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Abstract—Since 1995, the Brazilian government has regulated
a differentiated model for selling electricity with the objective of
stimulating free competition. Widespread in recent years, with
less restrictive adhesion requirements, the so-called free market
allows the consumer to customize the contract, contemplating
price, demand and supply period, established in a flexible way.
Thus, the customer has the freedom to negotiate according to
his needs, weighing costs and benefits. This paper describes the
migration process from the Regulated Contracting Environment
(RCE) to the Free Contracting Environment (FCE) and the
savings achieved by a consumer of subgroup A4 and green
tariff mode in the concession area of Light, which operates in
the state of Rio de Janeiro. Statistical methods and artificial
neural networks were employed in forecasting the consumption
series, in the period from 2016 to 2019, to identify the best
contracting conditions. Specifically, the long and short-term
memory networks (LSTM) obtained the best performance with
validation error of less than 1%. With simulated RCE data, we
show the financial advantage consumers would have if they had
not yet migrated to the FCE. These results make it clear that
there is no motivation to remain in the RCE.

Index Terms—Free energy market, time series forecasting,
neural networks.

I. INTRODUCTION

With an installed capacity of more than 160 GW, the
Brazilian electric sector market is one of the ten largest in
the world and represents about 3% of the Gross Domestic
Product (GDP) [1].

The expansion of the electrical sector in Brazil, motivated
by economic development and by the offer of new renewable
energy sources, was fundamental for the creation of the free
energy contracting model. The standard for commercialization
of state-owned energy showed itself to be unsustainable and
inefficient in the face of new economic and social demands,
highlighting the need for the implementation of a competitive

market, with increased efficiency of the energy companies, as
well as allowing a clearer budget forecast with savings for the
consumer [2].

According to the Brazilian Association of Energy Sellers
(ABRACEEL) [3], in July 2020, about 80% of Brazil’s
industrial energy consumption was already part of the free
market. This represented 32% of all electricity consumption
in the country, and with a tendency to increase. Data released
recently by the Chamber of Commercialization of Electrical
Energy (CCEE) [4] show that, despite the restrictions imposed
in large capital cities as a measure to contain the advance of
COVID-19, the volumes consumed in the first month of the
year followed the trend of the end of 2020. The Regulated
Contracting Environment (RCE) fell by 0.5%, while the Free
Contracting Environment (FCE) increased by 10.7%. This
has been consolidated as a solution for both consumers and
generators.

In the FCE, the consumer is the one who defines the
contracting strategy and decides how to purchase electricity.
The greatest risk is the volatility of the price of electrical
energy, especially during periods of drought. Besides making
quotations with several energy suppliers and also closing short
or long term negotiations with defined prices and readjust-
ments, the consumer needs to assess his consumption profile
and evaluate the financial parameters to perform the migration
with less risk.

In order to establish the amount of energy and the contract
period, tools must be used to estimate consumption with
the lowest percentage of error, aiming to reduce expenses
with electricity resulting from the wrong choice of the best
alternative in the purchase of energy. Thus, in this work,
forecasts of the consumption series of a consumer of subgroup
A4 and green tariff mode, in the concession area of Light,



which operates in the state of Rio de Janeiro, were performed
in the period from 2016 to 2019, with long and short-term
memory neural networks (LSTM) and with the autoregressive
integrated and moving average statistical model (ARIMA).
Next, the expenses that the consumer would have in the RCE
were simulated. And finally, the financial evaluation of the
migration project to the FCE, if the consumer were still in the
RCE.

The remainder of this paper is divided into seven more sec-
tions. The second section outlines the related work on systems
with research studies to forecast electricity consumption. The
third section presents the Brazilian Electrical Energy Market,
from the standpoint of the types of consumers. The fourth
section details the Free Energy Market. The fifth section briefly
reviews the fundamentals of economic evaluation and time
series forecasting. The sixty section presents the methodology
used in this work to perform the evaluation for migration from
RCE to FCE. The seventh section describes the Case Study
and, finally, the last section discusses the results obtained and
presents perspectives for further work.

II. RELATED WORKS

According to the international electric power freedom rank-
ing (ABRACEEL), more than fifty countries have already
reorganized their electrical systems, shifting from a verti-
cally integrated structure of state companies to a structure
of separate businesses (unbundling) [5]. With this regulatory
change, competition was introduced for the generation and
retail businesses. The generators comprise the market supply,
while the retailers aggregate energy demands, which they then
deliver to end users. Determining the daily price of electricity
is essential for the functioning of this new market.

Including the electricity price, the prediction of time series
data applied to the energy sector has numerous useful appli-
cations. And in general, an accurate load forecasting is the
basis for operation, expansion, and electric power system’s
reinforcement planning process.

Techniques for evaluating the time series are discussed using
statistical traditional methods and AI-based methods. Autore-
gressive Integrated Moving Average (ARIMA) [6] is one of
the most widely used methods for time series forecasting.
On the other hand, artificial neural networks, fuzzy systems,
support vector machines, and evolutionary computation are
Computational Intelligence models [7] that have flexibility
and the capacity to handle complex and non-linear data. In
electricity consumption forecasting systems, such models have
high accuracy, although the literature present few studies on
the migration of consumers to the free market.

III. BRAZILIAN ELECTRICAL ENERGY MARKET

The electricity sector is composed of several segments that
are organized from generation to distribution. At the end of this
production chain are the consumers who, in turn, are classified
into groups related to the load and the energy supplier [8].

The following will briefly describe the existing power
contracting environments and models.

A. Environments and electrical energy contracting models

In the RCE or captive market, consumers are restricted to
buying energy from companies that hold the concession right.
Therefore, their purchase is linked to mandatory contracting
with the distributor in the region where they are located.
The tariffs for energy consumption are fixed by the National
Electric Energy Agency (ANEEL in the Portuguese acronym)
and cannot be negotiated. In the RCE are all residential
consumers, as well as some commercial, industrial, and rural
consumers [9].

On the other hand, the FCE or free market is characterized
as an environment in which consumers can choose to purchase
energy from various generating sources, exercising the right to
portability and the effective reduction in the cost of energy. In
this environment, there are two types of consumers: free and
special. The latter have the option to negotiate with suppliers
and the conditions of energy contracting [9].

B. Captive Consumers

These are consumers that belong to the RCE. They do not
have the freedom to choose their supplier, and are therefore
subject to the payment of the tariff determined by ANEEL.
They are also susceptible to the variations of the tariff flags.
In this case, consumers are served by the energy distributor in
the region where they are located [9].

C. Free Consumers

They have at least 1,500 kW of contracted demand and can
buy energy from incentivized or conventional sources, from
any generation source, connected to any voltage [10].

D. Special Consumers

They have contracted demand equal to or greater than 500
kW and less than 1,500 kW, regardless of voltage level.
They can contract energy only from wind, solar, biomass,
small hydroelectric plants or hydraulic plants of companies
with power equal to or less than 30,000 kW, the so-called
special sources of energy or sources of stimulated energy.
The contracting of this type of energy is linked to a discount
of 50% to 100% in the value of the Distribution System
Utilization Tariff (TUSD in the Portuguese acronym). This
is an incentive that the government makes available for the
expansion of these generating sources in the National Inter-
connected System (SIN) [10].

IV. FREE ENERGY MARKET

Having established the characteristics of the free energy
market, it is necessary to highlight the advantages, risks, and
the process of joining this type of contracting modality.

A. Benefits of the free energy market

Some advantages in migrating to the FCE include:
• Reduction in the cost of energy;
• Cost predictability;
• Tariff flags are not applicable to free consumers;
• Purchase of energy from sustainable sources;
• Fixed price for peak and off-peak hours.



B. Risks associated with the FCE

One of the biggest risks in the FCE is the non-management
of short and long term prices: inadequate planning, when
contracting the amount of energy, may result in the consumer
being exposed to the weekly Difference Settlement Price
(DSP), used in energy buying and selling operations in the
short term market, also known as the spot market. This price
is based on the Marginal Operation Cost (MOC) and is mainly
influenced by the climatic conditions (rainfall) and the load
increase in the system [11].

The DSP is stipulated every week by the CCEE, limited by
a maximum and minimum amount. It defines the value of 1
MWh additionally produced and expected for the following
week of operation. Its value is divided by load level and
submarket and equals the generation cost of the next thermal
plant that will dispatch energy at the time. Thermoelectric
plants depend on fuels and their prices are higher than those
of hydroelectric plants, thus directly affecting the cost of
electricity generation in the country.

It can be seen in Fig. 1 that the DSP follows the MOC
profile for average values, except for the months when the
MOC exceeds the DSP. When this occurs, the difference is
converted into charges [12].

Figure 1. Average MOC and DSP in the Southeast/Center-West submarkets.

C. Free market adhesion process

The evaluation of the voltage and demand requirements is
a primary factor for adhesion to the FCE. The consumer must
have a minimum contracted demand of 500 kW to become a
special consumer.

There is also the possibility of migration by communion,
in which all the units of a given consumer, with the same
National Register of Legal Entities (CNPJ, in Portuguese), in
the same concession area of the energy distributor or located
in contiguous areas (without separation by public roads), may
aggregate loads to reach the minimum demand level required
to become a special consumer, such as, for example, a network
of stores with demand levels lower than 500 kW, but which,
when added together, reach the required level. On the other
hand, the requirement to become a free consumer is 2 MW

of demand per unit. In this category there is no possibility of
migration by communion [9].

The analysis of the current contracts with the distributor
should be reviewed, because they are valid for 12 months
on the energy supply. These must be terminated 6 months in
advance of the migration. After the analysis of the contracts
in effect, the consumer should compare the forecasts of
electricity expenses in the free contracting environment and
in the regulated environment, making a comparison of these
data.

Next, if the consumer decides to migrate to the FCE, he
must send a letter to the distributor, informing about the
termination of the current contracts. If the current contract is
terminated early, the consumer must pay for its termination.

The next step consists in acquiring energy in the FCE,
through Energy Commercialization Contracts in the Free Con-
tracting Environment (ECCFE) and/or Incentivized Energy
Commercialization Contracts (IECC). The contract can be
signed by commercializing agents, generators or other con-
sumers [9].

Subsequently, the Measurement and Billing System (MBS)
is adapted. At this stage of the migration process it is essential
that consumers perform the adequacy according to the network
procedure [9].

Last but not least important, it is necessary to adhere to the
Chamber of Commercialization of Electrical Energy (CCEE)
and perform the modeling of the energy contracts acquired in
the FCE, according to CCEE’s commercialization procedures.
As of the adhesion, the monthly payment of the associative
contribution to the CCEE becomes compulsory, referring to the
operational costs that are prorated among the agents according
to the volume of energy negotiated by each one.

V. THEORETICAL BACKGROUND

This section presents the description of the techniques
considered to measure the savings that the free trading
model provides and the evaluation of the energy consumption
forecasts. The traditional evaluation metrics that will allow
comparing such forecasting models based on artificial neural
networks with the autoregressive integrated moving average
model (ARIMA) are presented.

A. Economic evaluation

The process of migration to the FCE, as described above,
presents the need for the initial investment for the process of
adapting the MBS, according to the Distribution Procedures
and the Commercialization Procedures of the National Electric
System Operator (NSO), in addition to the specific legislation
in force [13].

The MBS adaptation takes into consideration the needs in
which the consumer’s substation is located, since part of the
necessary adaptations are the consumer’s responsibility.

In the calculation of the economic viability for migration to
the FCE, the monthly expenses with the new energy supplier
and the monthly revenue of the project based on the savings
obtained in relation to what was paid to the concessionaire



are also included. This calculation requires the estimation of
monthly consumption at the time of the contract to be signed.

B. Time series forecasting

Since energy consumption is variable, it is necessary to per-
form studies related to the historical behavior of the consumer
at different times. The fundamental part of this analysis is to
determine the amount of energy to be contracted, linked to a
certain effective purchase period. Different approaches can be
employed for forecasting, including the ARIMA model and
artificial neural networks.

C. ARIMA Model

The Box-Jenkins methodology, also known as Autoregres-
sive Integrated Moving Average - ARIMA (p, d, q) is a classic
statistical model for time series forecasting.

It consists of fitting integrated moving average autoregres-
sive models, where p is related to the AR term (autoregressive
parameter), the d parameter relates to the I term (integrated
parameter) and q, to the MA term (moving average parameter)
[14].

This model allows dealing with stationary or non-stationary
series, with or without seasonality [15]. The application of
ARIMA involves four steps:

1) Identification: determines the parameters (p, d, q) that
best fit the series;

2) Estimation: performs maximum likelihood estimation of
the parameters;

3) Verification: consists in analyzing whether the chosen
configuration adequately represents the behavior of the series,
that is, verifying parameter fits and error correlation;

4) Prediction: forecast a number of steps ahead of the
historical series based on the identified model [15].

D. Networks Long Short Term Memory (LSTM)

Artificial neural networks are structures inspired by bio-
logical neurons, organized in layers, with the ability to gain
knowledge from experience and store that knowledge through
synaptic weights [16].

LSTM networks [17] are a special type of recurrent neural
network (RNN) architecture, capable of learning long-term
dependencies. LSTM networks were developed to deal with
the problem of gradient fading and network convergence that
can occur when training traditional RNN.

Due to the need for the content expansion, [17] developed
the most efficient solution: long and short term memory neural
networks (LSTM) [18].

Fig. 2 presents the LSTM model in memory blocks replac-
ing traditional perceptrons, the simplest neural network model,
developed in 1958 by Frank Rosenblatt. Such blocks are
constructed by memory cells and some gates, which supervise
the flow of information passing through the cell. Each memory
cell is self-connected with linear units called Constant Error
Carousels (CEC). Thus, its activation considers the state of the
cell [17].

One can observe in Fig. 2 the representation of an LSTM
cell, where St indicates the instant of the cell at instant t, Xt

represents the input vector at an instant t and Ot points to the
vector with the output produced also at instant t [19].

Figure 2. Representation of a memory cell of a LSTM network.

The blocks individually have one or more memory cells
connected to multiplier units: at the forget gate the information
that is no longer useful in the cell state are removed, keeping
only what is considered relevant for the next step; the input
gate adds useful information to the cell and the output gate
sets the output values [18].

VI. METHODOLOGY

A. Economic analysis

When feasible, the migration process to the FCE can occur
in the medium or long term. Opting for the freedom of
negotiation, the consumer must adapt its MBS, which requires
an investment, around R$ 50,000.00 for consumers in group
A4. These values are proportional to the voltage level in which
the installations are connected [20].

For the economic-financial analysis the following traditional
indicators will be used: Net Present Value (NPV), Internal Rate
of Return (IRR) and the Payback period.

In the NPV calculation, the amounts billed over the study
months will be used, starting in April 2016 and ending in
December 2019, for both FCE and RCE. The differences
between the energy bills of these two environments will be
added to the initial investment amount stipulated for the
migration, constituting the project’s cash flow.

In order to define the Minimum Rate of Attractiveness
(MRA) for the NPV calculation, the Special System for
Settlement and Custody (SSSC), also known as the economy’s
basic interest rate, was used as a base. In 2016 the SSSC
reached the value of 14.02% p.a., the year in which the
investment for the market migration was made. The SSSC
rate target for 2020 is 3.02% p.a., a much lower amount than
in previous years. And in 2015, prior to the year of migration
from RCE to FCE, the rate reached the value of 13.27% p.a.
After analyzing the history of recent years, shown in Fig. ??,
the value of the MRA of 14% was the most conservative for
the time of the investment1.

Based on the FCE invoice values, from April/2016 to De-
cember/2019, and simulated in the RCE by the Follow Energy

1https://www.bcb.gov.br/controleinflacao/historicotaxasjuros



Figure 3. SSSC rate variation.

portal, from the ENGIE Brazil company, it was possible to
calculate by the NPV method using a MRA of 14% p.a.,
which is equivalent to 1.17% p.m., and an initial investment
of R$ 50,000.00. Results are shown in Tab. I. These financial
indicators demonstrate that the migration of the consumer
to the FCE would be very advantageous, if it were in the
RCE. Generally, the consumption profile of a consumer in
the captive market is analyzed to evaluate the viability of
migration to the free energy market. In our project, the
objective was to show the savings obtained from a consumer
who was already in the free market.

Table I
RESULTS OBTAINED FOR THE ECONOMIC ANALYSIS.

Contract Period April/2016 to December/2019
Sum Present Values (months) R$ 2.597.928,59

Project NPV R$ 2.547.928,59
Internal Rate of Return (IRR) 121,66%

Profitability Index 51,96
Payback Time 0,91 month

B. Statistical Analysis

This analysis precedes time series forecasting, allowing the
identification of patterns such as trend and seasonality that
assist in preprocessing the data.

A time series is a collection of observations made in
sequence over time, which allows a more detailed analysis
of the behavior of the object under study, its characteristics,
and the formulation of action plans and strategies. Series such
as consumption, demand, average MegaWatt-hour (MWh)
cost, bills, among others, were studied in order to predict
future values of energy consumption to be contracted by the
consumer in question.

It can be seen in Fig. 4 and Fig. 5, the trend and statistics
per year of the total consumption in kWh, in the period under
analysis of the consumer, that is, from 2016 to 2019.

It is evident in both Fig. 4 and Fig. 5 a variation of energy
consumption over the years: the year 2016 shows a growth in
consumption, but in 2017 the measured energy values show a
reduction compared to the previous year. The year 2018 was
marked by a significant increase in consumption. In 2019, a
new downward trend is observed, although with more stable
values, without major variations. This can also be observed in

Figure 4. Total Consumption kWh series graph with trend.

Figure 5. Box Plot of total annual consumption in kWh.

the small height of the box in the box-plot relative to the year
2019, presenting, therefore, less dispersion of the data. In most
years the consumption behavior is similar during the months,
a higher consumption is observed at the beginning and end of
the year. In this interval, the value decreases as the months
go by. And finally, the presence of outliers in the years 2017,
2018 and 2019, accusing data outside the series pattern.

Based on the histogram in Fig. 6, a graphical analysis can
be made observing the distribution of data in relation to a
range of values. These data represent the monthly readings of
total consumption in kWh.

Analyzing the graph, one can observe the highest concentra-
tion of data between the amounts of 315,000 kWh and 335,000
kWh, which ratifies the box-plot, given that the data of the 1st
quartile (25% of readings) of 2018 and the entire interquartile
box of 2019 (50% of readings) are located in this range of
values.

Decomposing the series is another way to understand its
behavior, prior to building the forecast models. Evaluating the
trend, seasonality, and randomness components of the data,
as illustrated in Fig. 7, can assist in identifying important
features for defining specific structures in a neural network-
based model, for example.

Analyzing the seasonality graph one can see that the series
has a variation pattern, similar between the years 2017 and



Figure 6. Graph Histogram Total Consumption kWh.

Figure 7. Decomposition of the Total Consumption series into the patterns
of a time series (trend, seasonality and randomness).

2019. One identifies a drop in energy consumption near the
middle of the year and peak periods in the last and first
months of the years. In addition, the series has a high level of
randomness, which is manifested in the residuals plot.

VII. CONFIGURATION OF ARIMA AND ALTERNATIVE
LONG SHORT TERM MEMORY (LSTM) STATISTICAL

METHODS FOR FORECASTING THE ENERGY CONSUMPTION
TIME SERIES

To forecast the consumption series in kWh, several values
were tested for the choice of the parameters (p,d,q) of the
ARIMA model. The best results were obtained with the
following values: ARIMA (1,1,16) (0,0,1), that is, a first
order autoregressive model with one order of differentiation,
a 16th order moving average for the non-seasonal model and
a first order moving average for the seasonal part. These
were the parameters used for the monthly forecast over a 1-
year horizon. Thus, the models were fitted with data from
April 2016 to December 2018. Monthly data from January
to December 2019 were used for testing and evaluating the
accuracy between the actual and predicted data. In Fig. 8 one
can see the predicted series in blue for both periods (training
and testing) and the actual series in black. It can be seen in

the graph that the two are close in the training period and a
little more distant in the test period.

Figure 8. Graph of the forecast using the ARIMA(1, 1, 16)(0, 0, 1) model.

Tab. II presents the errors of training and testing obtained
by the evaluation measures Mean Average Percentage Error
(MAPE) and Root Mean Square Error (RMSE) in predicting
the kWh consumption series.

Table II
EVALUATION OF TRAINING AND TESTING BETWEEN THE ACTUAL SERIES

AND THE PREDICTED SERIES.

MAPE RMSE
Training 4,56% 19.010,64

Test 5,72% 24.308,46

The first step in setting up the LSTM-type sequential model
was to proportionally split the data: into 1 year for testing,
2 years for validation and the rest for training and a pre-
processing step for this data, including series differentiation
and data normalization.

The model used for the network was a model with two
stacked LSTM layers and a dense output layer. The optimiza-
tion function used was the Stochastic Gradient Descent (SGD)
with a constant learning rate of 0.01, a constant decay of 1e-6,
a momentum rate of 0.9, and activation function Relu, along
the search for windowing, batch size, number of epochs and
number of cells for the LSTM layers by SearchGrid method.
For this the language Python 3.8.2 with libraries TensorFlow
2.3.1 and Keras 2.4.3.

The configuration of the number of cells per layer was
performed in order to minimize the RMSE and MAPE errors,
obtained with the validation set. Tab. III presents 20 of the best
architectures obtained along with their respective parameters
and results.It is noteworthy that the size of the batch size
attribute of the model was maintained in 6 of the evaluations
performed.



Table III
RESULTS OF THE LSTM PREDICTION MODEL.

Num. of cells
in the first

hidden layer

Num. of cells
in the second
hidden layer

RMSE
(validation)

MAPE %
(validation)

RMSE
(test)

MAPE %
(test)

10 1 9174.849 2.3088 24422.322 7.0783
5 5 5543.764 1.3760 12783.986 3.6610

10 5 5096.028 0,9460 12819.090 3.6220
20 5 6859.234 1,8052 33448.054 9.4001
30 5 14644.830 3.5890 45239.882 12.7192
20 10 5192.997 1.4390 22503,882 6.5450
30 10 7191.714 1.9320 11979.152 3.4750
40 10 5548.214 1.2800 52427.960 3.8749
50 10 15518.137 1.2120 56355.329 3.7745

100 10 7446.155 1.9083 18902.030 5.4902
120 10 5381.335 1.4048 15402.583 4.4657
130 10 5504.081 1.4481 15257.135 4.3806
140 10 8190.044 2.0576 22586.645 6.5812
30 20 5121.678 1.3175 15485.451 4.4865
40 20 5884.529 1.5781 16415.747 4.8059
50 20 4624.865 1.2696 14784.697 4.1772
60 20 5191.496 1.3546 16702.027 4.8631
70 20 5075.622 1.1184 9999.661 2.5726
80 20 4932.066 1.1050 29208.454 8.2290
90 20 4978.989 1.1770 38270.838 10.6900

The architecture that best approximates the predicted series
to the actual series, with respect to the parameterizations
presented, has 10 and 5 cells in the first and second hidden
layers (highlighted in Tab. III), respectively. Fig. 9 presents the
model forecast result with this configuration for the validation
period and Fig. 10 represents the test between January and
December 2019. This was the configuration that showed the
lowest error during the LSTM network validation process, with
a MAPE equal to 0.9460%, and an RMSE equal to 5,096.03.
The Tab. IV presents the predicted months with the amount
of consumption, as well as the average value per hour and in
the month.

Figure 9. Validation graph (2017-2018) of the LSTM model with 10 cells in
the first hidden layer and 5 cells in the second.

Table IV
RESULTS OF THE FORECASTS FOR THE YEAR 2019.

Months Consumption
(MWh) Days Hours Average

MW/h
Average

MW/month
January 260.33 31 744 0.35 260.33

February 331.87 28 672 0.49 331.87
March 336,99 31 744 0.45 336,99
April 323.38 30 720 0.45 323.38
May 325.99 31 744 0.44 325.99
June 288.30 30 720 0.40 288.30
July 333.45 31 744 0.45 333.45

August 368.02 31 744 0.49 368.02
September 362.09 30 720 0.50 362.09

October 395.21 31 744 0.53 395.21
November 369.44 30 720 0.51 369.44
December 366.04 31 744 0.49 366.04

Figure 10. Test graph (2018-2019) of the LSTM model with 10 cells in the
first hidden layer and 5 cells in the second.

Comparing both forecasting models, one notices the supe-
rior efficiency of the LSTM model compared to the ARIMA.
The LSTM obtained lower errors and followed well the peaks
and valleys of the series, unlike the ARIMA, that despite the
predicted series being close to the real one, it cannot follow
in the same way, due to the randomness of the sample.

The LSTM configuration for 10 cells in the first hidden
layer and 5 cells in its second layer presented the best result,
obtaining a MAPE = 0.9460% and RMSE = 5,096.028; during
the validation process of the model based on neural networks.
On the other hand, the ARIMA (1,1,16) (0,0,1) model obtained
in its training a MAPE = 4.56% and a RMSE = 19,010.64;
which shows the greater flexibility of the LSTM network in
adjusting to the data.

VIII. CONCLUSION

In this work, technical and economic-financial requirements
analyses were performed for a consumer migrated in 2016 to
the Free Contracting Environment (FCE). Originally in the
Regulated Contracting Environment (RCE), subgroup A4 and
green tariff mode, it was shown the savings that the consumer
would obtain if he had not yet migrated to the FCE. This
analysis considered the historical series of consumption, in
the period from April 2016 to December 2019.



After analyzing the consumption statistics, forecasts were
made of this series, fundamental in the process of migration
to the FCE, because the amount of contracted energy avoids
overspending and the non-supply of energy during the term
of the contract, with a possible exposure to the DSP. The
LSTM model outperformed the ARIMA model. The best
configuration of the LSTM model presented a MAPE of
0.946% during the validation process, against a MAPE of
4.56% for the ARIMA model. The forecast with less error
guarantees the negotiation of contracts with less flexibility
margin and, therefore, better prices with the energy supplier.

The economic-financial analysis showed that the migration
process was advantageous. The return on investment was
obtained in less than a month, according to the Payback time,
totaling a net present value of R$ 2,547,928.59. This amount
represents 22.4% in savings, during the period of activity in
the FCE, using a discount rate of 14% p.a.

As future work we propose to assess the feasibility of
turning the customer into a generator of energy from renewable
sources, compared to current conditions in the face of the water
crisis.
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sumidor especial impulsionaram mer-
cado livre em janeiro.” Disponı́vel em:
https://www.ccee.org.br/portal/faces/pages publico/noticias-
opiniao/noticias/noticialeitura?contentid=CCEE 661841.
Acesso em: 27 maio 2021, 2021.

[5] B. Vega-Márquez, C. Rubio-Escudero, I. A.
Nepomuceno-Chamorro, and Arcos-Vargas, “Use
of deep learning architectures for day-ahead electricity
price forecasting over different time periods in the
spanish electricity market,” Applied Sciences, vol. 11,
no. 13, 2021.

[6] L. M. C. Junior, T. F. Melquı́ades, K. de Lourdes da
Costa Martins, E. P. S. Júnior, and G. P. de Freitas, “Pre-
visão do consumo de eletricidade no nordeste brasileiro,”
ENGEVISTA/UFF, vol. 20, no. 3, 2018.

[7] A. Román-Portabales, M. López-Nores, and J. J. Pazos-
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