
A study on handling intrinsic motivation for
devising sample efficient actor-critic agents

André R. Quadros
Federal University of Pará - UFPA

Belém, Brazil
andre.rosario31@gmail.com

Roberto Xavier Junior
Federal University of Pará - UFPA

Belém, Brazil
rbxjunior@gmail.com

Kleber P. Souza
Federal University of Pará - UFPA

Belém, Brazil
kleber.padovani@gmail.com.br

Bruno D. Gomes
Federal University of Pará - UFPA

Belém, Brazil
brunodgomes@yahoo.com.br

Filipe O. Saraiva
Federal University of Pará - UFPA

Belém, Brazil
saraiva@ufpa.br

Ronnie O. Alves
Vale Institute of Technology - ITV

Belém, Brazil
ronnie.alves@itv.org

Abstract—Reinforcement learning has evolved in recent years,
and overcoming challenges found in this field. This area, unlike
conventional machine learning, does not learn through a set
of observational instances, but through interaction with an
environment. The sampling efficiency of a reinforcement learning
agent is a challenge. That is, how to make an agent learn within
an environment with as little interaction as possible. In this work
we perform an experimental study on the difficulties to integrate
a strategy of intrinsic motivation to an actor-critic agent to
improve the sampling efficiency. We found results that point to the
effectiveness of the intrinsic motivation as a approach to improve
the agent’s sampling efficiency, as well as its performance. We
share practical guidelines to assist in the implementation of actor-
critic agents to deal with sparse reward environments while
making use of intrinsic motivation feedback.

Index Terms—Reinforcement Learning, Intrinsic Motivation,
Variational AutoEncoder

I. INTRODUCTION

The reinforcement learning(RL) research area has faced
several challenges, among them we can mention the difficulty
in guiding the agent’s learning, as there are some objectives
that are difficult to translate into reward signals [1]. When we
find environments with a not so sophisticated reward system or
whose reward signals are not well defined, it is remarkable the
increase in the learning difficulty of an RL agent. The reward
system is therefore very important to the agent. Depending
on the reward system, the agent can learn to reach their goal
faster or not. The reward that the environment returns to the
agent when the agent performs an action can be called extrinsic
reward [2].

Bearing in mind that the reward system of an environment
will not always be ideal, when applying an RL agent it
is possible to find environments that have extremely sparse
rewards. Sparse rewards can be defined as a series of rewards
produced through the interaction of the RL agent with the
environment in which most rewards received are not positive
[3]. The absence or lack of rewards that would have the
purpose of guiding the actions performed by the agent causes
a considerable increase in the agent’s learning difficulty about

the environment. This difficulty is reflected in the agent’s
ability to achieve their goals or not even manage to achieve
such goal.

When using the intrinsic reward in reinforcement learning
to help guide an agent, we face some questions about the
implementation of this method, one of them is the need for
a parameter that regulates the influence of IM on the RL
algorithm, which is referred to as Beta (β) [3]. RL algorithms
are extremely sensitive to hyperparameter choices [4], so we
intend to explore experimentally the use of the IM strategy in
the RL agent. In addition, evaluating how to find hyperparam-
eters values, depending on the type of environment, is hard
work. And demonstrate how IM influences the algorithm’s
sampling efficiency and exploration of the environment.

The sampling efficiency of a RL algorithm is the relation-
ship between the number of interactions that an RL agent
has with the environment, until it learns to reach its objective
[5]. Thus, a better sampling efficiency occurs when our agent
wins its environment through the smallest number of possible
interactions.

In this work we propose a RL agent model that shows
good results by overcoming the presented difficulties, and
achieving its objective within the environment in a way that
is satisfactory to standard reinforcement learning algorithms.
This work also brings the application of a model that is
easy to apply. The difficulties encountered in application
development, especially in the development and calibration of
hyperparameters and the intrinsic reward system are explained
in order to guide the community that may be interested in
applications of this approach, with explanations on important
points, as well as the intrinsic reward regulation. Our codes and
notebooks can be accessed via the link https://osf.io/2guhd/
?view only=99f4f351e0b04c0895df990760edc57b.

For a better understanding of this research, it is necessary to
go deeper into the concepts of learning by reinforcement and
intrinsic motivation. Thus, our next chapter will present the
concepts we need to understand, then in chapter III we will
present the research methodology, presenting the environment

https://osf.io/2guhd/?view_only=99f4f351e0b04c0895df990760edc57b
https://osf.io/2guhd/?view_only=99f4f351e0b04c0895df990760edc57b

and its characteristics and we will address the creation of the
A2C algorithm along with the IM strategy and in chapter IV
we have the results coming from our tests in search of a
learning rate and the value of the beta hyperparameter. Finally,
we performed the comparison of the RL agent using standard
A2C and the A2C using IM and reached the conclusion of our
work.

II. BACKGROUND

A. Reinforcement Learning

Learning through Reinforcement is based on two main lines
of reasoning [1], the first comes from psychology, through
the study of an individual’s learning through trial and error,
and the study of animal learning. And the second line, with
a computational bias, is the search for the optimal solution in
value functions and dynamic programming.

In the classification of model-free algorithms, we have
algorithms based on Policy Optimization. The policy of a Re-
inforcement Learning algorithm is the mathematical function
that defines what action the algorithm should take in a given
state [6]. These algorithms have strategies that act explicitly on
the algorithm’s policy. Acting directly in the agent’s interest
on the environment while the approximation function -of the
gradient - remains stable, the biggest disadvantage of policy-
based algorithms is their sampling efficiency [7].

Another important function present in reinforcement learn-
ing algorithms is the value function [2], represented by Func-
tion 1, this is the expected return of the sum of the discount
γ for all the rewards r of a state S and action A, starting at a
state S0. It calculates the value of being in a state or of taking
an action in a certain state. It is this function that chooses
what action to take in an environment, and it’s decisions are
governed by the algorithm’s policy.

Vπ(s) = Eπ[
∑
t=0

γr(St, At)|S0 = s] (1)

B. Advantage Actor-critic (A2C)

The reinforcement learning methods Actor-Critic are algo-
rithms that separate in memory the structures that explicitly
represent the algorithm’s policy from it’s value function [1].
The structure that represents the agent’s policy is known as the
Actor [6] because it performs the actions in the environment,
and the value function is the Critic, acting as critical of the
actions taken by the actor [1]. These structures act in different
ways, each with a neural network independent of the other.

The Actor-Critic algorithm strategy is applied to some
RL algorithms such as DDPG and SAC. In 2016 a new
Actor-Critic strategy emerged. Called Asynchronous Advan-
tage Actor-Critic (A3C) and also Synchronous Advantage
Actor-Critic(A2C) [7].

The A3C strategy presented an algorithm that uses several
agents at the same time, these are called workers [7]. Workers
interact in parallel in different environments. The interaction
with the environments returns the learning of each agent about
their environment. Such interaction is intended to update the

policy and value function of a single central agent called the
Global Network. The fact that A3C runs several workers in
different environments requires a high computational process-
ing.

A2C is defined as having only one worker that interacts with
a single environment. Therefore, it is an easy-to-implement
option. The main feature of A2C and what sets it apart from
traditional Actor-Critic methods is Advantage Function. The
Advantage function present in A2C is a function that acts
in an attempt to estimate how good the result of an action
taken was better than what the agent expected. The advantage
function helps the agent to define the quality of actions, being
an important advance of the A2C algorithm.

Based on this, we can state that the A3C algorithm and
its A2C derivation are an important RL strategy, and may be
capable of good results in certain environments, as examples
of these results in Atari environments, the Labyrinth [9].

C. Variational AutoEncoder

AutoEncoders are neural networks developed to create a
representation of information [9], it is composed of an input
data, a latent space and an output data. The AutoEncoder
has two phases in it’s operation, the encoding phase, which
creates a representation of the input data. Then we have the
decoding phase, which in turn decodes the data representation
and recreates it. After the encoding phase, the AutoEncoder
creates a representation of the data that is stored in it and is
called latent space.

The VAE(Variational AutoEncoder) is a deep generative
model, which also has encoding and decoding phases [9].
It uses deep learning techniques and probability distribution
to generate it’s own information. During the VAE coding
phase, it is where the probability distribution used to create
the information representation occurs. The distribution of
probabilities is regulated during a training phase that must take
place previously, ensuring that the latent space that has been
coded has good properties. Such well-calibrated properties
will allow the construction of new data. VAE therefore uses
the probability distribution to transform information into a
representation of it and then allows the information to be
reconstructed. Concurrently with this process, a Loss Function
called ELBO is applied. This function in the area of neural
networks is used so that the model can measure how much
the result was different from what was expected, therefore,
the smaller the loss of information in the process, the greater
the precision in the assembly of the original information.

Equation 3 shows the loss function of the VAE, where the
first term is the reconstruction loss and the second encourages
approximation of the probability distribution. In variational
inference we try to estimate the posterior distribution of
p(Z|S), where S is the input data that generates a latent
space Z1, . . . , Zn. Because the probability distribution leads
us to intractable integrals, we can approximate the q(Z)
distributions. The KL divergence (Equation 2) is the entropy
between the anterior distribution and the posterior distribution,
which is the second term present in our Equation 3.

rintrinsic = KL((p(Z|S)||p(Z))) (2)

L(θ, φ) = Eqφ(Z|S)[log pθ(S|Z)]−KL(qφ(Z|S)||p(Z)) (3)

Since the VAE is used, it’s loss function is as important
as the encoding and decoding, thus informing how faithful
the decoding result is to the input that occurred in the VAE
encoding.

D. Intrinsic Motivation

As an original term in psychology, intrinsic motivation
refers to the intentions and motivations coming from the
individual, which leads him to naturally seek novelties and
challenges, regardless of external pressures [10]. It is an area
based on studies carried out from the development of learning
in babies [11], and more broadly, organisms tend to explore the
space around them, as well as learn new skills. As mentioned
earlier, intrinsic motivation seeks to study and assess the
natural stimulus of an individual/agent’s curiosity to explore an
environment/problem, acquiring new experiences and learning
new skills, without explicitly aiming to achieve a goal, but
rather achieving it as a consequence.

In Reinforcement Learning, we have some strategies that try
to recreate IM concepts [2] in learning agents. It is possible to
classify the intrinsic motivation in RL into two types [2]: The
first one is the knowledge acquisition, being a type of model
application aimed at the RL agent to learn something in its
environment, in this type of intrinsic motivation, the models
increase the agent’s efficiency in exploring the environment,
and improve the abstraction of states. The following classifi-
cation is called skill learning, aimed at allowing the agent to
learn to abstract skills in order to achieve a goal or to be able
to build a catalog of skills whose agent can access it and use
these skills to overcome environments . Skill learning models
are more focused on overcoming obstacles by skills. In this
work we chose to focus on knowledge acquisition, due to its
ability to explore little visited states in RL environments.

The use of intrinsic motivation in learning by reinforcement
conceives the agent’s own generation of stimuli, improving
exploration and reducing dependence on stimuli coming only
from the environment. Thus, the concept of extrinsic reward
arises, which is the reward coming from the external envi-
ronment, and the intrinsic reward which, unlike the extrinsic
reward, are the rewards generated by the individual itself,
internal stimuli of the organism that guide it to do something,
that stimulates exploration, learning and the like.

Intrinsic motivation models classified as knowledge ac-
quisition are able to improve agent performance in sparse
environments [4]. The following topic reports the different
types of environments that agents can encounter, as well as
their characteristics.

E. Environments

In Actor-Critic Algorithm, the one who makes the decisions
and who learns is called the agent [1], and what the agent
interacts with and everything that is outside the agent is the
environment. Environments can exist in many different ways,
from text-based environments that run on the [12] command
prompt, to those based on games like Atari [13], robotic
movements in simulators and many others.

Environments have different characteristics that can make
learning difficult or not. One of these features classifies
environments into fully observable and partially observable.
In fully observable environments, the agent receives complete
information about the environment in which it finds itself, thus,
right after taking a certain action, the agent receives infor-
mation from a complete description of how the environment
behaved as a whole. In partially observable environments we
have a limitation on how much of the environment the agent
has access to. After taking action by the agent, he receives
only a part of the information external to it, not being able to
know all the consequences that its action caused.

Another feature that RL environments have is their response
to a certain action, there are two types of environments for
this feature. The first is the deterministic environment, it is
predictable, being static, making it easier for the agent to learn
about the environment. The second type is called stochastic
because of its greater randomness and unpredictability, thus
making learning more arduous since the same actions and
states can return different results.

Rewards are another extremely important feature in environ-
ments, they guide the agent in learning, some environments
have well-defined reward systems, and every action taken
returns a positive value as a reward, a negative value as
a punishment or a null reward, guiding the actions of the
agent until it reaches its goal within the environment. On
the other hand, there are environments with a system of so-
called sparse rewards. In sparse reward environments not every
action immediately returns a positive reward to the agent.
These immediate stimuli would confirm to the agent whether
the action taken was good or not, and also quantified the
quality of the action. Thus, rewards are given after several
actions are taken, and there may still be times when these
rewards, in addition to being sparse, are of small value, thus
generating little stimulus to the agent and making the learning
more difficult.

Each environment having its own difficulties, we see the
need for methods and strategies that can be applied to Rein-
forcement Learning agents, helping them to overcome sparse
environments and improving the agents’ performance in the
environments in which they are found.

III. RESEARCH METHODOLOGY

A. Choice of Environments

As mentioned earlier, there are a few types of environments,
and each one has its own characteristics. This work follows a

specific line of investigation, which is to work with RL appli-
cations in environments with sparse and partially observable
rewards.

One of the environments that follow the pattern created by
OpenAi Gym is the set of environments called MiniGrid. This
environment was developed by researchers with the intention
of being an environment that has sparse reward environments
and that requires the development of skills, and has a low
processing cost, allowing them to be run on simpler computers.
Grid-based and designed to be lightweight from the point of
view of computer processing [14].

The Minigrid has two environments with sparse and par-
tially observable rewards that were used in this work, the
MultiRoom and the Door-Key. The MultiRoom represented
in Fig. 1 is characterized by having, within a grid of 25x25
spaces, 3 rooms with doors between them and which must be
opened so that the agent can travel through the environment
until finding the arrival point, in this environment the point of
arrival is the grid in green color while the agent is represented
by a red triangle. The number of MultiRoom rooms and their
size are configurable. The second environment used in this
work and which is represented in Fig. 2 is the Door-Key, this
environment divides the total space of the grid into two rooms
with a door between them, the agent appears in one room and
its objective is in the other. The room in which the agent
appears there is always a key somewhere, where the agent
must take it, carry it to the door and then open the door,
thus being able to enter the room where his objective is, also
characterized by a green grid.

Fig. 1. Rendering of the MultiRoom environment with 3 rooms of size 4.

The MultiRoom and Door-Key environments are episodic
and have some limitations in order to test the agents’ learning
efficiency. Each environment limits the number of actions the
agent can take in each episode, so the agent doesn’t have
infinite actions to find the correct actions. And also the number
of actions that the agent performs in each episode influences
the reward that the agent will receive.

In this work, the MultiRoom environment was chosen with
the configuration of 3 rooms and size of 4 grids each room,
these configurations of the number of rooms and their size are
parameterized in the creation of the environment. The reward
system of this environment is directly influenced by its con-

Fig. 2. Rendering the DoorKey-8x8 environment.

figuration. Therefore, the MultiRoom environment performs
the following calculation to define the total allowed actions in
each episode, it adds the number of rooms and multiplies by
20. Therefore, in our current environment configuration, we
have 60 timesteps available in each episode.

In the DoorKey environment, it was used in its 8x8
configuration and therefore allows the taking of actions for
each episode by calculating the amount of grids configured
multiplied by 10, in the case of the 8x8 configuration where
the amount of grids in the environment is 64 , by multiplying
it by 10 we have the amount of timesteps possible by the
agent. Thus, the DoorKey environment allows us 640 actions
per episode.

Both environments used in this research have the same set
of possible actions, whose RL agent will use a number from
0 to 6 to choose the action, each action and its respective
description are listed below:
• 0, turn left;
• 1, turn right;
• 2, move forward;
• 3, pick up an object;
• 4, drop the object being carried;
• 5, toggle (open doors, interact with objects);
• 6, done (task completed, optional).
The environments used in this work for the tests are of

sparse rewards, as the agent, when taking actions during the
episode, receives a 0 value reward, unless he manages to reach
the objective represented in the green grid. The environment
also penalizes the agent according to its delay in reaching the
objective. This penalty happens because the reward generated
by the environment when it reaches the goal is calculated
according to Equation 4.

Reward = 1− 0.9 ∗ countsteps
maxsteps

(4)

Both environments are also partially observable, the agent
has only a partial view of the environment, for its actions, in
Fig. 1 and Fig. 2 we can see an area of maximum dimension
7x7 in gray tone standing out in front of the agent, this is
the representation of the view that the agent is having in the
environment. With this, comes the need for a strategy that can

help the agent to complete the objective of these environments,
since the environment provides few stimuli that guide the agent
towards its conclusion.

B. Algorithm Creation

To continue the investigations, it is necessary to create
an RL algorithm that implements an intrinsic motivation
methodology, using the intrinsic reward that overcomes the
lack of rewards found in the chosen environments. Our re-
search focuses on sparse reward environments, bringing to the
investigation a solution that is more difficult for the standard
RL agent to find. To overcome this difficulty, a strategy that
helps the agent in these environments is necessary. The fact
that IM helps the agent in the exploration of environments with
their own stimuli made us choose this strategy, thus providing
us with an algorithm that can make the RL agent generate its
own stimuli, given the scarcity of these in the environment.

To meet the need for an algorithm that allows the agent
to generate its own stimulus through intrinsic reward, we
adopted the strategy that uses the Variational State as Intrinsic
Reward (VSIMR) [15]. The strategy proposes to measure the
distance between the probability distribution of a state S in
relation to its latent representation Z, this distance is used as
an intrinsic reward as we can see in Equation 2, where the
Divergence KL is used to calculate this distance. The model
tries to approximate the probability distribution of the latent
space Z p(Z|S), for that it uses variational distribution to find
the probability of the posterior distribution. For this, it uses
the VAE that receives an input S and creates a latent space
Z. With that, the latent space represents the variations of the
patterns in the state.

Creating an algorithm that follows this strategy requires an
RL algorithm that has a Value Function and a VAE structure.
In this work, we chose to use an A2C agent, which runs
one episode at a time and not continuously. And a VAE
structure was developed, capable of receiving the states of
the environment as input to encode and then decode them.
With the development of these, we were then able to apply
the VSIMR strategy, like the algorithm shown in adapted
Algorithm 1 [15]. In Fig. 3 we can visualize a graphical
representation of the strategy.

Algorithm 1 Intrinsically motivated training loop for A2C.
for Episode=0,1,2,.... do

Initialize the dataset D and insert s0 in D;;
for t=0,1,2...T do

Take an action and watch the next state st+1 and the
extrinsic reward rextrinsic(st+1) ;
Compute rintrinsic(st+1) (st+1) = KL Divergence ;
Store tuple (st+1, at,rextrinsic(st+1), rintrinsic(st+1))
in D ;
if mod(t,N) then

Train the Actor and the Critic with the return
Gt=Σtrextrinsic(st)+ βKL−Divergence ;
Train VAE with the states s collected in D ;
Initialize the dataset D and insert st in D ;

end
end

end

In implementing the algorithm, we developed the A2C
agent, which interacts with the MultiRoom and DoorKey
environments, then we implemented the VAE and incorporated
it into the A2C algorithm.

Fig. 3. Representation of the VSIMR strategy.

The implemented strategy starts the episode and starts a
dataset D. This dataset is where data will be stored to feed
the VAE training. On episode launch the initial state, called
S0 of the environment, is inserted into the dataset, so the
agent can start taking actions within the environment. In this
phase, the agent takes an action based on its π policy and
finds itself in a state, called here St. After taking an action,
the environment returns to the agent a state resulting from
its action, here called St+1. The extrinsic reward of the state
St+1. After the agent performs an action, it is time to compute
the value of the intrinsic reward, sending the St+1 to the VAE,
which in turn encodes and decodes the St+1 and applies the
function of loss to compare the VAE input and output, one
of the components of this loss function is the KL Divergence,
which will be used by the agent as an intrinsic reward. To
facilitate the application of the KL divergence as an intrinsic
reward we use a Gaussian distribution to normalize the result
of the KL divergence. After the calculation of the intrinsic
reward, a tuple is stored, consisting of St+1. The action that
the agent took, the extrinsic reward and the intrinsic reward in
the D dataset. During the Actor and Critic training phase, both
are trained with the return of the sum of the states’ extrinsic

rewards plus intrinsic reward. VAE trains using the dataset D,
after training the dataset is reset and St is inserted into D.

rtotal = rextrinsic + βrintrinsic (5)

The hyperparameter β is inserted during the calculation of
rewards shown in Equation 5. It acts as a regulator for the
influence that intrinsic motivation will have on the algorithm.
The β is of paramount importance for this intrinsic motivation
model, as it should not be too small a value to not influence
the algorithm to explore new states, nor too high to surpass the
extrinsic reward value. If the value of β is high enough to make
the intrinsic reward more influential than the extrinsic reward,
the agent loses the sense of the objective that the environment.

Once the algorithm is implemented using the IM strategy of
using the variational state as an intrinsic motivation, we can
start to interact our code with the environment and empirically
search for data and results.

IV. RESULTS

A. Beta Regulator Tests

With the algorithm already implemented, some tests were
carried out where the agent did not reach its objective. During
these tests we used, based on A2C Algorithm with atari [7]
game environments, the agent learning rate hyperparameter
at 0.001 and we turned to the analysis of the regulator β.
The VSIMR model does not mention the rate used to regulate
the intrinsic reward [15], therefore some tests with random
rates and we can empirically deduce the importance of such
a regulator, as it should remain a stimulus to the exploration
of the environment since it should not override the extrinsic
reward given by the environment. So we are left with the
question. What is the best rate for regulating β?

With this question in mind, we adapted the algorithm so
that it is run with several values in β in order to find rates
that represent the best results and given the difficulty of
the environment, to return information if the agent found its
objective in MultiRoom environment. The result of this test we
can visualize it in Fig.4. The graph shows us which values we
have the best results. With the data generated by the analysis
of the graph, further tests were carried out using the value
0.0002 for the hyperparameter β.

The still static definition of the learning rate and when find-
ing a value for the hyperparameter β, the tests demonstrated
an improvement of the agent towards achieving the objective
in the environments. However, the Gaussian distribution that
was being used in the value of the KL divergence that returns
from the VAE was configured with a mean of 0.5 and a
standard deviation of 0.5, so the agent always received positive
stimuli with intensities of different values, with values close
to zero when VAE returned little change in the states that
were passed on to it, and values closer to 1 when the states
showed greater changes. In order to try to improve the agent’s
performance we decided to change these values so that the
Gaussian distribution to mean 0.25 and standard deviation of
0.75, making the intrinsic reward values between -0.5 to 1.0.

This range of values was chosen empirically after observations
of the agent’s behavior and also some value tests, the purpose
of which is to make values that represent little change in the
state returned by the environment and passed on to the VAE to
obtain the intrinsic motivation, had negative values in order to
penalize, in a minimal way, the agent for finding states without
much change in his observation of the environment. The
purpose of this change in the range of intrinsic reward values
was to encourage the agent to better explore the environment,
aiming to complete the objective in a smaller number of
possible actions, making the agent efficient by sampling. In
order to find the best value for the hyperparameter Beta, we
respectively tested the ranges: 0.0001 - 0.0009; 0.001 - 0.009;
0.01 - 0.09 and 0.1 - 0.9.

Fig. 4. Results of rewards for 1200 episodes, executed with each range
described values in the hyperparameter β.

Tests performed in the configuration of the RL agent, which
was achieved in this work through the analysis, showed an
improvement in the DoorKey environment and that the agent
managed to learn to reach the objective of the MultiRoom
environment.

B. Tests with Learning Rates

Tests carried out showed us how crucial the relationship
between these two hyperparameters is. When we achieved re-
sults in exploring the intrinsic motivation applied to partially-
observable environments and sparse rewards, more tests were
performed, now staying at the agent’s learning rate, which ini-
tially is 0.003, when changed to 0.005 or 0.001, demonstrated
in its results major changes in the way the agent was learning.

Our environments have 7 possible actions, each action
represented by natural numbers and described above, having
said that we can conclude by observing these actions, that
some actions are not useful in certain environments of the set
of environments present in the Minigrid. The MultiRoom has
all the actions of the Minigrid environments, but the rules
to reach the goal of overcoming the maze present in the
MultiRoom are movement, represented by actions from 0 to 2.
The other crucial action to beat the MultiRoom environment is
to open the doors between the rooms, represented by action 5.
The remaining actions 3, 4 and 6 will not show any progress in
reaching the goal at the end of the maze, as their functions are

respectively to pick up an object, drop an object and point to
the completion of the task. The MultiRoom environment does
not have objects to be collected or dropped by the environment
and the agent does not indicate the end of the task, it is
determined when the agent reaches the green grid. Therefore
concluding that in the MultiRoom environment actions 3,
4 and 6 are useless for the agent to obtain results in this
environment.

The MultiRoom was used for tests with the learning rate, in
order to visualize how much the agent learned certain actions
that are most useful to reach the last room, such as moving
forward (action 2) and interacting with objects to open doors
(action 5).

In Fig. 5 and Fig. 6 are showed the graphs of the prob-
abilities that the agent considered when taking each of the
actions. The probabilities of actions range from 0.0 to 1.0
which represent the percentage of probability that the agent
has influencing him to take a certain action. The figures were
generated after the execution of the MultiRoom and have the
action and its given color as caption, the actions represented
by the dashed line represent the actions that do not help the
agent to reach its goal and do not return to a different state after
taking it of the action. The graph shown in Fig. 5 is the one
that obtained the best result of the agent in the environment,
showing in the graph a decrease in the probabilities of actions
represented as not very useful for the agent and its exploration
of the environment, and an increase in the probability rate of
actions that move the agent through the environment. Fig. 6
shows the same agent using a learning rate of 0.005, in it
we can see that action 3, which is an action that does not
help the agent at all to explore the environment, much less
reach its goal, had a great high in its probability. Observing
the environment with a learning rate of 0.005, the agent
demonstrated after 800 episodes taking too much action 3 and
visually, when rendering the environment, it was parked on
the grid where it appeared in the environment.

Finally, a test with a 0.001 learning rate showed that the
agent, during the 1200 episodes in which they were tested
in the MultiRoom, showed little learning and very similar
probability rates demonstrating a high degree of randomness
in the actions taken by the agent. The relationships between
hyperparameters are extremely important and the definition of
some values can be extremely careful and difficult to find.

C. A2C+IM x A2C Standard

The adjustments made in the implementation made our
agent achieve good performances in the environments, given
its difficulties. With these results, it was possible to go deeper
into the problem. Now that the agent can reach its goal,
we made a comparison of the performance of the standard
A2C agent with the A2C implementation using the intrinsic
motivation strategy to reach its goal. In Fig. 7 we can visualize
the performance of the algorithm using A2C with Intrinsic
Motivation. The standard A2C algorithm returned no reward
in 1200 episodes as showed in Fig. 8. We ran the A2C+IM
algorithm first and then an algorithm only with the standard

Fig. 5. Probability of choosing the agent’s actions in the MultiRoom
environment, using the learning rate of 0.003 and the hyperparameter
β in 0.0002. Dashed lines are useless actions for the agent in this
environment and solid lines are useful actions for the agent.

Fig. 6. Probability of the agent’s choice of actions in the MultiRoom
environment, using the learning rate of 0.005 and the hyperparameter
β at 0.0002. Dashed lines are useless actions for the agent in this
environment and solid lines are useful actions for the agent.

A2C, both in the MultiRoom environment with a configuration
of 3 rooms of size 4. Running in just 1200 episodes, seeking
in this way to prove the sampling efficiency that our imple-
mentation has, requiring few episodes so that the agent can
learn to cross the rooms, open the doors and reach his goal.
In Fig. 7 we have the blue line representing the real values
of the rewards returned by the environment and in the orange
line we have the average of these values demonstrating the
growth of the agent’s learning.

In order to test the agent’s sensitivity to the storage of the
environment. We tested the performance of the Doorkey en-
vironment in 1200 episode configurations, and with a gradual
increase in stocacity, once in a fully deterministic environment.
A second with the most stochastic environment, using two
environments configurations that alternated with each other.
And finally a third, where the agent had 1200 episodes to
learn in a stochastic environment with 3 different settings.
These graphs can be respectively in Fig. 9 and Fig. 10.
In the graphs we can see the real values of the extrinsic

Fig. 7. MultiRoom A2C+IM results in 1200 timesteps (blue =
extrinsic reward value, orange = extrinsic reward mean).

Fig. 8. Standard A2C results in 1200 timesteps (blue = extrinsic
reward value, orange = extrinsic reward mean).

reward in blue and the average of the values in orange for
better visualization. Analyzing the graphs, we can see that
the A2C+IM strategy has a certain tolerance to stocacity, that
even the agent interacting in the environment with two distinct
configurations, he continues to learn.

V. CONCLUSION

The Intrinsic Motivation applied to the Learning Agent
through Reinforcement is able to improve their performance
and overcome difficulties in scarce environments, as presented
in the tests described in this study. However, there are several
points to be aware of when applying intrinsic motivation.
The origin of this intrinsic motivation, in our case, we use
variational inference to obtain our intrinsic reward, through the
VAE. And the regulation of intrinsic motivation. It is important
to emphasize that the regulation of the intrinsic reward is an
extremely important adjustment and that it should neither be
too low nor overlap the extrinsic reward, otherwise we run the
risk of the agent not having the expected performance gain.

REFERENCES

[1] R. S. Sutton, and A. G. Barto, Reinforcement Learning: An Introduction.
2. ed. London,England: The MIT Press, 2018.

[2] A. Aubret, L. Matingnon and S. Hassas, A survey on intrinsic motivation
in reinforcement learning.arXiv preprint arXiv:1908.06976, 2019.

[3] J. Hare, Dealing with Sparse Rewards in Reinforcement Learning.
Dissertation (Master)— University of Sheffield, Sheffield, nov. 2019.

[4] T. Zahavy et al. A Self-Tuning Actor-Critic Algorithm. 2020.

Fig. 9. A2C+IM results on DoorKey with Deterministic en-
vironment in 1200 timesteps (blue = extrinsic reward value,
orange = extrinsic reward mean).

Fig. 10. A2C+IM results on DoorKey with Stochastic envi-
ronment with 2 environment settings in 1200 timesteps (blue =
extrinsic reward value, orange = extrinsic reward mean).

[5] Y. Yu, Towards sample efficient reinforcement learning.Proceedings of
the Twenty-Seventh International Joint Conference on Artificial Intelli-
gence, v. 1, n. 1, p. 5739–5743, 2018.

[6] I. Grondman, A survey of actor-critic reinforcement learning: Stan-
dard and natural policy gradients.IEEE Transactions on Systems, Man,
and Cybernetics, Part C(Applications and Reviews), v. 42, n. 6, p.
1291–1307, 2012.

[7] O. Nachum, Bridging the Gap Between Value and Policy Based Rein-
forcement Learning. 2017.

[8] V. Mnihr,A. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Sil-
ver, K. Kavukcuoglu. Asynchronous Methods for Deep Reinforcement
Learning.Proceedings of The 33rd International Conference on Machine
Learning 2016, 2016.

[9] C. Doersch, Tutorial on Variational Autoencoders. 2021.
[10] E. L. Deci and R. M. RYAN, Intrinsic motivation. In:.The Corsini

Encyclopedia ofPsychology. American Cancer Society, 2010. p. 1–2.
ISBN 9780470479216. ¡https://onlinelibrary.wiley.com/doi/abs/10.1002/
9780470479216.corpsy0467¿.

[11] J. Piaget and M. Cook, The origins of intelligence in children. New
York, NY, US: W W Norton Co, 1952.

[12] G. Brockman, OpenAI Gym. 2016.
[13] D. Silver, Mastering Chess and Shogi by Self-Play with a General

Reinforcement Learning Algorithm. 2017.
[14] M. Chevalier-Boisvert, L. Willems and S. Pal, Minimalistic

Gridworld Environment for OpenAI Gym. [S.l.]: GitHub, 2018.
¡https://github.com/maximecb/gym-minigrid¿.

[15] M. Klissarov, R. Islam, K. Khetarpal and D.Precup. Variational State
Encoding as Intrinsic Motivation in Reinforcement Learning. [S.l.]:
Task-Agnostic Reinforcement Learning Workshop at ICLR 2019, 2019.

https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470479216.corpsy0467
https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470479216.corpsy0467

	Introduction
	Background
	Reinforcement Learning
	Advantage Actor-critic (A2C)
	Variational AutoEncoder
	Intrinsic Motivation
	Environments

	Research Methodology
	Choice of Environments
	Algorithm Creation

	Results
	Beta Regulator Tests
	Tests with Learning Rates
	A2C+IM x A2C Standard

	Conclusion
	References

