
Comparing Neural Network Models for
Photovoltaic Power Generation Prediction

1st Carlos Henrique Torres de Andrade
Computing Institute (IC)

Federal University of Alagoas (UFAL)
Maceió, Brazil
chta@ic.ufal.br

2nd Tiago Figueiredo Vieira
Computing Institute (IC)

Federal University of Alagoas (UFAL)
Maceió, Brazil

tvieira@ic.ufal.br

3rd Ícaro Bezzera Queiroz de Araújo
Computing Institute (IC)

Federal University of Alagoas (UFAL)
Maceió, Brazil
icaro@ic.ufal.br

4th Gustavo Costa Gomes de Melo
Computing Institute (IC)

Federal University of Alagoas (UFAL)
Maceió, Brazil

gustavocosta@ic.ufal.br

5th Erick de Andrade Barboza
Computing Institute (IC)

Federal University of Alagoas (UFAL)
Maceió, Brazil
erick@ic.ufal.br

6th Davi Bibiano Brito
Computing Institute (IC)

Federal University of Alagoas (UFAL)
Maceió, Brazil
davi@ic.ufal.br

7th Igor Cavalcante Torres
Engineering and Agricultural Sciences Campus (CECA)

Federal University of Alagoas (UFAL)
Maceió, Brazil

igor.torres@ceca.ufal.br

Abstract—Research on alternative energy sources has been
increasing for the past years due to environmental concerns
and the depletion of fossil fuels. Since photovoltaic generation
is intermittent, one needs to predict solar incidence or solar
power generation to alleviate problems due to demand surges in
conventional distribution systems. Many works have used Long
Short-Term Memory (LSTMs) to predict generation. However,
to minimize computational costs related to retraining and in-
ference, LSTMs might not be optimal. Therefore, in this work,
we compare the performance of MLP (Multilayer Perceptron),
Recurrent Neural Networks (RNNs), and LSTMs for the task
mentioned above. We used the energy produced by a photovoltaic
system measured throughout 2020 in the city of Maceió (Brazil),
taking into account periods of 2 hours for training to predict
the next 5-minutes. Hyperparameters were fine-tuned using an
optimization approach based on Bayesian inference to promote
a fair comparison. Results showed that the MLP has satisfactory
performance, requiring much less time to train and forecast. Such
results indicate that MLP models can be better when dealing
with a short-term forecast in specific contexts, for example, in
embedded systems for improved response time.

Index Terms—Multi-Layer Perceptrons, Recurrent Neural Net-
works, Renewable energy sources, PV power forecasting

I. INTRODUCTION

The natural depletion of fossil fuels worldwide boosts a
search for alternative energy sources to meet increasing de-
mands. In this context, new research and investments aimed at
improving renewable energy efficiency are increasing. Among
all the options, photovoltaic energy (PV) stands out as a clean,
inexhaustible, and environmentally friendly power source.

The authors are grateful for the support of the National Electric Energy
Agency (ANEEL) and the Equatorial Group of Energy.

According to the Ministry of Mines and Energy of Brazil [1],
renewable sources represented 83.6% of installed generation
capacity in Brazilian’s power generation matrix in April 2021
(hydraulic, biomass, wind, and PV), with PV responsible for
4.9% of total production. In addition, PV presented an installed
capacity growth, between April 2020 and April 2021, of
74.1%, reiterating its growing importance in energy generation
in Brazil.

Electric power generated by a PV panel depends on en-
vironmental factors such as solar irradiation and PV’s cell
temperature, which causes energy production to become un-
certain, generating doubts about its capacity, availability, and
reliability. Hence, using prediction models is essential to make
PV systems competitive against more traditional means of
energy production because they allow for better planning,
distribution, and economic return, bringing a vision of sta-
bility and reliability. In addition, the output power of PV
systems forecast enables systems to perform control actions,
compensate for fluctuations in solar radiation and increase the
efficiency of the solar power plant.

Variable forecasting is already widespread in the literature,
where computer models seek to forecast the most diverse
types of variables, from the price of a house (Lim, 2016
[2]) to the air quality in a room (Xie, 2009 [3]). Regarding
energy production, Sabino (2018) [4] conducted a study of
several techniques of autoregressive models for temperature
prediction, seeking to help the generation of photovoltaic
energy. Another type of model that is quite powerful for
this type of problem is the so-called support vector machine
(SVM). Sun (2015) [5] and Yang (2013) [6], worked with

this type of model for the prediction of temperature and solar
irradiation, respectively, both essential climatic variables for
the electrical production by the photovoltaic module.

Still related to the production of solar energy, one of the
techniques that have been standing out is artificial neural
networks (ANN). One of the most popular ANN is the
feedforward multilayer perceptron (MLP), whose efficiency is
demonstrated by Mellit (2010) [7] and Watetakarn (2015) [8]
for the prediction of solar irradiation, and Malki (2004) [9] for
the short-term prediction of the electrical power generated by
a photovoltaic module. Another ANN that has been gaining
much attention is the recurrent neural network (RNN), more
specifically the so-called long short-term memory (LSTM),
which can be attested by: Mahmoud (2017) [10], De (2018)
[11] and Liu (2021) [12].

Often works have tackled the problem of PV power gener-
ation using sophisticated recurrent neural networks (RNN) for
accurate prediction [13] [14] [15]. Since the computational
cost of a deep recurrent neural network with too many pa-
rameters can be prohibitively expensive to be embedded on a
small device, in this work, we aim at answering the following
question;

1) How complex does the network architecture need to
be to predict short-term power production demands
satisfactorily?

In order to answer the research question, we compared the
performances of MLP, simple RNN, and LSTM to predict five
minutes of power generation using the past 120 minutes, as per
İzgi (2012) [16] indicates that a five-minute horizon presents
the best results for short-term predictions. The hyperparame-
ters were fine-tuned to ensure we had the optimal (minimum)
error for each given architecture. Furthermore, the results were
compared between each other and to a naive baseline, showing
no significant reduction in error levels for PV power generation
prediction provided by models with recurrence. Therefore,
we conclude that lighter MLP is sufficient to perform the
prediction satisfactorily.

This work presents the following sections: Section 1, the
introduction is shown. Section 2 presents an overview of the
topologies of recurrent neural networks and the evaluation
metrics used. Section 3 presents the methodology, and the
results obtained are exposed and discussed in section 4.
Finally, in section 5, the conclusions about the work are
presented.

II. THEORETICAL FOUNDATION

A. Artificial Neural Network (ANN)

According to Haykin (2007) [17], the artificial neural net-
work is a parallel distributed processor formed by simple
processing units capable of acquiring knowledge and storing
it for future use. Artificial neural networks are often presented
as systems of interconnected neurons that can compute input
values simulating the behavior of biological neural networks.
Currently, there are several types of neural network architec-
tures but, in this work, we will address only the multilayer

perceptron (MLP), the simple recurrent networks (RNN), and
the long short-term memory (LSTM).

1) Multilayer Perceptron (MLP): MLP is a feedforward
artificial neural network. In other words, the signal flow
crosses the network from left to right and from layer to layer.
It can map non-linear relationships between input variables
and the output goal, thus solving classification and regression
problems.

In this topology, the network can have one or more hidden
layers, in which every neuron present is connected to all the
neurons in the previous layer, as shown in Fig. 1. The behavior
of each neuron in this architecture can be described by (1),
where xj are the inputs, Wkj their respective weights, bkj are
the bias, φ its activation function and yk its output.

yk = φ(

m∑
j=1

(Wkj · xj) + bk) (1)

Fig. 1. Structure of an MLP network [18].

2) Recurrent Neural Network (RNN): A simple recurrent
neural network differs from a feedforward neural network
because it presents feedback [17]. This feedback makes the
activation go through the entire model in a loop, which
allows the networks to perform temporal processing, making
them capable of remembering context. The behavior of this
recurrence is shown by (2) which the hidden state ht in each
layer at the instant of time t does not depend only on the
input xt but rather the combination of the input and the value
of the previous state. Then, after the bias bh is summed, it
passes through the activation function, usually the hyperbolic
tangent. Fig. 2 briefly illustrates the whole process, where,
finally, we have the output, which is given by (3).

ht = φ(Wxh · xt +Whh · ht−1 + bh) (2)

yt = Why · ht (3)

Fig. 2. Simple recurrent neural network [13].

3) Long Short-Term Memory (LSTM): Introduced by
Schmidhuber (1997) [19], the LSTM network is a modification
of the simple RNN, which seeks to solve the problem of
gradient dissipation (Vanishing Gradient Problem). This new
architecture makes it capable of updating the weights corre-
sponding to the initial states of the sequences, thus learning
long-term dependencies.

Fig. 3. Basic unit of a long short-term memory (LSTM). [13]

At each time step t, it tries to decide whether to forget the
current information, approaching it to zero or not, according to
(4). This happens mainly due to the operation of the forgetting
and updating gates that seek to decide which information is
kept in the cell state and which input values to be updated
by the LSTM blocks, respectively, where (5) and (6) describe
the elements that constitute them, being h the concatenation
of h

(k−1)

t and h
(k)

t−1; W (k) is the weight matrix; σ the sigmoid
function and tanh the hyperbolic tangent function. Finally, we
have the output calculation of the current cell ŷt, given by (7)
and (8).

c
(k)
t = f � c(k)t−1 + i� c (4)

i, f , o = σ(W (k)h) (5)

c = tanh(W (k)h) (6)

h
(k)

t = o� c(k)t (7)

ŷt = σ(h
(k)

t) (8)

B. Evaluation Metrics

The metrics mean absolute error, root mean square error,
and standard deviation are used to evaluate the prediction
models developed in this work. The mean absolute error is
used as the loss function in the training phase of all ANN
presented in this work. In addition, the number of trainable
parameters and the inference time as ways to evaluate the
complexity and usability of the ANN. All metrics are described
below.

1) Mean Absolute Error (MAE): It is a model evaluation
metric used primarily with regression models. The MAE of
a model, (9) is the average of the absolute values of the
individual prediction errors across all instances of the test
dataset, where each prediction error is the difference between
the actual value and the predicted value.

MAE =
1

N
(

N∑
i=1

|yi − ŷi|) (9)

2) Root Mean Squared Error (RMSE): It is the square root
of the mean square of all errors, as shown in (10). The use of
RMSE is widely used in the literature and is considered an ex-
cellent general purpose error metric for numerical predictions
[20].

RMSE =

√√√√ 1

N

N∑
i=1

(yi − ŷi)2 (10)

3) Standard Deviation (STD): The standard deviation is
given by (11) and tells us the average amount of variability in
the prediction error and can be used to measure the confidence
in the statistical conclusions of the models.

STD =

√√√√ 1

N − 1

N∑
i=1

(ei − ē)2 (11)

4) Number of Trainable Parameters (NTP): As the name
describes, it represents the number of parameters that will be
calculated during the training process of the artificial neural
networks. It is a way to estimate how complex the network is
and how time-consuming the training will be.

5) Inference Time (IF): It stands for the time a model takes
to produce its output. In the context of this work, to ensure
that it is correctly calculated, the inference time consists of
the average of the time it took to predict one hundred random
samples.

III. METHODOLOGY

A. Database

The database used comprises thirteen variables captured
throughout the year 2020, during day and night, sampled
every 60s. This data was acquired by a solarimetric station
equipped with: a CR1000 data logger (an electronic device

that records data over time), pyranometer, humidity sensor,
rain gauge, wind direction indicator, anemometer, thermistors,
current sensors, voltage sensors, and power sensors. However,
as the forecasts in the project are based on time series, only
the variable of interest is needed. Thus, the power generated
by the photovoltaic module was the only one used.

The Tab. I shows the main characteristics of the 523,058
samples of electrical power generated by the photovoltaic
module obtained. The main characteristics of the 523,058
samples of electrical power generated by the photovoltaic
module were obtained. Another critical factor of the database
is that it has a reasonable amount of outliers, which was
expected due to sensor measurement errors. This fact can be
observed in Fig 4.

TABLE I
MAIN CHARACTERISTICS OF THE DATABASE.

characteristic
Maximum Minimum Average Standard deviation

value 7, 807 W −110.1 W 1, 006.517 W 1, 437.447 W

Fig. 4. Boxplot of the database. It is noticeable that the median is close to
zero due to many samples acquired during the night.

B. Data Analysis and Preprocessing

Initially, an analysis and preprocessing of the available
data were carried out, which were obtained from the afore-
mentioned solarimetric station. It was observed that some
given instances had missing or negative values resulting from
technical problems and sensor noise. Such missing values
were removed, and negative were truncated to zero. Outliers
associated with measurements performed during the night
(moments with zero solar irradiation and consequently no
power generation) were left in the database because the models
must operate under such conditions in day-to-day use.

For each sample, the 120 previous ones were grouped as
a sequence to form the input units and the subsequent five

samples as the respective output. Afterward, the database was
divided by reserving the last 10% of the data for testing.
Then, the first 90% data were grouped into eight distinct sets
for hyperparameter tunning, with 7 for training and 1 for
validation. In the end, the test set enables a vision into the
network’s performance on data that were not used during the
training and validation process, also simulating the network’s
performance in an actual operating scenario.

C. Prediction Models

For the implementation of all neural networks in this work,
the programming language Python 3.8 was used, as well as
open-source libraries Keras [21] and scikit-learn [22] as
they facilitate the implementation of well-performing neural
networks.

The first model created was a “naı̈ve” prediction model, or
baseline. In baseline, the forecast is given by the variable value
in the day before at the same time. Once its construction was
completed, forecasts were made throughout the database. The
three metrics: MAE, RMSE, and STD, were used, together
with actual values, to evaluate the method’s performance.

Three neural network architectures were used: MLP, simple
RNN, and LSTM. As the purpose is to predict five minutes of
power generation, using the values of the previous two hours,
all developed networks receive vectors of one hundred and
twenty consecutive time steps and output a vector with the
five following time steps through the output layer (Dense).
The main structural differences between the models were in
their hidden layers, where each one has specific layers of its
type and varies in the amount of them. Figure 5 describes the
general structure of the created models.

INPUT

HIDDEN
LAYERS

(MLP, RNN OR LSTM)

OUTPUT

DENSE
LAYER

MODEL

Fig. 5. General neural network architecture developed for the present work.

Initially, choosing the number of hidden layers and how
many cells would compose them were performed empirically,
using the results obtained from the cross-validation. To this
end, Keras Tuner1, a library that helps to choose the ideal set
of hyperparameters for the neural network, was used to find

1https://keras.io/keras tuner/

https://keras.io/keras_tuner/

a final model close to the optimum for each architecture. The
following setup was used:

• MLP:
– Number of hidden layers between 1 to 6;
– Neurons from 32 to 256 with 16 increase at each

step, and;
– 5 Neurons in the output layer;
– Learning rate between 1e-3 and 1e-4;
– Rectified Linear Unit (ReLU) as hidden layers acti-

vation function, and;
– Linear as output layer activation function.

• Simple RNN:
– Number of hidden layers between 1 to 6;
– Neurons from 32 to 256 with 16 increase at each

step;
– 5 Neurons in the output layer;
– Learning rate between 1e-3 and 1e-4;
– Hyperbolic tangent (TanH) as hidden layers activa-

tion function, and;
– Linear as output layer activation function.

• LSTM:
– Number of hidden layers between 1 to 3;
– Neurons from 32 to 256 with 32 increase at each

step;
– 5 Neurons in the output layer;
– Learning rate between 1e-3 and 1e-4.
– Hyperbolic tangent (TanH) as hidden layers activa-

tion function, and;
– Linear as output layer activation function.

As shown, the possibilities for the LSTM were reduced to
1 to 3 hidden layers with neurons from 32 to 256 with 32
increase for each step. This reduction was due to the more
significant time required for the tuning process in this case

D. Training and Testing

For training, using the backpropagation through time
(BPTT) algorithm, of all ANN, sequences of the previous 120
minutes were used as inputs, and sequences of the next five
minutes were used as outputs, both normalized between 0 and
1. In addition, Adam was used as the optimizer as it is well-
suited to a wide range of non-convex optimization problems
in the field of machine learning [23], the MAE was the loss
function, and the batch size was 512. Two stopping criteria
were used to prevent overfitting: when training reaches 128
epochs or when the loss function has an improvement smaller
than 10−9 for ten consecutive epochs (Early Stoping).

As stated previously, 8-fold cross-validation was used. Thus,
eight training sessions were performed for each model using
a separate subset for validation and the rest for training.
Afterward, the performance was evaluated on the test set
to assess the model’s generalization capabilities at predicting
unseen data. This approach is a common one since the valida-
tion dataset is considered during training for hyperparameter
adjustment.

Optimizing hyperparameters is a particularly important
problem in Deep Learning due to its tendency to overfitting
as a consequence of a high capacity provided by the usage of
many hidden layers. Traditional approaches are grid search,
random search and to ensure a balanced comparison between
different models, we applied a model search based on Bayesian
inference which maps the hyperparameters to a probability
score on the objective function. Unlike Random Search and
Hyperband models [24], Bayesian Optimization keeps track of
its past results and uses it to improve the probability model to
guide the search for better values.

IV. RESULTS AND DISCUSSIONS

Several configurations were considered for the MLP, RNN,
and LSTM networks, as discussed in the previous section.
Thus, given many evaluated models, the best-performing mod-
els were chosen of only one hidden layer of each type to
compare with the baseline and the models found by the
hyperparameter optimizer. The best configuration found em-
pirically for the one-layer model were 120 neurons, 60 and 120
neurons for the MLP, RNN, and LSTM networks, respectively,
all with a learning rate of 10−3. In the case of networks
found by Keras Tuner, the final configuration found for MLP
contains four hidden layers of 96, 96, 224, and 32 neurons,
respectively, with a learning rate of 10−4. In comparison,
the final configuration found for the simple RNN contains
six hidden layers of 32, 32, 256, 32, 256, and 32 neurons,
respectively, and also with a learning rate of 10−4. At the
same time, for the LSTM, it presented two hidden layers of
128 and 64 neurons, respectively, and a learning rate of 10−4.

The performance of each model can be observed in Tab. II.
One can see that the neural network models are better than
the baseline. The optimized MLP, for example, showed an
improvement of approximately 71.026% in MAE and 70.423%
in RMSE compared to the baseline. Among the neural network
models, the results are very similar. The RNN network opti-
mized by Keras Tuner presented the best metric values in the
test phase, followed close by the optimized MLP.

Given the proximity of reliability of all ANNs, it is crucial
to analyze their usability and complexity. Table III presents the
NTP, IF, and MAE for each neural network model. One can
see that the optimized simple RNN, despite the best metrics, is
the one with the worst inference time and the most significant
number of trainable parameters. Much of this is because the
configuration of RNN is the deepest of all. On the other
hand, the optimized MLP presented the best inference time,
about thirteen milliseconds faster than the optimized simple
RNN, and with a considerably smaller number of trainable
parameters, about 114.816 parameters of difference, with a
very close MAE. Thus, it can be said that the optimized MLP
was the network model that delivers the best trade-off between
performance and simplicity.

About LSTM, we observed a performance similar to the
other two, even with its optimization in Keras Tuner having a
more limited search space. Since the great advantage of LSTM
networks is their ability to learn extended temporal contexts, in

our prediction model, which only uses one hundred and twenty
minutes elapsed, this advantage may not be well explored.

Then, to ensure that the prediction enhancements that the
ANNs models provide are statistically significantly different
from the baseline model, t-tests (Welch (1947) [25]) of the
MAE were performed using random samples of the test
dataset. The result of the optimized MLP and the baseline
can be observed in the Tab. IV, and it shows that the p-value
is less than 0.05. Consequently, we can deny the hypothesis
that the mean of the model’s MAE is equal to the baseline. In
other words, the forecast results made by the ANN models and
the baseline model are significantly different. Furthermore, all
the tests from the other models gave out similar results.

In the analysis of the forecasts of each minute, it was noticed
that the MAE grows the farther away the predicted minute
is, which can be seen in Fig. 6 that shows the evaluative
metrics of every minute of the optimized MLP. An MAE
increase of 54.56% between the first and fifth minute can be
observed, in addition to a notorious increase in the STD as
the forecast horizon increases, demonstrating that the error
dispersion around the mean grows. Figure 7 confirm this
statement by showing the error dispersion graph for the first
minute (Fig. 7a) and the error dispersion graph for the fifth
minute (Fig. 7b). In these graphs, the horizontal axis represents
the real values generated by the solar panels. The vertical axis
is the values predicted by the network. The red line represents
the ideal case in which the neural network can predict all

TABLE II
MEAN ABSOLUTE ERROR (MAE), ROOTED MEAN SQUARED ERROR

(RMSE), AND STANDARD DEVIATION (STD) MEASURED (WATTS) IN THE
TRAINING, VALIDATION, AND TEST PHASE OF EACH MODEL.

MAE RMSE STD

Baseline 359.972 W 779.223 W 779.222 W
One Hidden Layer MLP

Training 111.054 W 328.128 W 327.502 W
Validation 111.489 W 235.701 W 234.881 W
Test 106.121 W 297.771 W 297.643 W

MLP optimized
Training 107.659 W 322.565 W 321.847 W
Validation 107.305 W 231.406 W 230.470 W
Test 104.300 W 307.345 W 307.220 W

One hidden layer simple RNN
Training 116.869 W 342.489 W 342.148 W
Validation 116.282 W 245.317 W 245.109 W
Test 109.304 W 303.073 W 302.565 W

Simple RNN optimized
Training 113.442 W 332.453 W 331.984 W
Validation 112.902 W 238.474 W 238.104 W
Test 103.077 W 294.561 W 294.109 W

One hidden layer LSTM
Training 115.469 W 337.309 W 336.946 W
Validation 114.908 W 241.901 W 241.726 W
Test 108.073 W 303.225 W 303.162 W

LSTM optimized
Training 114.731 W 331.269 W 332.046 W
Validation 113.902 W 241.901 W 241.726 W
Test 106.809 W 299.220 W 299.047 W

TABLE III
NUMBER OF TRAINABLE PARAMETERS (NTP), INFERENCE TIME (IF),

AND MEAN ABSOLUTE ERROR (MAE) OF EACH NEURAL NETWORK
MODEL.

NTP IF MAE

MLP 15.125 20.960 ms 106.121 W
MLP Optimized 50.021 20.887 ms 104.300 W

RNN 4.025 22.806 ms 109.304 W
RNN Optimized 164.837 33.932 ms 103.077 W

LSTM 59.165 24.693 ms 108.073 W
LSTM Optimized 116.293 27.970 ms 106.809 W

TABLE IV
RESULTS OF T-TEST OF THE MAE FROM THE OPTIMIZED MLP AND THE

BASELINE MODEL.

t test
t value p value Tail Degree of freedom

value 85.878 ≤ 0.05 Two-sided 25, 309

values without error.

Fig. 6. Mean Absolute Error (MAE) and Standard Deviation (STD) in the
test phase of the optimized MLP model as a function of the minute prediction
value.

Finally, even with all the reservations made above, it can be
said that the models produced good results, presenting a small
error if we take into account the power scale of our database,
which has values that reach up to seven thousand watts. To
illustrate this, we separated the one-day test prediction of the
best model, shown in Fig. 8. The series represented by the red
line is the actual power values generated by the photovoltaic
panels. In contrast, the series represented by the blue dotted
line comprises the values predicted by the network. Visually
it is possible to see that the network achieved a reliable
performance throughout the day, even not tracking perfectly
in some points.

V. CONCLUSIONS

The present work compares MLP, simple RNN, and LSTM
models, for the short-term prediction of electric energy gen-
eration by a photovoltaic system, through the time series ap-
proach. The results presented showed a very close performance
among all models, with acceptable mean absolute error values,
given the scale of the worked data. Furthermore, the study
demonstrated that the models could predict a future five-
minute power horizon using the power values of two past
hours, even with an increase in error as the forecast horizon
increases.

Discussing the error metrics purely, the model that presented
the best result was an RNN model, which was expected,
given its favorable characteristics for time series. However,
the MLP models returned results very close to the best RNN.
By considering the usability and complexity of the models,
it is possible to observe an advantage of the MLP model to

(a) First minute prediction

(b) Fifth minute prediction

Fig. 7. Optimized MLP’s dispersion graph when prediction (a) one minute
ahead and (b) five minutes ahead.

(a) First minute prediction

(b) Fifth minute prediction

Fig. 8. Power generation predicted by the optimized MLP (blue dots) and the
real power values (red line) of the day 26/10/20, considering (a) the forecast
of the first minute and (b) the forecast of the fifth minute.

the RNN, as it managed to achieve a shorter inference time
and still takes considerably less time to train. In addition,
the study made it clear that LSTM was underutilized in the
context of short-term forecasting. Thus, it can be concluded
that there is no need for very complex architectures for
short-term production forecasts, especially in specific contexts
where inference time and training time are important, e.g., for
embedded systems.

As a continuation of the work, we intend to observe the
underutilization of the LSTM, seeking to make predictions
using a more extensive temporal context than what was used.
In addition, the idea is to apply the forecast models in the
solarimetric station and observe how they behave in practice.

REFERENCES

[1] Brazilian Ministry of Mines and Energy (MME),
“Monthly bulletin on monitoring the brazilian

electrical system,” Apr. 2021. [Online]. Available:
https://www.gov.br/mme/pt-br/assuntos/secretarias/energia-eletrica/
publicacoes/boletim-de-monitoramento-do-sistema-eletrico/2021/
boletim-de-monitoramento-do-sistema-eletrico-abr-2021.pdf

[2] W. T. Lim, L. Wang, Y. Wang, and Q. Chang, “Housing price
prediction using neural networks,” in 2016 12th International
Conference on Natural Computation, Fuzzy Systems and Knowledge
Discovery (ICNC-FSKD). IEEE, Aug. 2016. [Online]. Available:
https://doi.org/10.1109/fskd.2016.7603227

[3] H. Xie, F. Ma, and Q. Bai, “Prediction of indoor air quality using
artificial neural networks,” in 2009 Fifth International Conference on
Natural Computation, vol. 2, 2009, pp. 414–418.

[4] E. R. C. Sabino, “Previsão de radiação solar e temperatura ambiente
voltada para auxiliar a operação de usina fotovoltaicas,” 2018. [Online].
Available: https://repositorio.ufpe.br/handle/123456789/36837

[5] W. T. Lim, L. Wang, Y. Wang, and Q. Chang, “Housing price
prediction using neural networks,” in 2016 12th International
Conference on Natural Computation, Fuzzy Systems and Knowledge
Discovery (ICNC-FSKD). IEEE, Aug. 2016. [Online]. Available:
https://doi.org/10.1109/fskd.2016.7603227

[6] Y. Sun, F. Wang, Z. Mi, H. Sun, C. Liu, B. Wang, J. Lu, Z. Zhen,
and K. Li, “Short-term prediction model of module temperature for
photovoltaic power forcasting based on support vector machine,” in
International Conference on Renewable Power Generation (RPG 2015),
2015, pp. 1–6.

[7] A. Mellit and A. M. Pavan, “A 24-h forecast of solar irradiance using
artificial neural network: Application for performance prediction of a
grid-connected pv plant at trieste, italy,” vol. 84, no. 5, 2010, pp.
807–821. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S0038092X10000782

[8] S. Watetakarn and S. Premrudeepreechacharn, “Forecasting of solar
irradiance for solar power plants by artificial neural network,” in 2015
IEEE Innovative Smart Grid Technologies - Asia (ISGT ASIA), 2015,
pp. 1–5.

[9] H. A. Malki, N. B. Karayiannis, and M. Balasubramanian, “Short-term
electric power load forecasting using feedforward neural networks,”
vol. 21, no. 3, 2004, pp. 157–167. [Online]. Available: https:
//onlinelibrary.wiley.com/doi/abs/10.1111/j.1468-0394.2004.00272.x

[10] C.-H. Liu, J.-C. Gu, and M.-T. Yang, “A simplified lstm neural networks
for one day-ahead solar power forecasting,” vol. 9, 2021, pp. 17 174–
17 195.

[11] V. De, T. T. Teo, W. L. Woo, and T. Logenthiran, “Photovoltaic power
forecasting using lstm on limited dataset,” in 2018 IEEE Innovative
Smart Grid Technologies - Asia (ISGT Asia), 2018, pp. 710–715.

[12] M. Abdel-Nasser and K. Mahmoud, “Accurate photovoltaic power
forecasting models using deep lstm-rnn,” in Neural Computing and
Applications). Springer London, Jul. 2019. [Online]. Available:
https://doi.org/10.1007/s00521-017-3225-z

[13] I. Gabriel, G. Gomes, I. Araujo, E. Barboza, T. Vieira, and D. Brito,
“PrevisÃo de geraÇÃo fotovoltaica a partir de dados meteorolÓgicos
utilizando rede lstm,” 11 2020.

[14] F. Harrou, F. Kadri, and Y. Sun, “Forecasting of photovoltaic solar
power production using lstm approach,” in Advanced Statistical
Modeling, Forecasting, and Fault Detection in Renewable Energy
Systems, F. Harrou and Y. Sun, Eds. Rijeka: IntechOpen, 2020.
[Online]. Available: https://doi.org/10.5772/intechopen.91248

[15] J. Zhang, Y. Chi, and L. Xiao, “Solar power generation forecast based
on lstm,” in 2018 IEEE 9th International Conference on Software
Engineering and Service Science (ICSESS), 2018, pp. 869–872.

[16] E. İzgi, A. Öztopal, B. Durna, M. Kaymak, and A. Şahin, “Short–mid-
term solar power prediction by using artificial neural networks,” vol. 86,
02 2012, p. 725–733.

[17] S. Haykin, “Redes neurais: Princı́pios e prática.” Artmed,
2007. [Online]. Available: https://books.google.com.br/books?id=
bhMwDwAAQBAJ

[18] I. Goodfellow, Y. Bengio, and A. Courville, “Deep learning.” MIT
Press, 2016. [Online]. Available: http://www.deeplearningbook.org

[19] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,”
vol. 9, no. 8, 11 1997, pp. 1735–1780. [Online]. Available:
https://doi.org/10.1162/neco.1997.9.8.1735

[20] S. Neill and M. R. Hashemi, “Fundamentals of ocean renewable energy:
Generating electricity from the sea,” 06 2018.

[21] F. Chollet, “keras.” GitHub, 2015. [Online]. Available: https:
//github.com/fchollet/keras

[22] L. Buitinck, G. Louppe, M. Blondel, F. Pedregosa, A. Mueller, O. Grisel,
V. Niculae, P. Prettenhofer, A. Gramfort, J. Grobler, R. Layton, J. Van-
derplas, A. Joly, B. Holt, and G. Varoquaux, “Api design for machine
learning software: Experiences from the scikit-learn project,” 09 2013.

[23] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
12 2014.

[24] L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar,
“Hyperband: A novel bandit-based approach to hyperparameter opti-
mization,” vol. 18, 04 2018, pp. 1–52.

[25] B. L. Welch, “The generalization of ‘student’s’ problem when several
different population variances are involved,” vol. 34, no. 1/2. [Oxford
University Press, Biometrika Trust], 1947, pp. 28–35. [Online].
Available: http://www.jstor.org/stable/2332510

https://www.gov.br/mme/pt-br/assuntos/secretarias/energia-eletrica/publicacoes/boletim-de-monitoramento-do-sistema-eletrico/2021/boletim-de-monitoramento-do-sistema-eletrico-abr-2021.pdf
https://www.gov.br/mme/pt-br/assuntos/secretarias/energia-eletrica/publicacoes/boletim-de-monitoramento-do-sistema-eletrico/2021/boletim-de-monitoramento-do-sistema-eletrico-abr-2021.pdf
https://www.gov.br/mme/pt-br/assuntos/secretarias/energia-eletrica/publicacoes/boletim-de-monitoramento-do-sistema-eletrico/2021/boletim-de-monitoramento-do-sistema-eletrico-abr-2021.pdf
https://doi.org/10.1109/fskd.2016.7603227
https://repositorio.ufpe.br/handle/123456789/36837
https://doi.org/10.1109/fskd.2016.7603227
https://www.sciencedirect.com/science/article/pii/S0038092X10000782
https://www.sciencedirect.com/science/article/pii/S0038092X10000782
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1468-0394.2004.00272.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1468-0394.2004.00272.x
https://doi.org/10.1007/s00521-017-3225-z
https://doi.org/10.5772/intechopen.91248
https://books.google.com.br/books?id=bhMwDwAAQBAJ
https://books.google.com.br/books?id=bhMwDwAAQBAJ
http://www.deeplearningbook.org
https://doi.org/10.1162/neco.1997.9.8.1735
https://github.com/fchollet/keras
https://github.com/fchollet/keras
http://www.jstor.org/stable/2332510

	Introduction
	Theoretical Foundation
	Artificial Neural Network (ANN)
	Multilayer Perceptron (MLP)
	Recurrent Neural Network (RNN)
	Long Short-Term Memory (LSTM)

	Evaluation Metrics
	Mean Absolute Error (MAE)
	Root Mean Squared Error (RMSE)
	Standard Deviation (STD)
	Number of Trainable Parameters (NTP)
	Inference Time (IF)

	Methodology
	Database
	Data Analysis and Preprocessing
	Prediction Models
	Training and Testing

	Results and Discussions
	Conclusions
	References

