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Abstract—Tuberculosis (TB) is a contagious disease which is
among the top 10 causes of death in the world. In order to
eliminate the disease by 2050, the treatment of TB infection (TBI)
is essential, which requires radiological reports to exclude active
tuberculosis. The automatic X-ray classifiers used today are based
on models that do not guarantee the retention of knowledge if
they need to learn new tasks over time. This work proposes the
introduction of the lifelong machine learning (LML) paradigm in
automatic X-ray classifiers aimed at helping to diagnose active
TB (ATB). Two LML algorithms, Efficient Lifelong Learning
Algorithm (ELLA) and Learning without Forgetting (LwF), are
applied to the TB and pneumonia classification tasks. The results
show that it is possible to keep the performance in both tasks
with the LML paradigm.

I. INTRODUCTION

Tuberculosis (TB) is a contagious disease among the top 10
causes of death in the world and the leading cause of death
through a single infectious agent until March 2020, surpassed
only by COVID-19 in number of daily deaths [1].

In order to reduce the number of cases and deaths by
Tuberculosis, the treatment of TB infection (TBI) is essential,
as it is the most effective single strategy for the reduction of
the number of cases and deaths by 2050 [2]. TBI is a state of
persistent immune response to contact with Mycobacterium
tuberculosis, with no evidence of clinical manifestation of
active TB (ATB) [3].

Before beginning TBI treatment, it is necessary to exclude
the possibility of the individual presenting ATB [3]. In Brazil,
a chest x-ray (CXR) is mandatory to exclude the possibility of
the patient having ATB [4]. The need for an expert doctor to
issue a radiological report for the candidate for TBI treatment
delays the start of the treatment in many primary care settings
([5], [6]).

In order to avoid this source of delay in starting TBI
treatment, a computer-aided diagnosis (CAD) may be adopted
to classify CXRs. It is useful that the CAD model learns
over time to differentiate ATB from other similar diseases or

scars from past diseases, an usual finding especially in places
with high prevalence of TB, and also that it is able to learn
through experts feedbacks. However, commercial applications
and algorithms found in the literature are based on models that
do not guarantee the retention of knowledge if they need to
learn new tasks over time.

The paradigm of lifelong machine learning (LML) may
overcome this difficulty, since the model aims at keeping
the efficiency obtained in the tasks previously learned, while
using the previously acquired knowledge to have a better
performance in new tasks. The learning process can be guided
in stages to obtain greater efficiency, through feedback from
doctors or by learning diseases that are similar to ATB and
that can lead to false positives in the diagnosis of ATB by
radiography.

In this work, we test two LML algorithms in learning two
tasks: pneumonia and tuberculosis classification. The main
goal is to observe whether the models are able to learn a
second task while retaining a good performance in the first
task with the lifelong learning paradigm.

II. MACHINE LEARNING IN TUBERCULOSIS

The use of machine learning (ML) in TB is not limited to
the classification of CXRs. Examples of other applications for
TB classification include analysis of blood samples ([7], [8],
[9], [10]), genetics [11], exhaled air ([12], [13]), intracellular
microRNAs [14], clinical data ([15], [16]) and computed
tomography [17].

Among the ML techniques used for TB screening, neural
networks, Decision Trees, Support Vector Machines (SVM),
Bayes Naı̈ve Classifier, Genetic Algorithms and Fuzzy Logic
are often used [18].

For the classification of TB using CXR, the most common
approach is the use of convolutional neural networks (CNN),
since they have become the preferred technique for analyzing
medical images [18]. The sets of parameters present in the



convolutional layers extract visual features from the image,
while the parameters of the fully-connected layers are respon-
sible for the classification.

Hwang et al. [19] define a CNN based on the architecture
of AlexNet [20]. The used datasets were from Shenzhen,
Montgomery [21] and the Korean Institute of Tuberculosis
(KIT). They have obtained an average accuracy of 90.3%.

Lakhani et al. [22] apply two CNNs, AlexNet and
GoogLeNet, to the Montgomery, Shenzhen, Belarus and
the Thomas Jefferson University Hospital datasets. Images
that had a classification disagreement between AlexNet and
GoogLeNet were sent to a radiologist to be classified, which
improved the classification performance, resulting in a sensi-
tivity of 97.3% and a specificity of 100%.

Becker et al. [23] apply a CNN for the identification
of patterns that appear in CXR of patients with ATB. The
identification of areas with pathologies in the CXR obtained
a ROC of 0.82.

Pasa et al. [24] present a CNN optimized for the TB
classification problem through CXR. After the network was
trained for classification, salience maps and gradient maps
of class activation (grad-CAM) were generated. The obtained
accuracy was 79% for Montgomery, 84.4% for Shenzhen and
86.2% for the both combined.

Heo et al. [25] use CNN to detect ATB in CXR with and
without using patient demographic variables. The networks
VGG19, InceptionV3, ResNet50, DenseNet121 and Inception-
ResNetV2 were used. The best results in terms of AUC were
obtained with VGG19: 0.9075 for the case without demo-
graphic variables and 0.9213 for the case with demographic
variables.

Hwang et al. [26] develop an algorithm to classify ATB,
pneumonia, malignant lung neoplasms and pneumothorax. A
deep CNN was used with 5 classifiers in parallel, with 4
specialized classifiers for each disease and the fifth classifying
any anomaly, encompassing features from the 4 diseases. The
algorithm obtained an accuracy of 98.3%.

There are also several works applying SVM to the CXRs
classification problem. SVM is a machine learning algorithm
which maps the data in a feature space of higher dimension
and defines a hyperplane in this space, which separates the
data into classes with the maximum margin. With this, a non-
linear decision boundary is obtained in the original data space
for class separation [27]. The main differences between these
works are related to the extracted features for the classification
with SVM.

Chauhan et al. [28] extracted features with the GLCM
method, Gabor filters, Gist, Histogram of Oriented Gradi-
ents (HOG) and Pyramid Histogram of Oriented Gradients
(PHOG). Udayakumar et al. [29] extracted the lung region
using the graph cut segmentation method. In the extracted
segment, features related to content-based image recovery
(CBIR) and features inspired by object detection are computed.
Kamble et al. [30] used CBIR and the calculation of standard
deviation, mean, kurtosis, skewness and entropy of the image
histograms. Chandra et al. [31] proposed an algorithm in

which features are extracted in a hierarchical organization. At
level 1, geometric features such as shape, size and eccentricity
are extracted and at level 2, first-order statistical features such
as energy, entropy, contrast and correlations are extracted.

Although these algorithms found in the literature have good
performance in the task which they were designed for, they
did not explore the possibility of retaining knowledge if they
need to learn new tasks over time. This is a useful feature
considering that there are several similar diseases, as well
as scars from past diseases, which can lead to errors in
classification and the model can learn to differentiate them
over time through experts feedbacks.

III. LIFELONG MACHINE LEARNING

A definition of lifelong learning is found in [32] as: “Life-
long Machine Learning, or LML, considers systems that can
learn many tasks over a lifetime from one or more domains.
They efficiently and effectively retain the knowledge they
have learned and use that knowledge to more efficiently and
effectively learn new tasks.”

There are three main elements for this process [32]: (1) the
retention of previously learned knowledge; (2) the selective
knowledge transfer to learn new tasks; and (3) an approach that
ensures effective and efficient interaction between the elements
retained and transferred between tasks. Failure to observe the
first point highlighted is known in the literature as catastrophic
forgetting.

In neural networks, catastrophic forgetting happens due to
the plasticity-stability dilemma [33]. If the net is too plastic,
it will tend to overwrite its weights while learning new tasks
and start to perform poorly on the previous ones, but, if it is
very stable, it will not be able to learn new tasks.

Different strategies can be adopted to implement the LL:

• Network growth strategies: based on adding parameters
to the network in order to allow the learning of new tasks
and, at the same time, retain previous knowledge through
the old parameters [34], [35], [36].

• Selective plasticity and neuromodulation strategies: meth-
ods that allow a subgroup of parameters to be adjusted
to the new task while another subgroup is almost or
completely frozen [37], [38], [39], [40] .

• Generative strategies: inspired by the existence of a dual
memory system based on the hippocampus and neocortex
in the human brain. The hippocampus encodes recent
experiences and, acting as a generative model, generates
multiple repetitions of the experience during sleep and
the memory is consolidated in the neocortex [41], [42],
[43]

• Memorization strategies: depend on the storage of all or
part of data from old tasks to control the preservation of
knowledge [44], [45], [46], [47] .

• Penalization strategies: add a penalty term to the loss
function in order to reduce deviations in the classification
performance of previous tasks [48], [49], [50] .



• Latent components strategies: consider knowledge shar-
ing through latent components shared between different
tasks [51], [52], [53], [54], [55], [56], [57].

There are few studies that apply LML in medicine and,
specifically, in the CXR classification. The work developed by
Kim et al. [58] deals with a scenario in which data are spread
across multiple hospitals and a machine learning model must
be trained sequentially. The model was tested on the CIFAR-
10/100 dataset and on the CXR dataset for Tuberculosis at
the Korean Tuberculosis Institute [19]. Patra et al. [59] have
developed a study based on the diagnosis of congenital heart
disease in fetuses, which in general have their diagnosis based
on small regions of interest in the images. The diagnosis
is made based on classes of interest, which are important
anatomical structures for this activity.

IV. APPLICATION OF TWO LML ALGORITHMS TO DISEASE
CLASSIFICATION TESTS

In order to make first experiments applying LML algorithms
to diseases classification through chest X-rays images, two
distinct tasks were considered: the classification of pneumonia
and tuberculosis. For pneumonia, data from the Stanford
public dataset [60] were used, and for tuberculosis, data from
the Shenzhen public dataset [21] were used.

The Stanford dataset has 14 classes, including Normal,
Pneumonia and Tuberculosis, and was undersampled accord-
ing to the following criteria:
• Only 2 classes: “Normal” and “Pneumonia”.
• Images present in the reduced set available for download

(11 GB, while the full set has 439 GB).
• Front images and AP view.
• Similar amount of images in both classes.
The whole Shenzhen dataset was used. The number of

images per class that were used in the studies is in Table I.

TABLE I
NUMBER OF IMAGES PER CLASS.

Class Quantity
Non-Tuberculosis (Shenzhen) 326

Tuberculosis (Shenzhen) 336
Normal (Stanford) 1070

Pneumonia (Stanford) 1065

For both algorithms, two experiments were made to learn
the tasks. In the first experiment, the first task was to classify
pneumonia and the second one was to classify tuberculosis,
while in the second experiment, task order was reversed. These
algorithms are not capable of autonomously detecting new
tasks, and the tasks must be explicitly presented.

The first LML algorithm chosen for testing was the Efficient
Lifelong Learning Algorithm (ELLA) [51]. This algorithm
is among the relevant pioneers in LML. For classification
problems, as in this work, ELLA is based on a logistic
regression model. The code used in this study was made
available by the authors.

The algorithm is based on maintaining a library of latent
components as a shared knowledge base for the specific

models associated with each task. Let L ⊆ Rd×k be the base
of latent components and d the dimension of inputs x. It is
assumed that the vector θt, corresponding to the parameters
of each task t, is a linear combination of the components in L
whose weights are given by the vector st ∈ Rk. That is, for
each task t:

θt = Lst (1)

We are left with the following Objective Function to be
minimized, depending on the L and the st of each task:

1

N

N∑
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{ 1
nt

nt∑
i=1

L(f(xti; θt), yti)+µ||st||1}+λ||L||2F (2)
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The mechanism to control the forgetting of past tasks is
the term in the Objective Function which penalizes errors in
classification with respect to all tasks. In order to remove the
dependence from all of the previous training data, the authors
approximate Equation 2 using the second-order Taylor ex-
pansion around θ(t) = argminθ

1
nt

∑nt
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(t)
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i )),

which is an optimal predictor learned on only the training
data for task t.

When a new task arrives, it uses the stored latent compo-
nents and improves the base L with the knowledge acquired
in the new task. This means that, over time, the performance
of past tasks can also be improved. An assumption for ELLA
is that inputs from all tasks must come from the same space
Rd. As the model is based on a logistic regression, all tasks
must have only two classes.

In the experiments, the inputs were the x-ray images, which
were pre-processed using the Principal Component Analysis
for the retention of different percentages of variance (85%,
90% and 95%), with the aim of reducing the dimensionality
of the problem. The values of hyperparameters µ = 1.0 and
λ = 10−5 were kept equal to those defined by the authors in
the code provided by them. The number of latent components
k = 8 was chosen after a gridsearch over values of k from 1
to 15 for task 1 = TB classification and task 2 = pneumonia
classification. Note in Figure 1 that, with k = 8, there is a
significant improvement in sensitivity and specificity specially
for task 2 with 95% of variance retention, while the other
indices are less affected by the number of latent components.

The cross-validation method, specifically the k-folds tech-
nique with k=10, was used to estimate the uncertainty in the
results due to the fact that we are using a limited sample.
The results obtained for both experiments in the test sets
are presented in Table II and III. They correspond to the
confidence interval at a confidence level of 95%.

The second LML algorithm studied herein is the Learning
without Forgetting (LwF) [49]. This algorithm is based on a
CNN, which has become the preferred technique for analyzing
medical images [18]. At the same time, LwF is a relevant



Fig. 1. Sensitivity and specificity as a function of number of latent compo-
nents.

TABLE II
RESULTS FOR ELLA. FIRST TASK WAS TO CLASSIFY PNEUMONIA AND

SECOND TASK WAS TO CLASSIFY TUBERCULOSIS.

Index PCA = 85% PCA = 90% PCA = 95%
Sensitivity (pneumonia) 73.0 ±12.4% 74.1 ±11.9% 70.8 ±10.8%
Specificity (pneumonia) 70.3 ±9.5% 67.9 ±10.0% 66.8 ±7.0%

Error (pneumonia) 28.4 ±7.5% 29.0 ±8.3% 31.2 ±7.7%
Sensitivity (tuberculosis) 78.9 ±14.4% 77.4 ±11.4% 76.5 ±12.6%
Specificity (tuberculosis) 86.4 ±13.6% 81.5 ±19.1% 82.5 ±15.6%

Error (tuberculosis) 18.3 ±8.4% 20.6 ±7.7% 20.6 ±7.4%

algorithm in the literature and is based on a simple strategy
to control catastrophic forgetting, by penalizing the Objective
Function. Another desirable feature is that this algorithm does
not require data storage from previous tasks.

The LwF algorithm is based specifically on the Alexnet net-
work, so the network architecture was prefixed. The network
has parameters θs shared among all tasks, corresponding to
all layers of the network except the last one, and parameters
θo which are specific to each task, corresponding to the last
layer of the network.

When a dataset related to a new task arrives, it is presented
to the network and the outputs yo corresponding to each of
the previous tasks last layer are recorded. Next, parameters θn
related to the new task are added to the output layer, connected
to all neurons in the previous layer and initialized with random
values.

The network is trained to minimize classification errors
for all tasks through a modified loss function. For older
tasks, the classification error is the deviation of the updated
network outputs from the saved yo outputs. During training,
first the parameters θo and θs are fixed and only the parameters
θn are adjusted until it achieves a stop criterion (warm-up
phase). Then all parameters are adjusted up to a stop criterion
(adjustment phase). The authors used the number of epochs as
the stop criterion, which was also adopted in the tests made
in this work.

Like ELLA, for both tasks, the inputs must come from the
same space Rd for LwF; in this case, for both tasks, the inputs
are 224x224 RGB images. Also note that each task may have
a different number of classes, as the last layer of the network
is task specific.

The LwF modified loss function, or Objective Function (OF)
to be minimized, is formulated as:

TABLE III
RESULTS FOR ELLA. FIRST TASK WAS TO CLASSIFY TUBERCULOSIS AND

SECOND TASK WAS TO CLASSIFY PNEUMONIA.

Index PCA = 85% PCA = 90% PCA = 95%
Sensitivity (tuberculosis) 79.5 ±14.2% 77.1 ±9.2% 77.1 ±15.0%
Specificity (tuberculosis) 84.6 ±15.1% 81.9 ±14.7% 80.6 ±16.9%

Error (tuberculosis) 18.0 ±7.6% 20.5 ±6.8% 21.2 ±10.4%
Sensitivity (pneumonia) 73.0 ±12.4% 72.7 ±11.5% 70.0 ±10.5%
Specificity (pneumonia) 70.1 ±8.4% 68.1 ±8.5% 66.6 ±14.6%

Error (pneumonia) 28.5 ±7.1% 29.6 ±7.9% 31.7 ±10.9%

OF = λoLold(yo, ŷo) + Lnew(yn, ŷn) +R(θ̂s, θ̂o, θ̂n) (4)

Where:
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′
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(i)logŷ′o

(i) (5)
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(j)
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And:

R(θ̂s, θ̂o, θ̂n) is a regularization term;
λo is a loss balance weight; the higher the value, the more

importance is given to the performance in previous tasks, to
the detriment of the new task;
ŷn is the last layer output corresponding to the new task;
yn is the vector of labels for the new task;
ŷ
(i)
o is the current last layer output corresponding to the

previous task i;
y
(i)
o is the recorded last layer output corresponding to the

previous task i;
1 is the number of labels;
y′o

(i) and ŷ′o
(i) are modified versions of the current and

recorded output;
T is a parameter that controls the weight given to output

values in the modified version.

To conduct the experiments, both Shenzhen and Stanford
datasets were randomly divided, while preserving the propor-
tion of images per class, in two sets: training (80%) and val-
idation (20%). The algorithm implementation was developed
by the authors, in Matlab [61]. In this implementation, the
first task must be trained outside the main program, since the
algorithm already loads the AlexNet network pre-trained with
the first task. The hyperparameters during training of the first
task were: learning rate of 0.001, 20 epochs and batch size of
20.

Figure 2 shows the classification error evolution with the
epochs, in the training set and in the validation set. For both



networks, we chose the set of parameters which lead to the
local minimum error in the validation set, before it starts to
increase. The stop points are surrounded by a black circle on
both graphs.

Fig. 2. Evolution of error as a function of time for the Shenzhen (a) and
Stanford (b) datasets.

For the learning of the second task, all the hyperparameters
were the same that the authors used in their experiments:
learning rate of 0.001, 72 epochs in the warm-up phase, 72
epochs in the adjustment phase and batch size of 20.

Figures 3 and 4 show the error evolution with the epochs
for Experiment 1 and Experiment 2, respectively.

Fig. 3. Error evolution with the epochs. First task was to classify pneumonia
and second task was to classify tuberculosis.

In experiment 1, in the warm-up phase, the network quickly
reaches an error of approximately 25% in the new task
(classification of pneumonia with the Stanford dataset). When
all weights in the network are adjusted, the error in the new
task validation set starts to oscillate in a lower value (∼ 20%)
and error from the previous task (classification of TB with
Shenzhen base) starts to oscillate at a higher value (∼ 30%).
This behavior is expected, since the shared parameters were

Fig. 4. Error evolution with the epochs. First task was to classify pneumonia
and second task was to classify tuberculosis.

adequate for task 1 and started to be adjusted taking into
account both tasks. However, it is expected that the decrease
in the performance of task 1 would be greater if there was no
mechanism for the preservation of knowledge.

In experiment 2, when all weights in the network are
adjusted, the error in the previous task validation set (pneu-
monia classification with the Stanford dataset) considerably
drops to around 30%. The error in the first task (Shenzhen)
starts increasing, however, later it returns to the previous level
(∼ 20%). This shows the effect of the knowledge retention
mechanism implemented in the algorithm. Also, note that both
experiments ended up with similar performance in the tasks,
with an error of approximately 20% for ATB classification and
approximately 30% for pneumonia classification.

V. DISCUSSION AND CONCLUSION

This work presented an application of two lifelong machine
learning algorithms to the pneumonia and tuberculosis classi-
fications through chest x-ray images. The results show that it
is possible to keep the performance in both pneumonia and
TB classification with the LML paradigm.

Although one could propose two independent models, one
for each task, with similar performance, this paradigm is po-
tentially scalable for more tasks without the need to add a large
number of new parameters, as tasks share several parameters.
This feature may prove useful not only to reduce size of the
model (possibly speeding up its operation and reducing storage
demands) but also to share knowledge between tasks and allow
a continuous learning and improvement of models.

Proposals for future work include hyperparameter optimiza-
tion in LwF and ELLA, in order to allow a fair comparison
between them and other models in literature, tests with more
than two tasks and studies about model explainability. They
also include the development of a lifelong machine learning
model to learn continuously from experts feedback and applied
to a dataset of candidates for TBI treatment. This model may
be useful in reducing one of the sources of delay in starting



TBI treatment, which is the lack of expert doctors to issue a
radiological report to exclude the possibility of the individual
presenting ATB.
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