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Abstract—Analog X-Ray radiography is still used in many
underdeveloped regions around the world. To allow these pop-
ulations to benefit from advances in automatic computer-aided
detection (CAD) systems, X-Ray films must be digitized. Unfor-
tunately, this procedure may introduce imaging artefacts, which
may severely impair the performance of such systems.

This work investigates the impact digitized images may cause
to deep neural networks trained for lung (semantic) segmentation
on digital x-ray samples. While three public datasets for lung
segmentation evaluation exist for digital samples, none are
available for digitized data. To this end, a U-Net-style architecture
was trained on publicly available data, and used to predict lung
segmentation on a newly annotated set of digitized images.

Using typical performance metrics such as the area under the
precision-recall curve (AUPRC), our results show that the model
is capable to identify lung regions at digital X-Rays with a high
intra-dataset (AUPRC: 0.99), and cross-dataset (AUPRC: 0.99)
efficiency on unseen test data. When challenged against digitized
data, the performance is substantially degraded (AUPRC: 0.90).

Our analysis also suggests that typical performance markers,
maximum F1 score and AUPRC, seems not to be informative to
characterize segmentation problems in test images. For this goal
pixels does not have independence due to natural connectivity
of lungs in images, this implies that a lung pixel tends to be
surrounded by other lung pixels.

This work is reproducible. Source code, evaluation protocols
and baseline results are available at: https://pypi.org/project/bob.
ip.binseg/.

Index Terms—Neural Network, U-Net, Lung Segmentation,
Analog x-ray

I. INTRODUCTION

Computer-aided detection (CAD) algorithms were devel-
oped in the past years for tissue segmentation and disease
diagnosis [1]–[4], with the objective of helping healthcare
workers in screening and treatment of diseases. Since the
beginning of the COVID-19 pandemic, the demand for this
type of solution has increased further, as in the early days X-
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ray and tomographic findings were used as a main diagnostic
tool [5]–[7].

Despite recent interest due to the COVID-19 pandemic,
Chest X-Ray (CXR) is also an important technique for screen-
ing Tuberculosis (TB) patients [8]. Clinical symptoms for
TB are non-specific and, even in places where it is highly
endemic, most of people experiencing those symptoms do not
actually have TB [8]. TB, although being completely treatable
in most cases, claims almost 4000 lives every year, being
inversely correlated with Gross Domestic Product (GDP), and
having a direct correlation with under nutrition [9]. This
basically means that underdevelopment/developing countries
are particularly susceptible to TB mortality.

Different methods were described for lung segmentation in
digital CXR, but only a handful of them were challenged
against images acquired from analog films [10]. This is
particularly important in under developed regions where CXR
equipment is old, still relying on analogical processes. In those
cases, to allow CAD usage, one must first digitize the X-
Ray films. Digitization can be accomplished using different
devices such as photo cameras, specialized scanners, or even
mobile devices. This digitization process is typically referred
as “imaging”.

The use of digital X-Ray may introduce artefacts [11], and
the same is true for imaging an analog X-Ray films. The
distortions on the lung’s image could occur due to device
resolution, image corrections, image compression, acquisition
setup, and user capture procedures [12]. When the imaging
process is done by a camera or mobile device, it is also pos-
sible that an important part of the image does not correspond
to the X-Ray per se. Background such as walls, furniture,
uncovered negatoscope bits, and other unpredictable elements
are typically present. Identifying correctly the lung area can
reduce the noise transferred to the CAD by these artefacts,
which may increase effectiveness of CAD systems [2], [13].

This work shows preliminary results of a lung segmentation
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algorithm based on a U-Net architecture [14]. It is part of
a broader project which aims to develop a CAD to detect
Tuberculosis (TB) in both digital and digitized images. Sec-
tion II discusses related work on lung image segmentation
of digital x-rays. Section III explains the proposed approach
used in this study. Section IV describes the methodology
used in the training and evaluation process. In Section V, the
experimental results obtained using the proposed method are
analyzed. Lastly, the results are discussed and a conclusion is
drawn in Section VI.

II. RELATED WORK

In the last few decades, many research groups have worked
on the task of analyzing CXR images, resulting in various
methods proposed for lung-segmentation [15]. For example,
in [16] Canny edge detection was used for detecting the
lung boundaries. However, in the past decade, deep neural
networks seem to have been given more attention as the
preferred method when doing lung segmentation of digital x-
rays: In [17], two deep convolutional neural network models
were used, separating the tasks in four steps main steps: (1)
image acquisition, (2) initial segmentation, (3) reconstruction
and (4) final segmentation. Numerous other works tend to use
a type of U-Net architecture based neural network, as in [18]
with a variational encoder and decoder, or with attention
modules such as in [19] or [20].

III. PROPOSED APPROACH

A. Network Architecture

To produce accurate lung segmentation masks on digital
chest X-rays, pixel-wise dense predictions, regarding whether
the pixels is part of the lung or not, are necessary. To
achieve this, Fully Convolutional Networks (FCNs) are widely
used and known to outperform other methods at this specific
task [20] and the U-Net could be considered one of the most
utilized FCNs architecture for segmentation in the field of
medical imaging [21].

Having said that, a MobileV2Net U-Net model [22] was
used for this exploratory work. This network incorporates
the effectiveness of a U-Net model [14] along with the
computational speed of a MobileV2Net [23], using a VGG-
16 [24] backbone. The U-Net gets its name from its symmetric
U-shape, having two paths, an encoder-contraction path, and
a decoder-expanding path. The contraction path is where the
context of the image is obtained through various convolutional
and max-pooling operations (to down sample the size of
feature map and contain less parameters in the network). In
the symmetric expanding path on the right side, the image is
up sampled using transposed convolution operations, in order
to get pixel-wise predictions with the same size as the input
image.

The MobileNetV2 is built on the idea that convolutional
layers, though essential to computer vision tasks yet computa-
tionally costly, can be replaced by bottleneck residual blocks.
The work of a convolutional layer is then split into 3 parts.
First an 1x1 convolution that expands the number of channels

(thereby called an expansion layer), which is followed by a
depth-wise convolution layer that filters the inputs, and lastly
followed by a 1x1 projection layer that reduces the number of
channels.

B. Binary Cross Entropy and a Soft Jaccard Loss

The loss selected is a combination of a binary cross entropy
and soft Jaccard loss implemented in [25]. Binary cross
entropy loss, denoted as H, can be written as (Eq. 1):

H = − 1

N

N∑
i=1

yi. log(p(yi)) + (1− yi). log(1− p(yi)) (1)

Where y is the label (1 for where the pixel is classified as
lung and 0 otherwise) and p(y) is the predicted probability of
the pixel being classified lung, for N number of pixels. The
Jaccard index is a similarity measure between a finite number
of sets. For two sets A and B, it can be defined as (Eq. 2):

J(A,B) =
|A ∩B|
|A ∪B|

=
|A ∩B|

|A|+ |B| − |A ∩B|
(2)

For pixels in an image, the expression can be adapted to
(Eq. 3):

J =
1

N

N∑
i=1

yi.p(yi)

yi + p(yi)− (yi.p(yi))
(3)

Ultimately, the combination of both losses, where in our
experiments an alpha of 0.7 was used, is obtained as following
(Eq. 4):

L = αH − (1− α)(1− J) (4)

C. Adabound Optimizer

The optimizer selected is a variant of the Adam and AMS-
Grad, named AdaBound [26], which uses dynamic bounds on
learning rates for smoother transitions. The lower and upper
bound are initialized as zero and infinity respectively, eventu-
ally converging to a constant final step size. It is designed to
be more resilient to extreme learning rates. AdaBound is an
optimizer that behaves like Adam at the beginning of training
- achieving a rapid training process, and gradually transforms
to SGD at the end, which tends to generalize better compared
to adaptive methods.

D. F1 Score and AUPRC Performance Metrics

F1-Score (also known as Dice score) is a common used
metric to evaluate the performance of a binary segmentation
models[22]. It is computed as the harmonic mean of the
precision and recall (Eq. 5), ranging from 0 to 1 (where 0
is the worst possible score and 1 being the best score):

F1 = 2.
[precision].[recall]

[precision] + [recall]
(5)

The second metric used was the AUPRC. It comes from
a Precision-Recall curve, which is a plot of the Precision



Fig. 1. Example of Precision-Recall curves on the Binary Segmentation
Benchmark Package for Bob. Extracted from Laibacher and Anjos [27].

(on the y-axis) and the Recall (on the x-axis) for distinct
probability thresholds (Fig. 1) . A perfect model would be
depicted as a single point at the coordinate of (1,1). A
high-performing model is illustrated by a curve that bows
towards that point of coordinate (1,1). It’s a very effective
plot to identify imbalanced models. The area under the curve
(AUC), summarizes the PR curve with a range of probability
thresholds into one single value (AUPRC). A perfect model
would have a AUPRC score of 1.0.

IV. METHODS

A. Datasets

Erect anteroposterior chest (AP) x-ray images were col-
lected from three public datasets: The Japanese Society of
Radiological Technology (JSRT) dataset [28], the Montgomery
County [29] and Shenzhen Hospital dataset [29] (Tab. I,
Fig. 2). The data for all three datasets were split randomly,
with 70% of the data reserved for training, 10% for validation,
and 20% for testing. This specific data split was done in order
to compare our proposed approach to other high-performing
models ([30], [20], and [19]) that split these same datasets in
similar fashion.

TABLE I
SUMMARY OF THE DATASETS WITH NUMBER OF IMAGES, MEDICAL

DIAGNOSIS AND AREA ANNOTATION.

Dataset N Images Diagnosis Annotation
JSRT 154 Lung nodules Heart, clavicles and lungs

Montgomery 80 Tuberculosis Lung
Shenzhen 672 Tuberculosis Lung a

a 566 images of the dataset were annotated [31].

B. Training

The training process was done on a GPU, using the Binary
Segmentation Benchmark for Bob [27] package written in
Python. Since the number of images in each dataset was

Fig. 2. Examples from all three datasets. Left: Montgomery County; middle:
Shenzhen; right: JSRT.

limited, the model was initialized using pre-trained weights
from ImageNet [32]. For the purpose of setting these initial
experiments and their results as a baseline, the networks were
trained for a fixed number of 1000 epochs, with a learning
rate of 0.001, a final learning rate of 0.1, and a batch size
containing 8 images, following the pattern of the other models
trained on the aforementioned package. Images were resized to
512 by 512 pixels before training (following the same process
found in [30] and [20]).

In order to explore the generalization potential of the
previously described network model, all three datasets were
used independently of each other. Subsequently, tests were
conducted across all datasets and models, in addition to tests
performed on the analog x-ray photo dataset consisting of 27
images.

C. Imaging procedure and App

Images were acquired using a mobile application (Imaging
Manager) developed for this purpose by Murabei Data Sci-
ence. The app does not allow the use of flash, and applies a
timer of 3 seconds to enhance photo stability. It also has a
mask that facilitates the centering of the x-ray image through
red lines (Fig. 3). Users are instructed to align the vertical line
to the spine and the horizontal one with the clavicles.

Fig. 3. Screenshot of the app Imaging Manager. Users were instructed to
align the spine in the vertical line and the clavicle on the horizontal one.



Fig. 4. Schematics of the x-ray photo acquisition. Users were instructed to
cover the exposed remaining light box (left) with a opaque textile (right).
Colors represent different textile rags.

The x-rays films were placed in an x-ray negatoscope and
the remaining surface was covered by an opaque textile to
block the light (Fig. 4).

Users were also instructed to turn-off ambient light and
block other external sources such as windows and open doors.
The cellphone was placed on a tripod during the image
acquisition to reduce shaking effects.

D. Annotation of the lung segmentation on photos

The annotations for the lung segmentation task of 27 photos
were performed by a physician using MakeSense.ai1, a free
tool for this type of workflows. He was asked to identify the
lung area by drawing polygons, and only two polygons were
permitted by each image (lung areas must be continuous).
Clavicle, heart and spine regions were also annotated, but not
used on the present work.

E. Model accuracy evaluation

Using lung annotations from public datasets and the ones
done by a physician to imaged analog x-rays as the gold
standard, the model accuracy was calculated. Intra-dataset
metrics corresponds to models that were trained on and
evaluated on that dataset images, whereas cross-dataset metrics
correspond to models trained on one dataset and tested on
different ones. As for the imaged analog dataset, all evalu-
ations are considered as a cross-dataset evaluation, since no
model was trained using that data. The MAX F1 corresponds
to maximum F1-score computed, using the optimum threshold
value established a priori.

V. RESULTS

A. Public digital x-ray datasets

Intra-database results show AUPRC and MAX F1 above
0.95 for all databases for both train and test samples (Tab. II,
Fig. 5).

Cross-dataset tests results were also promising, with MAX
F1 results above 0.9 (Tab. III), and AUPRC scores all above
0.97 (Tab. IV). Models trained with JSRT and Montgomery
have similar results of MAX F1 both in intra-dataset and cross-
dataset test samples (0.97 on average) with degradation of
MAX F1 when challenged against Shenzhen dataset (0, 96 on

1https://www.makesense.ai/

TABLE II
RESULTS FROM INTRA-DATASET TRAIN AND TEST. ACCURACY METRICS

SHOW PROMISING RESULTS IN BOTH TRAIN AND TEST SAMPLES.

Dataset Montgomery JSRT Shenzhen
Train: MAX F1 0.992 0.990 0.969
Train: AUPRC 1.000 1.000 0.996
Validation: MAX F1 0.979 0.980 0.959
Validation: AUPRC 0.998 0.998 0.992
Test: MAX F1 0.981 0.982 0.955
Test: AUPRC 0.998 0.999 0.991

Fig. 5. Precision-Recall curves for test samples in in-database trained
networks at threshold T=0.5. Dataset results: MC, Montgomery; JSRT, JSRT;
SZ, Shenzhen

average). Shenzhen MAX F1 results tends to be more stable
across all datasets (0.95 on average).

TABLE III
MAX F1 SCORES FROM CROSS-DATASET TRAIN, VALIDATION AND TEST.
MONTGOMERY AND JSRT TRAINED MODELS DISPLAY SIMILAR RESULTS.

Database (sample) Montgomery JSRT Shenzhen
Montgomery (train) 0.9920 0.9680 0.9560
Montgomery (validation) 0.9790 0.9670 0.9570
Montgomery (test) 0.9820 0.9700 0.9590
JSRT (train) 0.9720 0.9900 0.9630
JSRT (validation) 0.9660 0.9800 0.9620
JSRT (test) 0.9730 0.9820 0.9610
Shenzhen (train) 0.9440 0.9510 0.9690
Shenzhen (validation) 0.9440 0.9440 0.9590
Shenzhen (test) 0.9350 0.9440 0.9550

When comparing results with other more complex seg-
mentation models trained on the same three public datasets
(Tab. V), the results are found to be very similar (all F1-scores
are are within 0.02 of each other).

Although promising results were found analysing MAX
F1 and AUPRC metrics, it was possible to verify important
deviations by performing manual inspections of the predicted
lung segmentations, especially on the Shenzhen dataset. In
some cases, when running cross-dataset tests, images on the
Shenzhen dataset that contained the patient’s limbs on the x-



TABLE IV
AUPRC RESULTS FROM CROSS-DATASET TRAIN, VALIDATION AND TEST.
MONTGOMERY AND JSRT TRAINED MODELS HAVE SIMILAR RESULTS.

Database (sample) Montgomery JSRT Shenzhen
Montgomery (train) 1.000 0.994 0.991
Montgomery (validation) 0.998 0.995 0.990
Montgomery (test) 0.998 0.995 0.992
JSRT (train) 0.996 1.000 0.995
JSRT (validation) 0.995 0.998 0.991
JSRT (test) 0.997 0.999 0.993
Shenzhen (train) 0.986 0.988 0.996
Shenzhen (validation) 0.985 0.985 0.992
Shenzhen (test) 0.979 0.982 0.991

TABLE V
MAX F1-SCORE PERFORMANCE COMPARISON WITH OTHER EXISTING

NETWORKS. CONSIDERING ONLY THE SCORES ON THE TEST PORTION OF
THE DATASET

Model Montgomery JSRT Shenzhen
Adv-ATTN1 − 0.976 −
Self-Attention DNN2 0.982 0.971 0.960
Ours 0.981 0.982 0.955

The models correspond to: [1]Attention based Adv. UNet model [20]. [2]
Self-Attention Deep Neural Network [19].

ray (a characteristic that is not present on Montgomery or
JSRT datasets), incorrectly predicted the space between the
arms and body as lung (Fig. 6 left).

As result of the manual inspection of the imagens with
greater deviation, it was also possible to verify incorrect lung
annotation especially at Shenzhen dataset. In some other cases,
the inferior part of the lungs present behind radiographic
shadows caused by breasts were incorrectly left out of the
ground-truth annotations, where the model correctly predicted
as a part of the lung (Fig. 6 center); in other images, the
annotators, induced by the presence of large gastric bubbles,
wrongly marked as lung the area below the diaphragm limit,
where the model correctly predicted as not part of the lung
(Fig. 6 right).

Another important finding is, that despite the incorrect lung
segmentation (and in some cases - incorrect predictions placed
even outside of the patient’s body on the x-ray), all of the
trained models attained MAX F1 scores above or near 0.8.
However, lungs in AP X-Rays have a established topological
structure and connectivity, which is not always the case for

Fig. 6. Important deviations on lung segmentation were found on Shenzhen
dataset. Red, model only; green, real mask; yellow, correct segmentation. Left,
empty space between arm/body; center, breast shadow; right, gastric bubble

Fig. 7. Comparison of model results and physician annotated mask, images
were redacted to remove personal information. Red, model only; green, real
mask; yellow, correct segmentation. Left, correct segmentation for most of
the lung area; center, incorrect segmentation of the neck; right, poor quality
x-ray had significant reduction in accuracy.

their corresponding predicted segmentations.
The F1 score, in spite of being widely used as a metric to

evaluate the performance of segmentation tasks, only measures
the degree of overlap between the predicted and the ground-
truth annotations, and is unable to capture how correct the
shape and topological structure of the predicted lungs masks
are. Given this finding, it may jeopardise and undermine
AUPRC score and F1 score analysis to a certain degree,
taking into account that these metrics consider each pixel
independently. All this brings about a challenge to evaluate,
on a large-scale, how topologically coherent the produced
segmentations are. Some recent work on preserving the topol-
ogy on segmentation tasks have also touched on this same
challenging issue [33].

B. Imaged analogical x-rays

The trained networks were all able to correctly segment
most of the lung area (Fig. 7 left), but had further degradation
of their accuracy with MAX F1 at 0.78 and AUPRC at 0.9 on
average (Tab. VI, Fig. 8). The models incorrectly segmented
as lung part of neck, element not present on the training
datasets; in some cases part of the covered negatoscope was
also incorrectly segmented; in other cases, old x-rays, with
poor quality or low exposure but still viable for annotation,
displayed lower accuracy.

TABLE VI
RESULTS FROM ANALOG X-RAY PHOTO DATASET.

Model Dataset MAX F1 AUPRC
Montgomery 0.808 0.931
JSRT 0.784 0.930
Shenzhen 0.775 0.841

VI. DISCUSSION AND CONCLUSION

Initial results from intra-dataset training were promising
with MAX F1 and AUPRC metrics above 0.9 (Tab. II). When
challenged against images from other datasets, the accuracy
of the models was reduced (average MAX F1 0.96), this was



Fig. 8. Precision-Recall curves for all three network results from analog
x-ray photo dataset predictions, at threshold T=0.5. Dataset results: MC,
Montgomery; JSRT, JSRT; Shenzhen, Shenzhen

particularly more evident on the Shenzhen dataset (Tab. III). It
was possible to verify with manual diagnosis that on Shenzhen
datasets some of the images contained part of the patient’s
arms which lead the models to incorrect segment lung (Fig.
6).

When challenged against imaged analog x-rays, the models
were able to correctly segment the lungs, but had its accuracy
reduced even further (average MAX F1 0.78 of all three
dataset-independently trained models, Tab. VI). Analog x-
rays introduced new elements to classification such as neck
and poor quality films (Fig. 7), both elements reduced the
segmentation accuracy.

The trained models were able to correctly identify the lungs
although incorrectly annotated in the training dataset, this was
possible to verify by manual inspections of large deviations
images. This was particularly present in Shenzhen’s dataset
were gastric bubble were incorrectly segmented as lungs and
lungs shadowed by breasts were not segmented by human
annotation (Fig. 6).

MAX F1 and AUPRC metrics although widely used in
segmentation evaluation, seem not to distinguish the good
from the bad in this case of study. In AP x-rays, lung area
occupies an important part of the image and have a topological
connectivity which at least in part breaks the assumption of
independence, both important at F1 and AUPRC analysis.

This work shows preliminary results of segmentation model
use to extract lungs from imaged analog x-ray and is part
of a greater effort to build a CAD for tuberculosis detection
to support analog equipment. A correct lung segmentation
may improve detection overall accuracy of a future CAD
methodology.
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and Real-World Usage Scenarios of Deep Vessel Seg-
mentation for Retinography. 2019. arXiv: 1909.03856
[cs.CV]. URL: https://arxiv.org/abs/1909.03856.

[28] Shiraishi J.; Katsuragawa S.; Ikezoe J.; Matsumoto
T.; Kobayashi T.; Komatsu K.; Matsui M.; Fujita H.;
Kodera Y.; Doi K. “Development of a digital image
database for chest radiographs with and without a lung
nodule: receiver operating characteristic analysis of ra-
diologists’ detection of pulmonary nodules.” In: Amer-
ican Journal of Roentgenology. 174 (2000), pp. 71–74.

[29] Stefan Jaeger, Sema Candemir, Sameer Antani, et al.
“Two public chest X-ray datasets for computer-aided
screening of pulmonary diseases.” In: Quantitative
imaging in medicine and surgery. 4.6 (2014), p. 475.
ISSN: 2223-4306.

[30] Youbao Tang, Yuxing Tang, Jing Xiao, et al. XLSor: A
Robust and Accurate Lung Segmentor on Chest X-Rays
Using Criss-Cross Attention and Customized Radiore-
alistic Abnormalities Generation. 2019. arXiv: 1904 .
09229 [cs.CV].

https://cdn.who.int/media/docs/default-source/hq-tuberculosis/global-tuberculosis-report-2020/execsumm_11nov2020.pdf?sfvrsn=be12e34e_9
https://cdn.who.int/media/docs/default-source/hq-tuberculosis/global-tuberculosis-report-2020/execsumm_11nov2020.pdf?sfvrsn=be12e34e_9
https://cdn.who.int/media/docs/default-source/hq-tuberculosis/global-tuberculosis-report-2020/execsumm_11nov2020.pdf?sfvrsn=be12e34e_9
https://cdn.who.int/media/docs/default-source/hq-tuberculosis/global-tuberculosis-report-2020/execsumm_11nov2020.pdf?sfvrsn=be12e34e_9
https://arxiv.org/abs/2004.03042
https://arxiv.org/abs/2004.03042
https://arxiv.org/abs/2004.03042
https://arxiv.org/abs/2004.03042
https://doi.org/10.1148/rg.2018170038
https://doi.org/10.1148/rg.2018170038
https://doi.org/10.1148/rg.2018170038
https://doi.org/10.1117/12.2076146
https://doi.org/10.1117/12.2076146
https://arxiv.org/abs/2004.12786
https://arxiv.org/abs/1505.04597
https://doi.org/10.1109/TMI.2013.2290491
https://doi.org/https://doi.org/10.1016/j.procs.2019.09.314
https://doi.org/https://doi.org/10.1016/j.procs.2019.09.314
https://www.sciencedirect.com/science/article/pii/S1877050919315145
https://www.sciencedirect.com/science/article/pii/S1877050919315145
https://doi.org/https://doi.org/10.1016/j.cmpb.2019.06.005
https://doi.org/https://doi.org/10.1016/j.cmpb.2019.06.005
https://www.sciencedirect.com/science/article/pii/S0169260719303517
https://www.sciencedirect.com/science/article/pii/S0169260719303517
https://arxiv.org/abs/2005.10052
https://arxiv.org/abs/2005.10052
https://arxiv.org/abs/2003.10304
https://arxiv.org/abs/2003.10304
https://arxiv.org/abs/2003.10304
https://arxiv.org/abs/2009.12610
https://arxiv.org/abs/1909.03856
https://arxiv.org/abs/1909.03856
https://arxiv.org/abs/1909.03856
https://arxiv.org/abs/1801.04381
https://arxiv.org/abs/1409.1556
https://doi.org/10.1109/CVPRW.2018.00042
https://arxiv.org/abs/1902.09843
https://arxiv.org/abs/1909.03856
https://arxiv.org/abs/1909.03856
https://arxiv.org/abs/1909.03856
https://arxiv.org/abs/1904.09229
https://arxiv.org/abs/1904.09229


[31] Lung Masks for Shenzhen Hospital Chest X-ray Set.
https://www.kaggle.com/yoctoman/shcxr-lung-mask.
2018. URL: https://www.kaggle.com/yoctoman/shcxr-
lung-mask.

[32] Jia Deng, Wei Dong, Richard Socher, et al. “Imagenet:
A large-scale hierarchical image database”. In: 2009
IEEE conference on computer vision and pattern recog-
nition. Ieee. 2009, pp. 248–255.

[33] James Clough, Nicholas Byrne, Ilkay Oksuz, et al. “A
Topological Loss Function for Deep-Learning based
Image Segmentation using Persistent Homology”. In:
IEEE Transactions on Pattern Analysis and Machine
Intelligence (2021), pp. 1–1. ISSN: 1939-3539. DOI: 10.
1109/tpami.2020.3013679. URL: http://dx.doi.org/10.
1109/TPAMI.2020.3013679.

https://www.kaggle.com/yoctoman/shcxr-lung-mask
https://www.kaggle.com/yoctoman/shcxr-lung-mask
https://doi.org/10.1109/tpami.2020.3013679
https://doi.org/10.1109/tpami.2020.3013679
http://dx.doi.org/10.1109/TPAMI.2020.3013679
http://dx.doi.org/10.1109/TPAMI.2020.3013679

	Introduction
	Related Work
	Proposed Approach
	Network Architecture
	Binary Cross Entropy and a Soft Jaccard Loss
	Adabound Optimizer
	F1 Score and AUPRC Performance Metrics

	Methods
	Datasets
	Training
	Imaging procedure and App
	Annotation of the lung segmentation on photos
	Model accuracy evaluation

	Results
	Public digital x-ray datasets
	Imaged analogical x-rays

	Discussion and conclusion

