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Abstract—The Hybrid Vehicle drone Routing Problem (HV-
DRP) was recently introduced as an extension of the classic
Vehicle Routing Problem (VRP). In this version, one vehicle is
equipped with multiple drones to serve customers with demands
for pick-up and delivery. The vehicle travels between stations
that serve as parking locations to dispatch drones to attend
clients. The drones have limitations in their maximum flight
range and carrying capacity. We propose a BRKGA algorithm
to solve HVDRP with a decoder component specially tailored
to find feasible solutions. The proposed method is empirically
analyzed in solution quality through a test set that a mixed-
integer programming (MIP) model implementation can optimally
solve in reasonable computation time. The computational result
shows that the best solution found by BRKGA for each instance
of the test set matches the solution quality devised by the MIP
implementation. The data also show that the proposed algorithm
achieves the best solution consistently through many independent
executions. The instance set used and its respective best solutions
attained for this work are publicly available.

Index Terms—BRKGA, HVDRP, Metaheuristic

I. INTRODUCTION

The Hybrid Vehicle drone Routing Problem (HVDRP) is an
extension of the classic well-known Vehicle Routing Problem
(VRP) [11] that belongs to the class of NP-Hard problems
[12]. The HVDRP works with a vehicle equipped with mul-
tiple drones to serve multiple customers that require pick-up
and delivery services. An instance of HVDRP is described
by a directed graph G = {N,A} that details a multimodal
network, a set D that indexes drones by their maximum range
r and carrying capacity w, and a set C that defines each client
through the pick-up p and deliver q weight of its packages.
The set of nodes N = {Nd ∪ Nv ∪ Nc} includes a starting
depot Nd, a set of stations Nv that can only be accessed by
the vehicle, and a set Nc of clients nodes that drones can
only serve. The set A = (i, j) of links, i, j ∈ N , describes
the distance between each point and the average travel cost
for the vehicle and drones. The objective of HVDRP is to
minimize the total cost of the vehicle and the drones to serve
all customers.
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The vehicles only serve as a mobile depot for the drones.
Starting from the depot Nd, the vehicle can only visit each
station once. Drones can only be dispatched from stations
when the vehicle is parked. Each drone can serve multiple
customers per dispatch as long as its flight range and load-
carrying capacity permit. Drones can return to any station
along the vehicle route, which could be the same as or different
from the dispatching one. Multiple drones can be dispatched
simultaneously from any station. Drones can be dispatched and
collected several times from the same station, their batteries
are replaced with fully charged ones, and packages are loaded
and unloaded each time they are collected. The vehicle cannot
move from a station before collecting all drones planned
to return to that station. Finally, drones arriving early at a
collection station are assumed to wait for the vehicle in idle
conditions before being assigned a new tour.

To further summarize the problem, the following list prop-
erties reviews the previous paragraph:

1) The customers are described by their locations, also their
delivery and pick-up demands. Each package has an
associated weight. Only the drones can serve them.

2) The drones can only be dispatched from stations. They
can be dispatched multiple times from the same station.
Different drones may be dispatched simultaneously.

3) The vehicle can only travel to stations visiting them only
once. It is not required to visit all stations.

4) Each drone is described by its carrying capacity and
maximum flight range. Every drone may visit multiple
clients by dispatch, but the tour must respect the limits
of the drone.

5) Drones can return to any station as long as the vehicle is
parked there or it will still be visited at a further point.

6) When the vehicle picks the drone, its battery is imme-
diately replaced and the goods are properly manipulated
for the next delivery and stocking.

7) The drone awaits for the vehicle and vice versa when
necessary. Consequently, the vehicle can not leave a
drone behind.



The Figures 1a, 1b, 1c, 1d illustrates two instances and
two possible solutions of HVDRP, where each red vertex is a
station for the vehicle, each blue vertex represents a customer,
and the green point is the depot. In the solution, the path
denoted by the red arrows represents the vehicle tour, and the
green arrows the drone visitation path. It is worth noting that
the examples do not use the property that the drones can return
to stations ahead of the vehicle.

(a) Instance A-1 of HVDRP

(b) Instance A-2 of HVDRP

(c) Solution example for A-1

(d) Solution example for A-2

With the evolution of drones, they can be deployed to
perform several tasks related to healthcare [13], public safety
[14], forest preservation [15], and transportation [16]. Partic-
ularly, drone usage for logistics that involves product delivery

has raised substantially [20], [18], and [19]. This tendency
will continue to grow significantly due to several contributing
factors: the continued expansion of online retail, high compe-
tition for pick-up and delivery service providers, and drones’
improved capabilities and cost-effectiveness. The HVDRP
provides a problem model that differs from other systems that
use a single drone, like Flying Sidekick Traveling Salesman
Problem [17], and the Two-Echelon Vehicle Routing Problem
[21], [22], [23].

Several industrial applications can take advantage of such
a model. In this context, [3] and [24] describe the HVDRP
as a model to study use cases that involve a single vehicle
with multiple drones system at a high realism. The latter
work shows different heuristics to approach the HVDRP and
provides a mixed-integer programming (MIP) model to solve
small instances.

Even with the progress of techniques to optimal solutions
and diffusion of computational environments capable of high
parallelization power, it is not easy to efficiently solve practical
sized HVDRP instances. Therefore, this work proposes a
BRKGA algorithm for HVDRP that uses an encoded solution
divided by four sets of random keys. The decoder process uses
each set of random keys to dictate which order of stations the
vehicle will visit, the sequence in which clients will be served,
choose what drone will visit which client, and decide what
customers will be served from each station. An implementation
of the proposed BRKGA was used in an empirical test with
ten instances of HVDRP. To evaluate each devised solution
of the proposed algorithm, a second application that uses
the MIP model from [3] was submitted to the same test
instance data to generate the optimal solution. The empirical
result shows that the best solution found by BRKGA for
HVDRP matches the quality of the optimal cost found by
the MIP. The computational results also show that the average
solution quality attained by BRKGA stays consistent with the
best through many independent executions of the method in
relatively low computation time.

The remainder of this work is structured as follows: Sec-
tion II describes the BRKGA metaheuristic briefly and its spe-
cialization for HVDRP, Section III reports the computational
results, and Section IV concludes the work.

II. BRKGA ALGORITHM

Biased Random-Key Genetic Algorithms is an extension of
the evolutionary algorithm presented by Bean J. C [6] that
was introduced by [1] and [2]. In [5] Gonçalves and Resende
formally described the basic concepts of BRKGA alongside a
survey of applications of that time. Since them, a considerable
number of state-of-the-art applications for optimization prob-
lems used BRKGA [7] [8] [9], [10]. The BRKGA metaheuris-
tic was chosen for HVDRP due to the ease of implementation
and because it only has one problem dependant component.
This section briefly describes the BRKGA metaheuristic and
details the decoder component for the HVDRP.



A. BRKGA Overview

The main idea of BRKGA is to work with only one
problem-dependent component named decoder. Every com-
ponent works with solutions represented as collections of real
numbers between zero and one called random-keys. One of
the main advantages of BRKGA is that the user only has
to implement the decoder to transform random-keys into an
actual solution representation that can be evaluated.

Similar to an evolutionary algorithm framework, BRKGA
uses a calibratable parameter Pmax to dictate the maximum
number of individuals that compose a population, and the
stopping criteria can be a maximum target generation, a quality
target measure for the best solution found, or a time limit.
The size of each random-key collection used to represent a
solution depends on the decoder devised by the user. The
first generation starts with an initial population composed
of random individuals. BRKGA works with elitism through
another calibratable parameter 1

2 < ε < 1 called TOP. In
each generation, the population is sorted based on the fittest.
In the initial population and through the evolutionary process
of the method, the 100ε% top individuals compose the elite
set. The rank procedure makes use of the decoder to define
the fitness of each individual. After ranking, the evolutionary
process starts.

After the first, the following generations of BRKGA start
with a copy procedure, where each elite is maintained with no
changes in a new population. Then a mutation step is applied
so that introduces 100ω% random individuals in this new pop-
ulation, where 0 < ω < 1

2 is a calibratable parameter called
BOT. Next, a reproduction step generates the remaining indi-
viduals as offspring through crossover. The crossover works
by electing two random parents in the previous population
with one elite and one non-elite. For each random-key of the
offspring, the probability of copying the respective random-
key of the elite parent is 100ρ%. Otherwise, the respective
random-key from the non-elite parent is copied instead. Thus,
justifying the method’s name with an analogy to a biased coin
toss where each elite has a higher probability of being used
multiple times compared to non-elite ones, and its random-
keys are propagated with a higher probability. The method
stops its evolutionary process when the stopping criterion set
by the user is met.

B. Decoder

Each encoded solution Se of an HVDRP instance should
have l = s+3c random-keys, where s is the number of stations
for the vehicle without the depot and c the number of clients.
Thus, each encoded solution is composed of four parts.

• The first part is called station sequence SS =
{r1, · · · , rs} that have the first s random keys of S. It is
used to determine in what order the vehicle will visit the
stations to dispatch drones.

• The second part is called client sequence CS =
{rs+1, · · · , rs+c} that has one random key for each
client. These random-keys will be used to decide in

what order the clients should be served from each visited
station.

• The third part is called drone decider DD =
{rs+c+1, · · · , rs+2c}, which is used to determine what
drone should serve each client.

• The final part, called station decider, is composed of the
remaining SD = {rs+2c+1, · · · , rl} random-keys. The
decoder uses those random keys to dictate from what
station each client should be served from.

The decoder starts with a sorting procedure using the station
sequence. Each station 1 ≤ i ≤ s has a corresponding random
key ri ∈ SS. The station 1 ≤ j 6= i ≤ s will be visited before
the station i if rj < ri. Therefore, the ascending sort of SS
will give a permutation Ps of stations to visit.

The decoder will construct a new solution for the actual
instance iterating over Pe. Each iteration begins with a vehicle
movement to the next station of Pe, where the first is the
vehicle moving to the first station of Pe starting from the
depot. The next step is a procedure that sends the drones to
each client to be served from the actual park location of the
vehicle. The decoder decides what clients will receive a drone
from the current location based on the random keys of SD.
Each station has a non-overlapping interval in [0, 1] that is
inversely proportional to s, giving an equal chance to be the
base location to serve each client. Therefore, the k-th client
will be served from the vehicle’s current parking location if its
respective random-key rk ∈ SD matches its interval. In this
manner, we have a selection of clients to serve in each iteration
of the decoder. The decoder uses a similar procedure to decide
which drone to assign to each client, using the random keys
of DD instead. The idea is that each station and drone pair
will have an equal chance of serving a client.

The send drone procedure will iterate over the list of clients
to be served from the current vehicle park location. The order
of customer service is based on the random keys of CS. The
client i of the list will be visited before the client j if its
respective ri ∈ CS is smaller than the rj ∈ CS random-key,
1 ≤ i 6= j ≤ c. If the serving drone is on the vehicle, it will
move directly to the client. Otherwise, the method uses three
checks described below.

1) A check to see if the drone can be sent from its current
client location to the next and back to the vehicle without
reaching its flight limit.

2) A check to see if the drone’s capacity can support the
pickup package from the next client.

3) A check to see if the drone’s capacity can support the
sum of delivery package weight when going out of the
vehicle.

If any of the checks above has a negative response, the drone
is sent back to the vehicle before going to the next customer.
Once every client of the current list is visited, the procedure
sends back to the vehicle every drone located at some client,
and the procedure finishes. The vehicle will only move again
if every drone is back at its location.

Once all clients have been served, the vehicle goes back



to the starting depot, thus not needing to visit any remaining
stations that do not have any clients assigned. One may note
that the decoder may generate infeasible solutions that may
have at least one drone path with a flight distance beyond its
limit or has an accumulation of package weight that surpasses
its capacity. In these cases, the decoder applies a penalty
using a high positive constant value M during the fitness
measurement of the individual proportional to the number of
infeasible paths. The idea is that any infeasible solution has a
lower fitness evaluation than any feasible one, scoring low on
the ranking step of BRKGA.

The Algorithm 1 summarizes the decoder, where the func-
tion sort returns the permutation Ps of stations based on
SS ⊂ S, list client gives the list of clients to visit in
the current station based on SD ⊂ S, and drone to client
dictates which drone should go to c based on DD ⊂ S.

Algorithm 1 HVDRP Decoder

Require: Encoded solution Se = {SS ∪ CS ∪DD ∪ SD}
Ps = sort(SS)
The vehicle starts at the depot
for Each element s ∈ Ps do

Move the vehicle to S
L = list client(s, SD)
for Each c ∈ L sorted by CS do

d = drone to client(c, DD)
if d is not in the vehicle and can not move to c then

Move the drone to the vehicle
else

Move d to c
end if

end for
for Every drone d that is not in the vehicle do

Move the drone to the vehicle
end for
if All clients were served then

Move the vehicle back to the depot
End the loop

end if
end for

Ensure: all the movements are registered to output S.

III. COMPUTATIONAL RESULTS

This section shows the results attained with BRKGA for
HVDRP using the decoder detailed in Section II-B. To the
best knowledge of the authors, the work [3] is the only one
that proposes methods to solve HVDRP. Unfortunately, the
original authors the cited work does not provide the instances
used or any implementation of the methods1. Therefore, an

1The authors of this work contacted the original author of [3] to no avail.

implementation of the MIP detailed in [3] and a set of ten
instances was used to assess the solution quality devised
by the proposed algorithm2. The cited work classifies seven
categories identified by the letters A to G with ten instances
each. The test set of ten instances used in this work was
generated based on a similar setup originally classified as A.

The ten instances of the set ”A” are organized as a grid
of size five in a euclidean plane. The depot is at the origin,
and each vehicle station is positioned at the intersections
of the grid. The clients are randomly located around each
station, with pickup and delivery varying in [0, 5] intervals.
Each instance has two drones to serve the customers with a
maximum flight range of seven units and a capacity of ten.
The vehicle cost for transversing an arc is the length itself,
and the drone’s flight cost is two times the distance of the arc.

The BRKGA for HVDRP implementation was made in
C++17 and compiled with GCC from the GNU Compiler col-
lection using the flag -O3. This application uses the Mersenne
Twister algorithm to generate the pseudorandom numbers. The
MIP model was implemented using the C++ API of Gurobi
version 9.1.2. The computational environment used to devise
all the results has an Intel Core i7-10700f @2.9 GHz CPU,
32 GB of RAM, and Ubuntu 20.4 LTC (x64) OS.

The BRKGA application was executed 30 times indepen-
dently for each instance using distinct seeds for the pseu-
dorandom engine in the interval [1, 30] to control the test
environment. The metaheuristic parameters used for all runs
are as follows: maximum population size Pmax = 100, TOP
ε = 0.2, BOT ω = 0.15, and the elitism rate ρ = 0.7.
The stopping criteria is set to stop at 5 seconds to return the
best solution found during the evolving process. The second
application, which solves the MIP model using the Gurobi
optimizer, was executed only once for each instance with no
time limit.

Table I shows the result of this test battery. The first column
has the instance name. The second and third column has the
optimal cost found for the objective function of each instance
using the Gurobi application and the total CPU execution
time. The third and fourth columns show the best and the
average cost found with BRKGA. Finally, the last column
shows the execution time to find the best solution. The Gurobi
application used 16 threads of the target CPU, and the BRKGA
implementation used only one thread.

The average versus the best solution found by the BRKGA
application shows that the method described by this work
consistently finds the best solution for each tested instance
through independent runs. The data also shows that the best
solution found equals the optimal cost found by the solver,
suggesting that the devised algorithm achieves the optimal

2The instances used in this work and the best solution found are publicly
available at https://github.com/AndersonZM/hvdrp.

https://github.com/AndersonZM/hvdrp


TABLE I: Best and average solution cost found by BRKGA
compared to the optimal cost found by the MIP.

Instance MIP BRKGA
Z Execution time (s) ZBest ZAvg Time to best (s)

A-1 54.3 100 54.3 54.3 <1
A-2 48.1 92 48.1 48.1 <1
A-3 42.9 4 42.9 42.9 <1
A-4 46.3 81 46.3 46.4 <1
A-5 41.7 12 41.7 41.9 <1
A-6 54.8 1129 54.8 55.1 <1
A-7 65.7 10887 65.7 66.1 <1
A-8 58.8 1077 58.8 59.2 <1
A-9 60.8 699 60.8 61.3 <1

A-10 83.1 4890 83.1 85.9 <1

solution for the test set. The data also shows that the BRKGA
implementation attains the best solution in a relatively short
execution time than the MIP implementation.

IV. CONCLUSION

We proposed a BRKGA method to solve the Hybrid
Vehicle-drone Routing Problem for Pick-up and Delivery,
which was recently introduced by [3]. The proposed decoder
receives encoded solutions divided into four parts. Each piece
decides what order the vehicle should visit the stations, what
customer sequence should be used, what drone should serve
which client, and what location each drone should be sent
from. The decoder uses a penalty system to ensure that infea-
sible solutions score lower than feasible ones at the ranking
procedure of BRKGA. An implementation of the proposed
BRKGA was compared against a lower bound attained by
solving the MIP model detailed in [3] using Gurobi. The
computational results show that the proposed BRKGA is
capable of finding the best solution consistently for the testing
instances across many executions with a small time limit. The
data also shows the best solution cost found by the BRKGA
equals the optimal solution found by the solver, suggesting that
the proposed method works well with the instance set used in
this work. Finally, the data also shows that the BRKGA attains
the best solution in a relatively short execution time than the
MIP implementation.

For future works, we aim to extend results and the test
set to use all ten instances of each setup detailed by [3]. We
also intend to propose a novel algorithm that makes use of
local search heuristics. Finally, we strive to improve further
the algorithm described in this work.
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[2] Gonçalves, José Fernando and Almeida J. R., “A hybrid genetic algo-
rithm for assembly line balancing” Journal of heuristics, ed. Springer,
vol. 8, n. 6, pp. 629–642, 2002.

[3] Karak, A. and Abdelghany, K., “The hybrid vehicle-drone routing
problem for pick-up and delivery services,” Transportation Research Part
C: Emerging Technologies, pub. Elsevier, vol. 102, pp 427–449, 2019.

[4] Coelho I. M. ; Coelho V. N. ; Zudio A.; Araujo R. P. et al. “Microbench-
mark Studies in OptFrame: a 10-Year Anniversary.” In: ANAIS DO
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