
Evolutionary Convolutional Neural Network: A
Case Study

Amanda Lucas Pereira∗, Manoela Kohler∗, Marco Aurélio C. Pacheco∗
∗Department of Electrical Engineering

Pontifical Catholic University of Rio de Janeiro
Rio de Janeiro, Brazil

Abstract—Most of the state-of-the-art Convolutional Neural
Network (CNN) architectures are manually crafted by experts,
usually with background knowledge from extent working ex-
perience in this research field. Therefore, this manner of de-
signing CNNs is highly limited and many approaches have
been developed to try to make this procedure more automatic.
This paper presents a case study in tackling the architecture
search problem by using a Genetic Algorithm (GA) to optimize
an existing CNN Architecture. The proposed methodology uses
VGG-16 convolutional blocks as its building blocks and each
individual from the GA corresponds to a possible model built
from these blocks with varying filter sizes, keeping fixed the
original network architecture connections. The selection of the
fittest individuals are done according to their weighted F1-Score
when training from scratch on the available data. To evaluate
the best individual found from the proposed methodology, the
performance is compared to a VGG-16 model trained from
scratch on the same data.

I. INTRODUCTION

Convolutional Neural Networks (CNNs) have outperformed
other kinds of neural networks in a number of real-world appli-
cations, such as image classification [1], image segmentation
[2] and many others. The foundation for a good performance
with a CNN can be roughly summerized in three topics: data
availability, hyperparemeters tuning and its design. This latter
is usually attacked by trial and error and for most state-of-the-
art CNNs it is highly dependable on specialists’ expertise in
the field.

A number of new CNNs which are outperforming previous
benchmarks have their architecture design either based on its
precedents [3] or in combining existing ones [4]. Another
approach that has been proposed as a way of designing new
CNNs consists in applying search methods to optimize the
architecture, such as Genetic Algorithms [5] and Q-Learning
[6]. This paper studies the methodology of taking an existing
architecture and trying to find an optimal version of it using
a Genetic Algorithm, choosing by activating or deactivating
some of its convolutional blocks and trying different filter sizes
for each one of them.

This paper is organized as follows. Firstly, background
concepts and related work are presented in Section II. Then,
in Section III, the details of the proposed methodology are
introduced. In Section IV, the results are exposed and dis-
cussed. Finally, in Section VI, conclusions and future works
are outlined.

II. LITERATURE REVIEW

A. Genetic Algorithms

Genetic Algortihms (GA) is a family of search heuristics
inspired by natural evolution [7]. In this context, a proposed
solution for the problem such algorithm is trying to solve is
called an individual, each represented by an encoded array
of bits or strings which is called a chromosome [8]. A set
of individuals is called population, and it may change at
every iteration of the algorithm, aiming at achieving better
individuals to form a generation.

Similarly to natural evolution, the optimization process con-
sists of choosing amongst a set of solutions – the population
– the fittest ones to breed or to continue into a newer set of
solutions, which constitutes a new generation. This process
is repeated until a certain convergence criteria is reached,
which can be set as a minimum performance required from
the individuals or a maximum number of generations reached
during execution [9] (Figure 1).

Fig. 1: The optimization loop of Genetic Algorithms.



1) Fitness Function: The process of selecting the best
individuals from a given generation is done by evaluating each
one of them using a fitness function, which can be described
as a way of measuring how good the solutions presented
are at solving the given problem [10]. The definition of a
fitness function depends on the problem being solved, and
should be chosen carefully with respect to the objective of the
optimization process, which is finding the best solution.

2) Genetic Algorithm Operators: Genetic Algorithms start
their search from an initial population and in order to make
individuals evolve into the best solution it makes use of
operators. There are three main types of operators: selection,
mutation and crossover [7].

Similarly to natural selection, the selection operator con-
sists of choosing the fittest individuals amongst a generation.
Here, the fittest individuals represent the individuals with the
highest evaluation – the highest return value from the fitness
function. Selection can be performed by various methods,
such as fitness-proportional, linear ranking and tournament. On
selection by tournament, firstly two individuals are randomly
chosen from the population and then evaluated by their fitness
function return value. This process is done k times, and all
winners from the tournament stage are selected for breeding.

Crossover, also called recombination, combines the genetic
information of two individuals – parents – to generate new
offspring. The simplest form of crossover is the single-point
or 1-point crossover. This kind of crossover randomly selects
a crossover point with probability pc and then swipes the bits
from both parents, resulting in two offspring with different
segments of the parents’ chromosomes (Figure 2). Since it
provides a way of mixing the genetic information of the fittest
solutions from a generation, this operator contributes for the
convergence of the algorithm [11].

Fig. 2: One-point Crossover Operator.

The mutation operator helps keeping diversity in the solu-
tions as the algorithm advances in the number of generations,
avoiding convergence to a local optimum [8]. The operation
consists in randomly choosing one bit from the individual with
probability pm – usually smaller than pc – and changing its
value (Figure 3).

B. Convolutional Neural Networks

Convolutional Neural Networks (CNNs) refer to a variety of
neural networks that are able to process data that are stored in
matrix shapes, such as images. Such as others neural networks,
its basic architecture consists of an input layer, a set of hidden
layers and an output layer. The main aspect that separates

Fig. 3: Mutation Operator

these networks into its own category it is the fact that a
CNN perform a convolution operation in at least one of its
layers [12]. Figure 4 shows an example of a CNN, with three
convolutional layers.

Fig. 4: An example Convolutional Neural Network, used for
handwritten characters recognition. Adapted from [13]

Except for the input layer, each layer is composed of a
block that performs some kind of mathematical operation
on the input by applying filters and passes the obtained
output through an activation function, yielding a feature map
[14]. A challenge that comes from using CNNs is that given
the highly computational demanding training, such networks
are costly to optimize in what concerns time and resources.
Adjustments performed either on its training parameters or
architecture would require new training, validation and testing
stages. Researchers stumbling with this problem promoted
the growing field of automatic neural network architecture’s
design and optimization [15].

C. Neural Networks Architecture Design

Some applications of neural networks design using Genetic
Algorithms focus not only on optimizing the architecture but
also in selecting the most significant features from data [16],
or applying GA to various machine learning problems, not
only deep neural networks [17].

In Genetic CNN [5], the authors propose an encoding
method that consists in multiple stages, using binary strings to
represent network architectures. The number of stages – depth
of the network – is predefined, and the head of the network is
also not optimized. Starting from an initial CNN framework,
the process consists in replacing its convolutional layers by
smaller architectures to construct the final design. The parame-
ters of the building blocks that form these smaller architectures
are fixed, and only the combination of their connections are
optimized. During the optimization process, each individual is
evaluated by training the proposed network architecture from
scratch on MNIST [18] and CIFAR10 [19] datasets, separately



in two experiments. These two datasets were chosen due to the
computational demanding characteristic of genetic algorithms.

At each stage of the network, several building blocks are
stacked with their connections encoded. These connections, as
seen on other CNNs, are done by some kind of spatial pooling
that may not preserve the dimensions of the feature maps and
therefore are only permitted in an ordered manner. The main
drawback from this method is the use of predefined parameters
that must be set by the user of the framework, which relies
on expertise and familiarity with CNNs. Additionally, another
drawback could be that the framework itself is constrained so
the output architecture is limited to some specifications.

A different method is proposed in [20], based on the Genetic
CNN approach. On this work, the authors attempt to produce
a more automatic framework that would not require as much
prior knowledge of CNNs parameters settings or architecture
as the previous ones. The algorithm demands the user to define
a set of building blocks, the maximum number of generations
for the genetic algorithm and the dataset used for evaluating
the proposed architectures. A variable-length encoding strategy
along with a variable crossover operator is initialized with the
first population, so the depth of the network does not need to
be set beforehand. Also, this proposed methodology allows for
skip-connections and makes use of asynchronous computing
to accelerate the evaluation of the individuals.

The authors from Nas-Unet [21] propose an optimization
based on the structure of an existing architecture known to
perform successfully on segmentation tasks: U-Net [22]. As
opposed to the approach of optimizing the network con-
nections seen on Genetic CNN, Nas-Unet applies the prior
knowledge on network architectures in a different way, by
fixing the network U-like backbone network instead of fixing
the parameters within the building blocks. With predefined
network connections, the search process focuses only on find-
ing the optimum version of the two kinds of building blocks
that are supposed to fit onto the architecture: DownSC and
UpSC. The architectures of DownSC and UpSC are optimized
simultaneously through a more efficient version of an over-
parametrized network [23].

Similarly to Nas-Unet, the present study tries to optimize the
neural network architecture with respect only to its building
blocks, keeping the original structure of VGG-16, known to
perform well on image classification tasks. Also, the search is
done using a Genetic Algorithm instead of the method used
by the authors.

III. PROPOSED METHODOLOGY

A. Data

The original data available for the experimentation part of
this work comprises a total of 24888 environmental images,
each identified by one out of five different labels. Table I
shows the number of samples available for each class in the
original dataset. Due to GA being computationally expensive,
the results presented were obtained using a subset of the
original data, ensuing a much smaller set of 1250 images.
Since the data is highly unbalanced, the images for the subset

were chosen by undersampling the major classes so that the
final dataset presents an equal distribution of samples per class.

TABLE I: Class Distribution - Original Data

Class Samples Percentage

Class 0 469 1.8%

Class 1 8351 33.5%

Class 2 2675 10.7 %

Class 3 12154 48.8%

Class 4 1239 4.9%

After sampling, the data was shuffled and split into training,
validation and tests sets. For the first one, we used 70% of the
images, for validation 20% and the remaining 10% for testing.
The same splits were used in each individual’s evaluation for
every generation in the optimization process.

B. CNN Framework

For this work, a VGG-16 [24] network was used as the
baseline framework for testing the presented methodology.
The architecture for this network is composed of a stack of
convolutions with a 3x3 kernel with stride of 1 followed by
a max-pooling layer with a kernel of size 2 and stride of 2.
At the end, there are two fully connected layers with softmax
and a global average pooling layer (Figure 5).

The filter sizes used by the original architecture for each
block are 64, 128, 256, 512 and 512. On this paper, a
convolutional block refers to a group of N convolutional
layers followed by a max-pooling layer. For instance, the first
convolutional block of VGG-16 consists of two convolutional
layers with a filter size of 64 and a max-pooling layer
that downsamples the output into the shape of 112×112×128
(Figure 5). If the first layer is included in an individual’s
proposed architecture, it means the first layer of such network
will also be composed by two convolutional layers and a max-
pooling layer, but with a varying filter size.

Fig. 5: VGG-16 Architecture. Source: [25]

During training, the original VGG-16 network expects a
fixed-size 224×224 RGB image as an input. For this work,
this fixed-size input was maintained, and the input data was
reshaped as required.



C. Chromosome Encoding

For each individual, the proposed method provides a binary
string representation that decodes into a network architecture
which is a candidate solution to the optimization problem.
Based on the convolutional blocks of VGG-16, there are a total
of five blocks available to be combined for each individual,
keeping the original order used in VGG-16. There is a variety
of seven different possible filter sizes the algorithm can decode
the bit string into, which is the array: 32, 64, 128, 256, 512,
1024, 2048.

TABLE II: Chromosome

0 Use block1

1 Use block2

2 Use block3

3 Use block4

4 Use block5

5 - 7 Filter Size (block1)

8 - 10 Filter Size (block2)

11 - 13 Filter Size (block3)

14 - 16 Filter Size (block4)

17 - 19 Filter Size (block5)

Table II shows the encoding structure of the chromosome.
Positions 0 to 4 are 1-bit binary variables that define whether
or not a convolutional block will be part of a given individual
(model), and positions 5 to 19 are 3-bit binary variables that
represent the filter size used on the convolutional layers.

The bits with respect to the filter sizes are decoded into
the position of a predefined array of possible filter sizes. For
example, the string ”011” decodes into the second position of
the array, which corresponds to a filter size of 64. The top
fully-connected layers were not included in the optimization
process, so they are not included in the chromosome.

If block1 is activated, the string formed by the bits on the
positions 5, 6, 7 will dictate the size of the filter. Consider
the individual ”11010-011-001-110-011-011”. The network
architecture proposed by this one will use the first two and
the fourth convolutional blocks, a filter size of 64 for the first
layer, of 32 for the second one and 64 for the fourth one.
The layers that are not used for this configuration will have
the filter sizes ignored by the function. This individual would
decode into the architecture shown in Figure 6.

D. Fitness Function

The fitness function was defined as a function that firstly
build the model given the input individual and then run the
training stage from scratch, followed by a validation and test
stages. Training was done using back-propagation algorithm
and a fixed batch size of 16, and the return value of the fitness
function was set to be the weighted average F1-Score obtained
from the test stage.

When calculating the weighted average F1-Score, initially
the F1-Score is calculated for each label and then averaged
with the weight given by the number of true instances for

Fig. 6: Architecture proposed by the individual
”11010-011-001-110-011-011”.

each label. With a total of N samples, being Ni the number
of samples for label i and F1i the F1-Score for label i the
weighted F1-score is given by equation 1.

Weighted− F1 =
1

N

∑
Ni ∗ F1i (1)

E. GA Operators

The individuals were ranked and selected according to their
evaluation by the fitness function explained in subsection



D. The crossover operator used for mating was the one-
point crossover and mutation was performed with probability
pm = 0.05. The population was initialized randomly with 10
individuals per generation, and the algorithm was executed for
a total of 20 generations. Selection was done by tournament,
as the method described on Section II.

IV. RESULTS AND DISCUSSION

A. Base CNN Architecture

In order to evaluate the results obtained by the optimum
individual found by GA, the same data was used to train a
VGG-16 model from scratch. The training parameters were
the same as the ones used to evaluate the model architeture
when running the GA algorithm, which corresponds to a
batch size of 16, learning rate of 0.0001, maximum of 100
epochs, input size of 224 and early stopping with a patience
of 10 epochs. Categorical Loss Entropy was used during
training, with predefined weights of 5.5, 0.5, 6, 1.8, 1.2 for
class 0, 1, 2, 3 and 4 respectively. Adam optimization was used
as the gradient descent method, with an exponential decay rate
for the first momentum set to 0.9.

TABLE III: Results - Baseline

F1-Score

Class 0 46.15

Class 1 0.00

Class 2 58.18

Class 3 0.00

Class 4 81.69

Weighted Average

F1-Score 40.90

Recall 50.80

Precision 36.24

Fig. 7: Confusion matrix for the baseline model.

The results for the testing stage of the baseline model are
presented in Table III and Figure 7. From both F1-Score values
per class and the confusion matrix, we see that there were no
correct classifications for classes 1 and 3. Most of the samples
from these classes were labeled by the model as class 0, which
might point some similarity between such classes.

B. Best individual from GA

The best individual obtained at the end of the genetic
algorithm optimization process is given by ”00011-011-110-
111-011-110” (Figure 8). The optimum solution proposes a
VGG-16 based network with only the fourth and fifth blocks,
with a filter size of 64 and 256, respectively. The metrics
obtained by the model constructed from decoding this string
are shown in Table IV.

Fig. 8: Network architecture proposed by the best individual.

The F1-score worsened for all the 5 classes and one can
notice a shift from the data misclassified as class 0 to being
classified as class 2 (Figure 9), which opposes the hypothesis
that the baseline network labeled most samples as class 0 due
to similarity between classes 0, 1 and 3. The F1-Score for
classes 1 and 3 remain 0, as no samples from these classes
were correctly classified by the network.



Fig. 9: Confusion matrix for the model proposed by the best
individual.

TABLE IV: Results - Best Individual

F1-Score

Class 0 30.43

Class 1 x 0.00

Class 2 48.35

Class 3 0.00

Class 4 74.63

Weighted Average

F1-Score 34.16

Recall 43.54

Precision 28.85

V. CONCLUSIONS AND FUTURE WORK

This study has shown the feasibility of optimizing existing
manually-factured network architecture designs with Genetic
Algorithms. Although the performance of the best individual
found at the optimization procedure does not surpass the base-
line performance of the VGG-16 network, some improvements
can highly impact the GA final result.

On the behalf that the optimization process using GA takes
a relatively large amount of time to complete, the experiments
done for this work had to be limited and it would be interesting
to hold experiments with the complete dataset.

Additionally, it would be of good effect to try different GA
parameters such as the number of generations and population
size. There is also ground for implementing improvements in
the fitness function, accounting for robusticity of its results and
computational efficiency. Moreover, setting the starting seed of
the optimization process as the baseline VGG-16 architecture
could help the algorithm converge to superior results.

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” Advances in neural informa-
tion processing systems, vol. 25, pp. 1097–1105, 2012.

[2] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask r-cnn,” 2018.
[3] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “Yolov4: Op-

timal speed and accuracy of object detection,” arXiv preprint
arXiv:2004.10934, 2020.

[4] Z. Zhou, M. M. R. Siddiquee, N. Tajbakhsh, and J. Liang, “Unet++:
A nested u-net architecture for medical image segmentation,” in Deep
learning in medical image analysis and multimodal learning for clinical
decision support. Springer, 2018, pp. 3–11.

[5] L. Xie and A. Yuille, “Genetic cnn,” in Proceedings of the IEEE
international conference on computer vision, 2017, pp. 1379–1388.

[6] Z. Zhong, Z. Yang, B. Deng, J. Yan, W. Wu, J. Shao, and C.-L. Liu,
“Blockqnn: Efficient block-wise neural network architecture generation,”
2018.

[7] D. A. Coley, An introduction to genetic algorithms for scientists and
engineers. World Scientific Publishing Company, 1999.

[8] X.-S. Yang, Nature-inspired optimization algorithms. Academic Press,
2020.

[9] S. Sen, “Chapter 4 - a survey of intrusion detection systems
using evolutionary computation,” in Bio-Inspired Computation in
Telecommunications, X.-S. Yang, S. F. Chien, and T. O. Ting,
Eds. Boston: Morgan Kaufmann, 2015, pp. 73–94. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/B9780128015384000045

[10] M. Mitchell, An introduction to genetic algorithms. MIT press, 1998.
[11] A. J. Umbarkar and P. D. Sheth, “Crossover operators in genetic

algorithms: a review.” ICTACT journal on soft computing, vol. 6, no. 1,
2015.

[12] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016, http://www.deeplearningbook.org.

[13] Y. LeCun, Y. Bengio et al., “Convolutional networks for images, speech,
and time series,” The handbook of brain theory and neural networks,
vol. 3361, no. 10, p. 1995, 1995.

[14] F. Rosenblatt, “Principles of neurodynamics. perceptrons and the theory
of brain mechanisms,” Cornell Aeronautical Lab Inc Buffalo NY, Tech.
Rep., 1961.

[15] R. Luo, F. Tian, T. Qin, E. Chen, and T.-Y. Liu, “Neural architecture
optimization,” 2019.

[16] K. M. Hamdia, X. Zhuang, and T. Rabczuk, “An efficient optimization
approach for designing machine learning models based on genetic
algorithm,” Neural Computing and Applications, vol. 33, no. 6, pp.
1923–1933, 2021.

[17] Y. Yuan, W. Wang, G. M. Coghill, and W. Pang, “A novel genetic
algorithm with hierarchical evaluation strategy for hyperparameter op-
timisation of graph neural networks,” arXiv preprint arXiv:2101.09300,
2021.

[18] L. Deng, “The mnist database of handwritten digit images for machine
learning research,” IEEE Signal Processing Magazine, vol. 29, no. 6,
pp. 141–142, 2012.

[19] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features
from tiny images,” 2009.

[20] Y. Sun, B. Xue, M. Zhang, G. G. Yen, and J. Lv, “Automatically
designing cnn architectures using the genetic algorithm for image
classification,” IEEE transactions on cybernetics, vol. 50, no. 9, pp.
3840–3854, 2020.

[21] Y. Weng, T. Zhou, Y. Li, and X. Qiu, “Nas-unet: Neural architecture
search for medical image segmentation,” IEEE Access, vol. 7, pp.
44 247–44 257, 2019.

[22] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks
for biomedical image segmentation,” in International Conference on
Medical image computing and computer-assisted intervention. Springer,
2015, pp. 234–241.

[23] H. Liu, K. Simonyan, and Y. Yang, “DARTS: Differentiable architecture
search,” in International Conference on Learning Representations, 2019.
[Online]. Available: https://openreview.net/forum?id=S1eYHoC5FX

[24] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” 2015.

[25] T. Sugata and C. Yang, “Leaf app: Leaf recognition with deep convolu-
tional neural networks,” IOP Conference Series: Materials Science and
Engineering, vol. 273, p. 012004, 11 2017.


