODUCTION

We are all decision-makers. In our daily lives, frequently,
we deal with situations where we need to decide on a choice,
selecting a single alternative and discarding the other ones.
This choice is trivial when we have only one goal because we
just need to order the values of that criterion and select the
most advantageous alternative. However, in most cases, we are
faced with dozens of alternatives and many criteria, making
the ranking more complicated.
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In the optimization field, the process of optimizing two
or more conflicting objectives usually leads to a set of so-
lutions, known as Pareto-optimal solutions, which cannot be
ordered by a simple comparison of their nominal values. These
solutions are incomparable, or non-dominated solutions, and
often delivered by stochastic heuristic algorithms, particularly
the Multi-Objective Evolutionary Algorithms (MOEAs). These
solutions can come from benchmark functions (also called test
functions or test suites), such as the Generalized Position-
Distance (GPD) [1], an intelligent tool for generating scalable
and customizable problems in Many-Objective Optimization
(MaOP).

However, in real applications, the decision-maker (DM)
is not interested in the overall Pareto front since the final
decision that is going to be implemented is a single solution.
A large number of variables, functions and parameters related
to modeling information and in the application of decision-
making methods requires a great effort in collecting, analyz-
ing, evaluating and selecting the best alternatives for solving
decision problems. Due to this, multi-criteria decision-making
methods (MCDM) have been developed to help the decision-
makers choose the most preferred alternative, that is, those
that had the best scores in each objective. These solutions
are under conflicting criteria of cost (lower value is better)
or benefit (greater is better). Each method, as those revised
in [2]–[4], use different strategies to offer, at the end of the
process, an ordinal ranking of the alternatives that reflects the
decision-maker preferences.

Derived from MCDM, multi-attribute decision making
(MADM) uses several criteria to rank the available solutions
and it is divided into three groups: (i) Multi-attribute utility
theory (MAUT) whose best known method is the Analytic
Hierarchy Process (AHP) [5], (ii) outranking and (iii) interac-
tive methods [2]. From MAUT, there are a variety of utility
functions (called MAUF) that can model the decision-maker
preferences. Their form is expected to be quite complex [6].
For a better contextualization, please see subsection II-A.

In the AHP, for example, it is assumed that the preferences



of the DM can be represented by a value function defined
indirectly through pairwise judgments among the available
solutions. That is, the alternatives are presented two by two
and the DM uses an scale, as the 9-point Saaty’s scale, to
elicit his/her preferences between them. At this point it is clear
that as the complexity of the problem increases (in number
of criteria and alternatives), the number of queries made to
the DM also increases – and this translates into a greater
cognitive effort. Due to several factors, such as exhaustion,
inattention, ambition or even lack of knowledge of the problem
during evaluations needed, another hindrance may arise: the
comparisons can be inconsistent. This requires the DM to
reevaluate a whole (sub)set of alternatives until the problem
becomes consistent.

An important research line in this field is related with
the approximation of the utility function that represents the
preferences of the DM through computational intelligence. It
involves the application of Machine Learning (ML) techniques
for preference learning, such as Artificial Neural Networks
(ANN) architectures [7], [8], ANNs with interactive evolu-
tionary algorithms [9], [10] and those based on Support Vector
Machines, named “SVM-rank” [11].

Even with the great advances, criticisms have been made
about the difficulty in obtaining consistent pairwise matrices
in the sense of faithfully reflecting the preferences of the DM,
see for instance [12], [13]. Also, there is no consensus as to
which is the best ML/AI technique. Efforts are in reducing the
number of comparisons and making it reproducible to other
domains, as in [7], [14], [15]. The main advantage is that it
can model the preferences for any MAUF regardless of the
form of decomposition it has, such as linear, as in the case of
AHP, distance-based, fuzzy logic-based [14], for a single DM
or a group of them (this field is known as Group MCDM, or
GMCDM) [16], based on partial ordering or even outranking.
The closest work with our proposal is [7] that aimed to help the
DM to construct the preferences through an ANN architecture.
However, this work does not introduce the idea of reducing
inconsistency in evaluations and still suffers from scalability.

Thus, the purpose of this paper is to model the decision-
maker preferences reducing the number of queries that are
necessary in multi-criteria problems, minimizing the cognitive
effort and making the problem scalable. To do so, a small
number of solutions is presented per iteration and, once the
MAUF is learned, the preferences of the remaining solutions
are predicted with the trained model. As a test case, a set of
solutions from a many-objective problem formulated with the
GPD [1] is used. The expected result can be either one where
the ranking does not vary as new solutions are inserted or one
where the ranking generated is similar to that of the AHP.

This paper is organized as follows: Section II describes in
II-A the literature overview about the MCDM methods and
in II-B the revised papers that focus on learning the DM
preferences. Section III presents the methodology, which is
followed by a step-by-step method description. Section IV
shows the results and Section V the conclusion and future
works.

II. MODELLING PREFERENCES

A. Brief Overview about MCDM

Multi-criteria methods can be separated into three groups:
1) aggregation methods, whose main representatives are
the multi-attribute utility theory, such as AHP [5], Ana-
lytic Network Process (ANP) [17] and Best-Worst Method
(BWM) [18]; 2) outranking methods, such as the Prefer-
ence Ranking Organisation Method of Enrichment Evaluations
(PROMETHEE) [19] and Elimination Et Choix Traduisant
la Realité (ELECTRE) [20] and their derivatives, and 3)
interactive methods, such as multi-objective linear program-
ming (MOLP) [21]. For the reader interested in an extensive
review and classification of the multi-criteria decision-making
methods, see [2] (in Portuguese).

Consider Cj as the j-th criterion and ai the i-th alternative
solution. In a deterministic decision problem, the evaluation
of the alternative ai under the criterion Cj is given by Cj(ai).
This decision matrix, or [D]ij = Cj(ai), illustrated in (1), is
built at the beginning of the decision process and it repre-
sents the nominal values of each alternative in each criterion
achieved in the objective space during the optimization.

D =

C1 C2 . . . Cj . . . Cm


a1 x11 x12 . . . x1j . . . x1m

a2 x21 x22 . . . x2j . . . x2m

...
...

...
. . .

...
. . .

...
an xn1 xn2 . . . xnj . . . xnm

(1)

where ai, i = 1, . . . , n are the feasible alternative solutions,
Cj , j = 1, . . . ,m are the criteria, xij is the performance of
the alternative ai under criterion Cj in the objective space.

For some methods, the utility function is built by the
multiplication of the nominal values of the alternatives by
a vector of weights W = (w1, . . . , wm) that represent the

importance of each criterion, being wj > 0 and
m∑
i=1

wj = 1.

The greater the weight, the greater the importance of that
criterion. Given the decision matrix [D]ij , some methods do
not take into consideration the vector of weights, which is
built internally. In its way, each method classifies and ranks
the available alternatives.

However, for the aggregation methods, the literature has
reported several inconsistencies in the formulation of these
matrices. Inconsistency, as explained by [21], arises when
some opinions of a comparisons matrix contradict others and,
surely, the larger the matrix size the greater the chances of
inconsistency in the evaluations. These authors described two
distinct situations that the inconsistency may appear: inter-
criteria and intra-criterion. The former involves the elicitation
procedure for determining the weights of the criteria and in
the latter, a value function is determined for each criterion.

The most exhausting way to solve the decision problem
is to make all the queries to the decision-maker, who needs
to explicit his/her preferences among the alternatives and



criteria with respect to the goal (or their preferences, if we
consider GMCDM). If there is any inconsistency, the DM
needs to redo the process. Although this kind of application
is very common in the literature, including for methods that
go through the calculation of pairwise comparisons, we have
clearly a scalability problem for large problems, i.e. when the
number of alternatives or criteria is huge.

In real-world practical applications, the time that analysts
spend with DMs is increasingly scarce, and convincing an
executive to spend hours, or even days, making judgments for
alternatives and criteria is often not feasible. Several studies
have reported concerns related to the applicability of this type
of procedure in situations where the number of criteria and
alternatives is quite large, e.g. [21] to cite a few.

B. Learning Decision-Maker Preferences

Learning or eliciting preferences, as stated by [22], are
a central concept for decision making and it is related to
“acquiring preference information in either a direct or indirect
way, from preference statements, critiques to examples, obser-
vations of user’s clicking behaviour, etc”. In decision theory,
particular emphasis has been given to assessing the decision
maker’s utility function very precisely. The preferences are
conveyed through preference statements or queries made to
the decision-maker.

As pointed out by [6], the simplest utility function is
described in Equation (2)

J∑
j=1

wjxij (2)

for i of N alternatives, J is the number of criteria, wj is
the relative weight of criterion j and xij is the value of the
alternative i on criterion j. This function is an increasing
function and linear (convex). However, there are a variety of
forms of utility functions and they are expected to be quite
complex. The idea behind the automatic approaches that we
are going to discuss next is to find a model that makes a good
approximation of these utility functions, regardless of how it
is modelled (that is, the way the decision-maker thinks).

Years ago, Chen and Lin [7] pointed out evidence that ANNs
could be a promising tool in solving MCDM problems in terms
of approximating the multi-attribute utility function (MAUF)
and representing the preference of the decision-maker. An
interactive decision neural network (DNN) was proposed and
used for reducing the decision-maker cognitive burden by
capturing and representing the decision-maker’s preference.
Similarly, Matsuda [23] proposed a neural network model
based on the ANP. The architecture was used for solving
complete and incomplete matrices by converting the MCDM
method in an optimization problem. In [8], an “Improved
Decision Neural Network” (IDNN) focused on multicriteria
group decision making was investigated aiming to reduce the
number of iterations to map the utility function from the
multicriteria methods as well as the exploitation of indirect
methods for learning preference relations.

A Multilayer Perceptron (MLP) architecture was proposed
in [9] to capture information of the decision-maker. The
function was built based on a partial sorting process, denoted
ranking. With this ranking, the architecture was employed to
model the partial sorting of the alternatives. Later, in [10],
the authors presented the “NN-DM”, an MLP-based approach
to approximate arbitrary preference functions, including those
in which there are nonlinear dependencies among different
decision criteria. The Kendall-tau distance [24] was used to
measure the similarity between the answers obtained with the
ANN and the analytical model. In both pieces of research,
the approach was able to deliver new answers to alternatives
that have not been presented yet, even in new and similar
domains. In [14], an ANN was used to model the decision-
maker preferences in a supplier selection problem. The goal
was to learn the preferences for each criterion given by fuzzy
assessments and to produce a score (model output) for each
supplier. The architecture provided a satisfactory mean square
error (MSE) metric and can be used for future applications.

Through the aforementioned works, it can be seen that the
efforts regarding the decision-maker’s preference modelling
are centred on simplifying the complex nature of the AHP,
such as the AHP-Express [25], observations of past DM
behaviours [11], combined MCDA model and ML to achieve
better prediction performance while capturing the relationships
between individual attributes and the prediction [26] or even in
an interactive optimization process such as in [27] that showed
preferred region in the Pareto front to the DM and built the
preference relationships.

This present study is significantly different from those
listed, all of which make use of pairwise preferences but each
addressing a different goal. None of these studies focused on
learning utility functions in the view of making the problem
more scalable and reducing the cognitive effort of the DM. The
baseline is the analytical AHP model that requires n(n−1)/2
evaluations to compare the alternatives in respect to the
criteria. Instead of making all the pairwise comparisons, the
idea is to ask the DM the minimum number of times necessary
to obtain a sufficient number of samples that the ML method
can learn the function that represents his/her preferences.

III. METHODOLOGY

In this paper, it is considered that a typical MCDM approach
arranges a finite number of alternatives in a preferable sort
way. These preferences can be represented by using a two-
dimensional matrix as in (1). Also, it is considered a post
hoc decision making problems. It refers to the choice of the
alternative after the optimization process, where the decision-
maker has information about both the decision space and
objective space.

The alternatives used in this work come from the GPD [1].
A many-objective problem was formulated to generate a more
complex problem. Using a MOEA algorithm, a set of feasible
solutions were generated. Then, a ML method is employed
to learn the MAUF while the DM explicit his/her preferences
among the alternatives. Subsets of Q alternatives are presented



per time. In the 1st iteration, the first Q alternatives presented
to the DM are used as input (training step) for the ML method
and the remaining ones for the test. Some error metrics are
calculated as well as the similarity of the rankings which in-
dicates convergence. In the next iteration, more Q alternatives
are aggregated, the DM makes the pairwise comparisons and
the training input increases.

Figure 1 illustrates the main steps of this work. For sake of
simplicity, a step-by-step is explained below.

• Step 1 : Obtain a set of feasible alternatives
This step is about the optimization process. Here, GPD
was used following the steps presented by the authors in
[1]. The parameters were: N = 13 variables in decision
space. M = 5 objectives, all of which are minimization,
210 non-dominated solutions were selected, using the
MOEA algorithm. A convex Pareto front is generated
setting up the p-norm equal to 2.

• Step 2: Apply a MOEA
It was used the NSGA-III from PlatEMO [28]. The
stop criterion was the maximum number of function
evaluations (5e6). Note that the alternatives could be (i)
analytically obtained through the GPD and (ii) from other
optimization problems.

• Step 3: Get N alternatives from PF
N solutions were selected after the stop criterion. The
solutions in the variable space are distributed in the [0−1]
range.

• Step 4: Select Q randomly
In the 1st iteration, Q alternatives are randomly selected
from N . They represent the alternatives that are going
to be presented to the DM to build the pairwise compar-
isons by means of queries. Different values for Q were
evaluated, being Q = [5, 7, 10].

• Step 5: Generate PC matrices for Q
The usual process for constructing the pairwise com-
parison matrices is to present the alternatives, two by
two, asking questions such as: “How much do you prefer
the alternative Ai over Aj?”. For this part, it was used
the nominal values of the alternatives in the objective
space labelling the answers according to the known 9-
points Saaty’s scale. This scale can be found in [2], [5].
For short: for each objective (i) calculate the minimum
and maximum values achieved for the alternatives, (ii)
calculate 9 intervals among these values, representing the
ranges in the Saaty’s scale, (iii) calculate the difference
among all the alternatives – building a matrix with
dimensions Q x Q, (iv) replace the differences by the
corresponding values of the Saaty scale (step ii).

• Step 6: Apply a ML method
The ML algorithm is applied to predict the targets for all
objectives given the input, that is the concatenation of the
alternatives in the variable space. To illustrate, consider
Q = 2 and the chosen alternatives were A1 and A2, it
leads to 4 entries: [A1 +A2], [A2 +A1], [A1 +A1] and
[A2 +A2] totaling Q2 entries.

It was used the Multi-Output Regressor class and Gradi-
ent Boosting Regressor as the estimator. The Randomized
Search CV class was used to search the best hyperpa-
rameters for this model among those described in Table
I. In the end, the tuned model is used to predict the
outputs, i.e. the preference value for each objective. As
error metrics, it was measured the known MAPE (Mean
absolute percentage error), MSE (Mean squared error),
RMSE (Root MSE) and R2 (coefficient of determination
- regression score function) available in the Scikit-learn
package [29].

TABLE I: List of hyperparameters

Parameters Values tested
Learning rate [0.001, 0.01, 0.05, 0.1, 0.2, 0.5, 0.9]
Loss [‘ls’, ‘lad’, ‘huber’]
# of estimators [10, 50, 100, 300, 500, 700, 1000]
Criterion [friedman mse, mse]
Min samples split [2, 4, 7, 10]
Max depth [3, 5, 10, 15, 20, 30]
Min samples leaf [1, 2, 3, 5, 8, 10]
Min impurity decrease [0, 0.2, 0.4, 0.6, 0.8]
Max leaf nodes [5, 10, 20, 30, 50, 100, 300]

The parameters used for the Randomized Search CV
were: (i) model: Gradient Boosting Regressor, (ii) hy-
perparameters: see Table I, (iii) random state = 42, (iv)
n iter = 10, (v) refit = True, (vi) cv = 5, (vii) verbose =
True, (viii) pre dispatch = 2 ∗ n jobs, (ix) error score
= raise, (x) return train score = True.

• Step 7: Make predictions
The best model is used to predict the N ∗ N − Q ∗ Q
samples. The idea behind this step is that a model
that has used few alternatives (and consequently a few
evaluations and comparisons) is capable of performing
a good prediction. This means that the model was able
to learn the MAUF that represents the decision maker’s
preferences.

• Step 8: Apply MCDM and generate ranking
The predicted preferences among the alternatives in each
objective are equivalent to that of the analytical AHP
method. So, the AHP steps are followed to generate
the ranking. Basically, it consists of the creation of the
normalized matrix dividing all values by the total of the
column, add the values per row and sort the alternatives.
In this step, we do not take into account the importance of
each criterion. Since all the objectives are minimization,
this strategy is equivalent to using equal weights for all
of them, that is wj = 1/M .

• Step 9: Calculate tau between rankings
In this step, the Kendall tau distance [24] was used to
measure the (dis)similarity between the rankings. Tau
distance is a known metric that counts the number of
pairwise disagreements between two ranking lists. In
this work, equal rankings mean that the algorithm has
converged and the predictions the ML regressor is making
match the DM’s preferences in all the objectives.

• Step 10: Stop criteria



Fig. 1: Detailed overview of the proposed methodology for learning decision-maker preferences considering (i) the optimization
process and (ii) machine learning procedures

If the difference between the rankings is acceptable, then
the process is finished. Otherwise, Q new alternatives are
presented. 5% of difference was setted. In means that
the DM accept no more than this difference between the
rankings.

The optimization part was implemented in Matlab by using
the PlatEMO. For vizualization, CAPviz tool [30] was used.
CAPviz integrates Chord diagram and Angular mapping and
Parallel coordinates into a single two-dimensional circular
chart. In the Chord diagram, the range of each coordinate is
normalized and arranged in a circle and the coordinate values
are connected utilizing the Bezier curves. Angular mapping
allows the observation of the distribution of points in space, its
angular proximity to each axis and its proximity to the origin
of the Cartesian coordinate system. In the Parallel coordinates,
a point in n-dimensional space is represented as a polyline
with vertices on the parallel axes. The position of the vertex
on the i-th axis corresponds to the i-th coordinate of the point.
An R script of the CAPviz is available at [31].

IV. RESULTS AND DISCUSSION

The set of 210 solutions obtained with the GPD is illustrated
through the CAPviz [30] in Figure 2. Once a p-norm equal to 2
was used, it generates a convex Pareto front. Based on a visual
analysis on the Angular Mapping (norm in vertical per angle
in horizontal), it is possible to see that the alternative solutions
have a good dispersion of the points in the approximated
Pareto front along the 5 objectives. Observing the Parallel
Coordinates graph it can be seen that the points are detached
from the others. It is also reflected in Chord Diagram.

With those alternatives, subsets of sizes 5, 7 and 10 were
evaluated, symbolizing the number of solutions presented to
the DM per time (or iteration). The key idea, as aforemen-
tioned explained, was to use just some solutions to learn the

Fig. 2: Distribution of the 210 solutions over the 5 objectives
from the optimization problem using CAPviz tool

DM preferences and to predict the remaining ones. Consider-
ing the PF with 210 solutions, when 5 of them were used for
training (it means that they were evaluated by the DM), the
rest, or 205, used for test, i.e., predicted by the ML regressor.
In a new iteration, more 5 were presented to the DM that
made the pairwise comparisons and these preferences were
aggregated with the previous subset. Updated, evaluations of
10 solutions were used for training and 200 for test and so on.

Figure 3 illustrates the results for MSE, RMSE, R2 and
MAPE while subsets of 5 solutions were presented to the DM
(represented by the iterations). Figure 4, in its turn, represents



the tau distance both with the AHP if the classical method had
been used (Current vs AHP) and with the previous iteration
(Current vs Previous). Note that after the 8th iteration there
was a little variation in the metrics (< 5%), indicating the
convergence. It other words, at this time, it is possible to say
that only 8 queries were made to the decision maker presenting
5 evaluations at a time. To know, if the AHP was used in its
classical form, 210 evaluations were needed in a single round.

Fig. 3: Error metrics with 5 solutions per time during the
iterations

Fig. 4: Tau distance with 5 solutions per time during the
iterations

Different values for Q were tested. By presenting Q = 7, the
method converged after 7 iterations. The difference between
the rankings was below 5% until 10 iterations. For Q = 10,
the convergence was after the 5th iteration, meaning that 5
queries were made by presenting 10 solutions per time.

The ML regressor model used in the Figure 3, trained after 8
iterations and 5 solutions per time, was employed to predict the
remaining ones. Once the preference matrix was complete (real
+ predicted), the AHP was applied and the ranking calculated.

The top 10 alternatives are shown in the Figure 5 and listed
in the Table II.

Fig. 5: Top 10 solutions obtained with the preferences pre-
dicted through the proposed approach after make 8 queries to
the DM presenting 5 solutions per time

TABLE II: Ranking of the top 10 alternatives and its values
in the objective space

Rank. Ai Obj1 Obj2 Obj3 Obj4 Obj5
1 76 0.8658 0.2893 0.0000 0.2887 0.2887
2 0 0.8662 0.2881 0.2888 0.2886 0.0000
3 164 0.8665 0.2882 0.2877 0.0000 0.2887
4 2 0.0000 0.2887 0.8660 0.2887 0.2887
5 135 0.8661 0.0000 0.2885 0.2887 0.2887
6 194 0.0000 0.2887 0.2887 0.2887 0.8660
7 19 0.0000 0.8660 0.2887 0.2887 0.2887
8 22 0.0000 0.2881 0.2881 0.8664 0.2886
9 6 0.2887 0.2887 0.8660 0.2887 0.0000

10 140 0.2888 0.2888 0.2886 0.8660 0.0000

To compare the rankings between the proposed approach
with those that would be ranked by the classical AHP, Table
III shows the top 10 alternatives. Note that the alternatives are
not exactly in the same position, but there are known in both
rankings – in the sense that the same alternatives, out of 210,
are well ranked by both approaches. As the main advantage of
the proposed approach, it was needed only 8∗52 comparisons
to get this ranking, instead of 2102, which makes the problem
much more scalable and realistic to be implemented in real-
world problems. In addition, the approach can be extended
in new problems with similar domains without the need of
training, which saves time and makes the decision-making
process more agile.

V. CONCLUSION

Even with the advance of the methods for solving optimiza-
tion problems, choose only one alternative from the entire



TABLE III: Comparison of the top 10 alternatives using the
predicted preferences through the proposed approach and only
with the AHP

Ranking 1o 2o 3o 4o 5o 6o 7o 8o 9o 10o
Predicted 76 0 164 2 135 194 19 22 6 140
AHP 2 76 0 61 164 140 44 83 135 6

Pareto set to be implemented is still a difficult task for the
decision-maker. Some multicriteria methods, such as the AHP,
requires too many efforts in the evaluation of the solutions that
makes it impracticable for large problems. This paper aimed to
help in building the preference matrices among the alternatives
making the problem more scalable and saving the decision
maker’s time.

Queries were made to the DM with small subsets of
alternatives per time. According to these initial evaluations, a
machine learning regressor model learnt the utility function
and was able to predict the preferences for the remaining
alternatives. After 8 queries with 5 alternatives per time, the
ranking with the predicted values was about 95% similar with
that using the classical AHP. The main difference is that in
the proposed approach it was necessary 8 ∗ 52 evaluations,
instead of 2102. We believe that five or seven solutions is a
more plausible number to be estimated than dozen/hundred of
them. In fact, in practical problems, it is unlikely that such
large sets of solutions will be presented to the decision maker
for pairwise preference construction. Therefore, the idea of
dealing with smaller sets is more plausible.

For future studies, new possibilities can be explored. To cite
a few: (i) new geometries to reflects other decision-makers, (ii)
to extend to GMCDM, (iii) spatial location of the solutions
and the DM behaviour, and (iv) although boosting is one of
the strongest ML-techniques, other algorithms and approaches
could be tested to see if there is an improvement in terms of
performance.

For reproducibility, the codes are available at https://github.
com/mvoicer/cbic-2021-learning-preferences
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