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Abstract—The interest in power managing systems has been
growing in recent years since every industrial or domestic plant
moves towards techniques to efficiently reduce energy demand
and costs related to it. An attractive solution is represented by
Non-Intrusive Load Monitoring (NILM) systems, whose primary
purpose is to find a more appropriate way of keeping track of
the power consumption caused by each of the loads that are
connected to the monitored plant. A possible real-life implemen-
tation of a NILM system is addressed in this work, discussing
all the fundamental blocks in its structure, including detecting
events, feature extraction, and load classification, using publicly
available datasets. Additionally, we provide a solution for an
embedded system, able to analyze aggregated waveforms and to
recognize each appliance’s contribution in it. The main algorithm,
its features, drawbacks, and implementation are thus explained,
showing current and future challenges for the final application.

I. INTRODUCTION

In the next decades, increasing energy demand will claim
not just for new sources but also for intelligent and efficient
ways of managing consumption. Nowadays, solutions are
moving towards smart grids techniques that, due to the mutual
exchange of information among their users, allow a better
distribution and management of electric power.

Non-Intrusive Load Monitoring (NILM) [1] is a power
managing solution that aims at analyzing a system’s current
and voltage signals, allowing to recognize which appliances
are used and their respective power consumption. From a
practical point of view, this means developing a plug-and-
play device that can recognize loads connected to an electrical
system and display the amount of individual energy used [1].
In particular, non-intrusive means that loads’ data are gathered
from a single device instead of multiple sensors placed on
individual appliances, which might intrude on the monitored
system.

According to [2], [3], NILM approaches usually consider
the following steps: (i) Data Acquisition; (ii) Feature Ex-
traction; and (iii) Load Identification. Data acquisition has
a critical role in the next steps. A high sampling frequency
system, for example, might directly impact the signatures of
the signals that have to be analyzed, such as their resolution or
harmonic components. On the other hand, a low sampling fre-
quency leads to more affordable costs, thus a cheaper device.
During the process of feature extraction, the disaggregated
signal referring to a single appliance is analyzed. The purpose

of this step is to calculate a set of features coherent with data
acquisition that will be exploited in the classification process
needed for the load identification.

Several strategies could be applied to identify the loads
that are consuming energy [4]. In particular, in this work,
supervised machine learning algorithms are used to recognize
loads through classifiers, which are models trained on our
specific data. Many related works [5]–[7] use machine learning
algorithms because of their robustness and generalization per-
formance over new data. On the other hand, machine learning
algorithms require high computational capabilities. Therefore
some architectures might be preferable due to their intrinsic
parallelism [8].

In this sense, this work aims to develop an embedded system
to perform NILM with high-sampled voltage and current
signals. To do so, a detection algorithm was implemented to
identify and disaggregate each appliance; next, a specific set of
features were extrapolated from the target signals and suddenly
sent to a classifier for their recognition, where four different
classifiers were analyzed and compared. Moreover, the whole
algorithm was implemented over an embedded system, for
which execution times were recorded. Thus, we believe that
the results presented in this work form a step towards a
possible real-life implementation of a NILM device.

This paper is organized as follows. Section II focuses on
the main techniques used for this work, including a small
overview of the state-of-the-art solutions. Section III resumes
the theoretical aspects worthy of mention. Section IV explains
the proposed method elaborated for the development of the
algorithm behind a NILM system. Finally, Section V exposes
and discusses the results obtained, and Section VI concludes
this work.

II. RELATED WORK

In this work, NILM was mainly divided into three proce-
dures, i.e., data acquisition, feature extraction, and load iden-
tification, leading to three fundamental blocks: load detection,
features extraction and classification.

Detect a load properly meant, in this project, recognize that
a turn-on event occurs and then use a disaggregation algorithm
to isolate the selected load for its further analysis. In [9], for
instance, an algorithm called High Accuracy NILM Detector
(HAND) is proposed. This algorithm tracks the envelope of a



signal and computes its variance. Then, the use of an empirical
threshold exploits the higher variance values to find out if
an event occurred. Similarly, the Half-Cycle Apparent Power
(HCApP) algorithm [10] analyzes the apparent power signal,
moving to a binary representation of it, and determines a
transient window for both the turn-on and turn-off events based
on power variations . Still in this context, Discrete Wavelet
Transform (DWT) performs signal segmentation using wavelet
decomposition [11], allowing the calculation of an universal
threshold, instead of an empirical one. Even a Kalman Filter
could be used for detection, as presented in [12]. In this case,
from a comparison between the real and the estimated signal,
the higher number of errors in the latter is usually related to the
signal regions where more changes occur, which are usually
transients. One last detection approach uses vectorization [13],
[14] to characterize the samples of a signal into ”valid” and
”non-valid” states. Non-valid states are associated with events
such as abrupt transitions, high derivatives values or high-
frequency oscillations, which resemble the turn-on and off
conditions that we are looking for.

After detection, the isolated signal must be processed to
extract the relevant features for classification; in particular,
features are based on load characteristics, whose information
content might be influenced by the respective sampling fre-
quency. Steady-state methods, for example, identify devices
based on variations in their steady-state signatures. Different
steady-state features are already present in the literature and
enable low-cost hardware because of low-sampling rate re-
quirements. On the other hand, some limitations occur when
many loads show similar steady-state shape [15]. Moreover,
those methods slow the monitoring process since they require
waiting until transient states settle down. To provide a further
mean of discrimination, transient state methods for feature
extraction can be introduced [16], since transient behavior is
typically related to the physical task that the load performs. It
is also advantageous to identify variable drive-connected loads
since the drive startup is generally repeatable. However, one
of the major drawbacks is that a high sampling rate is required
which translates in a more expensive hardware [17].

The last step in the sequence is classification. This process
aims to analyze the features collected and recognize the load
that has been detected. The most widely used approach is
supervised learning, using pattern recognition or optimization-
based algorithms. Supervised learning requires labeled datasets
for training classifier model, to identify and generalize over
data of the same nature (voltage and current signals in this
case) [18]. Optimization methods perform load recognition
using a heuristic approach, thus comparing the extracted
feature vector of an unknown load with the ones present in the
appliance database and minimizing an error function to find the
closest possible match [5]. On the other hand, pattern recog-
nition methods exploit database features to cluster appliances
based on their characteristics [19]. Even though supervised
learning can be considered more reliable, one limitation is
its strong dependency on the datasets used for training the
model, which implies a considerable effort to build datasets

with new appliances, requiring years of data collection. This is
why recently, researchers have shown an increased interest in
unsupervised learning techniques [20]. Those methods try to
isolate the aggregated load measurements without evaluating
previously collected information, but clustering data based
on repetitive patterns discovered by the model itself. Good
results (accuracies > 90%) have been reached by the research,
suggesting that unsupervised learning might be a good solution
in NILM [21]. However, some very non-trivial problems need
to be solved. For example, many clusters are formed in a multi-
state appliance due to multiple states, therefore confusing the
classifier model. One solution might be use deep learning
techniques [22]. For example, several neural networks can be
trained in cascade and used as pattern classifiers to identify
the various loads. Each network classifies the load’s family
at a specific level. Those algorithms are compelling, but
their computational complexity makes them prone to fit some
specific hardware (such as GPU) rather than others.

As a matter of fact, the embedded system that will host
the algorithm for a NILM device should be appropriately
chosen according to the tasks required, cost of the device and
power consumption constraints. Ideally, a NILM device is a
multitasking system, able to analyze multiple loads simultane-
ously, exploiting parallel computing to boost performances in
terms of speed and optimization of power consumption. This
might be achieved using GPUs or FPGAs, inevitably affecting
the costs. The work presented in this paper tries to focus
on the performances rather than costs, to increase calculus
accuracy and system capacity, therefore using a powerful
embedded system to host the algorithm for a NILM module.
This is small part of the project presented in [5], [23]–
[25], where the intentions are to use several load monitoring
modules units controlled by an Operation Center, whose task
is managing each unit and analyze power-consuming from the
data collected.

III. THEORETICAL ASPECTS

In this section, we present the theory behind the most
important building blocks that were included in the realization
of a NILM device. As mentioned in the section before,
loads’ signals were analyzed employing a detection algorithm,
features extrapolation, and classifier identification processes.

A. Detection Method

Detection alerts the system that a load switched on, isolating
the appliance from an aggregate power signal and manipulat-
ing it later on. In particular, every time a new transient occurs,
this will be reported to the system through the start and the
end instants of the transient itself.

Among the algorithms mentioned in the section above, in
this work, the HAND algorithm [9] was applied as detection
strategy. The HAND’s working principle is simple and intu-
itive: the variation of the standard deviation σ(t) of the signal
current’s envelope e(t) is tracked using a moving window.
A threshold separates the events characterized by high σ(t)
amplitude variations and the one with low variations, thus
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Fig. 1: ts and te detection for a composed signal (Led Pannel,
Oil Heater Power 1 and Incandescent Lamp) in LIT Dataset.

allowing to classify among transient and steady-state intervals.
The algorithm is summarized in Algorithm 1.

Algorithm 1 HAND Algorithm
Input: signal, moving window size (L), threshold in
Output: start (ts) and end (te) instants of transients out

1: Compute signal envelope e(t)
2: Initialize the first L instants of the standard deviation σ(t) of e(t):
σ(ti) = std[e(t0), e(t1), ..., e(tL)], i = 0, 1, ... , L

3: Initialize the first L instants of the mean µ(t) of e(t):
µ(ti) = avg[e(t0), e(t1), ..., e(tL)], i = 0, 1, ... , L

4: j ←− L
5: while j ≤ length(signal) do
6: Compute mean as µ(tj) = µ(tj−1) +

1
L
[e(tj)− e(tj−L)]

7: Compute variance as σ2(tj) =
1
L2 σ

2(tj−1)+
1

L−1
[e(tj)−µ(tj)]2

8: end while
9: k ←− 0

10: while k ≤ length(signal) do
11: if ( σ(tk) > threshold and dσ(tk)

dtk
> 0 and de(tk)

dtk
> 0) then

12: tk is a start instant ts
13: end if
14: if (σ(tk) < threshold/3 and dσ(tk)

dtk
< 0) then

15: tk is an end instant te
16: end if
17: end while
18: return ts,te

In this work, it was assumed that each appliance is turned on
just when the previous one’s transient is already finished. This
assumption is coherent with the signals of the used datasets
[2], [23]. Moreover, to avoid false detection due to the possible
presence of noise, e(t) has been smoothed with a moving
average filter when HAND was implemented.

Fig.1 shows some results from the detection algorithm. Note
that it is just needed to detect turn-on events for our purposes;
thus, in the HAND algorithm, a condition over the envelope’s
gradient was introduced.

B. Feature Extraction

Both COOLL [2] and LIT [23] datasets provide current and
voltage signals of appliances that are mainly household de-
vices. For the two datasets, the same features were extrapolated

from the signals and collected in two separate databases. As
a consequence of the detection algorithm, it was possible to
calculate the features for both the steady and the transient state
of a load signal in two different time windows, respectively.

Active, reactive, and apparent power were first extrapolated
since the signals analyzed are voltages and currents signals.
It was also possible to provide further information to the
classifiers using other more standard features like average
value, covariance, and the harmonics’ amplitude. Moreover,
the nature of the processed signals makes possible the use of
V-I trajectories features for steady-state intervals, where one
cycle of both current and voltage signals were extrapolated
[6]. For those features, an exhaustive review was presented
in [5] where, among the commonly used ones, a new set of
features was proposed to increase the number of signatures for
the classification process. In this work, the used features were:
peak value, active/reactive/apparent power, median, covariance
of voltage (V) and current (I) signals, variance, steady state
average value, harmonics up to the 12th order, current span, V-
I trajectory area, and area with loop direction. All of them are
listed and explained at the public available repository located
at https://github.com/giobraglia/Signal-Processing-Features.

C. Classifiers

Machine learning techniques were implemented in this
project, to make the system autonomous and able to generalize
recognition over every kind of appliance connected to the
monitored system. Two are the macro-categories when we
refer to machine learning [26]. Supervised learning aims at
learning a model from labeled training data that allows us to
make predictions about unseen future data. On the other hand,
unsupervised learning usually tries to cluster data, approaching
the classification problem without class labels.

In this project, we used a supervised learning approach since
all the loads were already provided with an identification label.
In particular, four different machine learning algorithms were
used and evaluated: Logistic Regression (LR), Support Vector
Machine (SVM), K-nearest-neighbors (KNN), and Random
Forest classifier (RF).

IV. PROPOSED METHOD

Fig. 2 explains the process of our NILM procedure. The
lower branch represents the steps required to properly select
a classifier model, starting from storing all the features in
specific databases used for the training process of classifiers. In
this last passage, performances can be increased using model
evaluation techniques [26]. This method is fundamental to
tune the classifiers properly and select one of them for a later
implementation on the embedded system. On the other hand,
the upper branch shows the fundamental blocks for online
load identification. Here, the system operates over a fixed time
window, where it observes if some turn-on events occur. Thus,
the loads detected are disaggregated to reduce the influence
from any other appliance components [5], [15]. Once the
signal is isolated, the system calculates the respective features
and sends them to the classifier in order to receive, as output,



the load identification label. In the following paragraphs, this
method is detailed.

A. Datasets
The two datasets used for this work are the COOLL [2] and

LIT Dataset [23]. Both datasets are considered high sampled
ones, as the signals are provided with a sampling frequency of
100 kHz and 15 kHz, respectively. COOLL waveforms all refer
to individual appliances. Hence, the disaggregation process
was not needed. On the other hand, LIT dataset provides
aggregated waveforms, which recorded multiple loads that
were turned on in sequence. This characteristic inevitably
requires the use of an isolation (disaggregation) algorithm.
Moreover, LIT dataset includes in its waveforms the instants
of every on/off events, a useful feature for evaluating detector
performances. In particular, the LIT dataset is splitted into
three groups: synthetic, simulated, and natural. For this project,
the synthetic dataset was used, where all the appliances were
measured in a more controlled way, with a precise load
shaping. Table I and II detail the appliances used in the
COOLL and LIT datasets, respectively.

TABLE I: COOLL Dataset.

Appliances Num. of Appliances Num. of Signals
Drill 6 120
Fan 2 40

Grinder 2 40
Hair dryer 4 80

Hedge trimmer 3 60
Lamp 4 80

Paint stripper 1 20
Planer 1 20
Router 1 20
Sander 3 60

Saw 8 160
Vacuum cleaner 7 140

Total 42 840

B. Detection Method
This work implemented the HAND as a detection algorithm.

In particular, in [9], the detector uses a threshold settled
empirically, i.e., a static threshold. In our case, a dynam-
ical adaptive threshold was used employing two different
approaches. The first one calculates the threshold averaging
the value of the variance signal’s local peaks. Alternatively,
the second one considers the average of the Fourier transform
of the variance signal. After detection is performed success-
fully, the appliance needs to be adequately isolated with a
disaggregation algorithm [15], [27]. As shown in Fig. 3, this
algorithm supposes that aggregated waveforms can be seen as
the linear combination of the loads that are on. Consequently,
the load is isolated by subtracting to it a previous interval of
the aggregated waveform, in order filter out previous loads
components.

C. Training Procedure
Supervised learning processes expects a dataset for the

training of classifiers [26], therefore all the waveforms in [2]
and [23] were processed and analyzed.

TABLE II: Appliances in LIT Synthetic Subset (LIT-SYN).

ID Device Power (W)
1 Microwave Standby 4.5
2 LED Lamp 6
3 CRT Monitor 10
4 LED Panel 13
5 Fume Extractor 23
6 LED Monitor 26
7 Cell phone charger Asus 38
8 Soldering station 40
9 Cell phone charger Motorola -
10 Laptop Lenovo 70
11 Fan 80
12 Resistor 80
13 Laptop Vaio 90
14 Incandescent Lamp 100
15 Drill Speed. 1 165
16 Drill Speed. 2 350
17 Oil heater power 1 520
18 Oil heater power 2 750
19 Microwave On 950
20 Air heater Nilko 1 120
21 Hair dryer Eleganza - Speed 1 365
22 Hair dryer Eleganza - Speed 2 500
23 Hair dryer Super 4.0 - Speed 1 - Heater 1 660
24 Hair dryer Super 4.0 - Speed 1 - Heater 2 1 120
25 Hair dryer Parlux - Speed 1 - Heater 1 660
26 Hair dryer Parlux - Speed. 2 - Heater 1 885

In this work, accuracy, learning curves and ROC curves
were used as classification metrics. Moreover, the final clas-
sifier has undergone few evaluation steps before being se-
lected. First, the Grid Search technique for parameter tuning
was applied. In the sequence, Sequential Backward Selection
(SBS) helped in finding all those features that lower classifier’s
performance, which translates in a dimensional reduction of
the features dataset. Then, Grid Search was applied again
after the models were trained over a smaller dataset. Finally,
Principal Component Analysis (PCA) was used to see if we
can provide any additional information to the classifier through
feature extraction.

D. Feature Selection and Extraction

As mentioned above, since a predefined set of features
was exploited, we should find a way to extrapolate all the
helpful information they contain. However, there might even
be some unwanted information that we must cleanout. SBS
is an algorithm for feature selection that iteratively selects
a subset of features and evaluates a classifier’s performance
over it. The result is that we can easily observe if some
features are affecting the quality of identification. Moreover,
a further benefit is that by eliminating features, the dataset
size is reduced as well as the amount of data that has to be
processed.

Another possible technique is PCA. This algorithm provides
a way to find the principal components in terms of variance in
the original dataset and, therefore, it is a transformation of the
features. Consequently, the computational cost is increased if
PCA is applied, but this enables the analysis on both dataset
and classifiers, possibly adding new information to them.
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Fig. 3: Details of the disaggregation algorithm. After detecting
the selected load, it stores an interval of the same length of
the load signal right before the detected part. This component
is then subtracted to the signal of interest in order to get rid
of other loads’ components.

E. Classification metrics

The classifiers’ prediction were evaluated in terms of ac-
curacy, which basically tells how many true positives and
true negatives events occurred among all the classifications.
However, accuracy value might be secretly affected by some
unbalances in the data. If, for instance, an appliance on the
dataset is always misclassified while the others no, the result is

that an high accuracy is achieved although one device is never
recognized. That’s why Receiver Operating Characteristics
(ROC [28]) curves supported the performances analysis in this
work, as they investigate over true positive and false positive
rate.

Another issue, is that the performances are directly affected
even by the dimension of the training dataset: a low number
of samples provides just few information to classifiers, while
an high one risks that we end up over-fitting the data. For
this purpose, learning curves track classifiers’ accuracy over
training dataset with different dimensions, so it can be chose
correctly.

F. Embedded System

The project was conceived to be implemented on an embed-
ded system. Therefore, the NVIDIA Jetson TX1 was chosen
as an embedded system for hosting all the codes. NVIDIA
Jetson TX1 is a full-featured development platform for visual
computing; it is ideal for applications requiring high computa-
tional performance in a low power envelope (the whole board
consumes 10 W).

Jetson TX1 comes with a Linux environment, includes
support for many common APIs, such as python’s API,
used throughout this work. The board integrates 256-core
Maxwell GPU, where Maxwell is the codename for a GPU
microarchitecture developed by NVIDIA. The GPU is the
main reason why the board has been chosen. Despite CPU
always runs codes in sequence, GPU’s main feature is the
ability to parallelize codes, optimizing computation costs and
increasing speed. Therefore, the use of GPU could enhance our
system performance a lot, allowing us to analyze more signals



simultaneously, thus increasing the capacity of our system,
being able to monitor larger environments.

V. RESULTS AND DISCUSSION

In this section the results are presented. During the real
application of the whole algorithm, some problems related to
the detection method appeared and will be discussed in the
next paragraphs. Next, the final performances of the classifiers
are reviewed before providing some informations about the
whole algorithm implementation.

A. Detection

In COOLL dataset, since just single appliance waveforms
are available, we tried to extrapolate a reduced set of features
without the distinction between steady and transient states.
Therefore, the signals were always analyzed in their entire
duration instead of separate intervals of them. In this first
analysis, COOLL dataset was useful to test and improve the
whole algorithm chain, before including the detection and
disaggregation blocks (as shown in Fig. 2). This was not
possible for the LIT dataset, where a detection algorithm for
aggregated waveforms is needed. For instance, in the case of
waveforms related to eight simultaneous appliances, empirical
results show that the HAND algorithm correctly detected just
the 61% of them. As a matter of fact, during simulations three
main problems were highlighted:

1) the setting of an adaptive threshold could avoid the
detector to sense appliances operating at very low am-
plitudes;

2) the appliances whose transient swings many times before
reaching the steady-state will be detected multiple times.
This can result in different features values, leading to
wrong predictions;

3) since variance is sensitive to signal variations, the pres-
ence of noise can cause false positive events detection.

While to avoid 3) we can simply smooth the signals before
their analysis, the other two problems were difficult to be
solved since they derived directly from the HAND operation
criteria. Therefore, to build the LIT features dataset correctly,
the turn on and off instants recorded in [23] were used and
applied to the detector. This ensures that every load in a
waveform was recognized.

B. Classification

The classifiers’ performance, displayed in terms of accuracy,
are shown in Table III, IV and V.

Particularly, Table III refers to the analysis over COOLL
dataset waveforms. In this case, since all the signals referred
to individual appliances, no disaggregation was needed, thus
no error due to that process was introduced. This significantly
influenced all the classifiers’ performances, leading to promis-
ing results (accuracy > 97%). Moreover, note that after SBS,
the feature dimension was reduced from 30 to 17 features.
This result indicates that there were redundant information
that could be removed among the features calculated for the
COOLL dataset.

TABLE III: COOLL Dataset Test Accuracies.

Classifier Preliminary Grid SBS Grid
test Search Search

LR 99.4 (26) 99.4 99.4 (17) 99.4
SVM 99.4 (26) 99.4 99.4 (17) 99.4
KNN 98.2 (26) 98.2 98.8 (17) 98.8
RF 99.4 (26) 99.4 99.4 (17) 99.4

Table IV and V refer, instead, to the results obtained for the
LIT dataset. Table IV displays classifiers’ results when the
group of waveforms, based on the number of simultaneous
appliances recorded (APP in the Table, from 1 to 8) were
separated. This was done to investigate the errors introduced
by the detection and disaggregation processes. The classifiers’
performances decrease with a higher number of loads, which
clearly lower the detection accuracy. This is probably due
to the fact that simultaneous loads can increase the amount
of noise in the line leading to wrong detection. Moreover,
devices with high power requirements could end up fading
signals coming from appliances consuming less, which will
be distorted or not recognized at all.

To conclude, the same evaluation process of the COOLL
dataset was conducted in Table V. Besides, even the PCA
technique was used, while for the COOLL dataset this was
not useful because, after the result obtained, PCA would only
increase the computational complexity. Notice that even in
this case, the SBS algorithm was able to spot and remove
the features that were actually decreasing the performances.
Even though not all the classifiers share the same subset of
features after SBS, as suggested in [27] we observed that
a lower number of harmonics (up to the 5th order) was
enough, since higher order ones usually displayed similar
amplitudes values. On the other hand, since we didn’t want to
get rid of those features completely, it was decided to group
higher harmonics information to calculate total odd and even
harmonic distortion.

TABLE IV: LIT Dataset Test Accuracies for Different Number
of Appliances.

Classifier 1 APP 2 APP 3 APP 8 APP
LR 97.6 98.5 94.3 90.3

SVM 97.6 98.9 98.4 90.9
KNN 95.2 98.9 96.5 91.6
RF 98.8 99.3 97.5 96.8

TABLE V: LIT Dataset Test Accuracies with Dimensionality
Reduction.

Classifier Preliminary Grid SBS Grid PCA
test Search Search

LR 88.2 (30) 88.7 87.4 (23) 87.4 94.3
SVM 96.2 (30) 96.2 97.0 (28) 95.4 97.3
KNN 94.5 (30) 94.5 95.6 (21) 95.6 96.8
RF 97.6 (30) 97.9 98.1 (24) 98.1 97.3

Despite the case of COOLL dataset, where all the classifiers
achieved similar performances, the SVM and RF classifiers
turned out to be the best ones for the LIT dataset.



Both SVM and RF exploit an heuristic approach which
tries, through the optimization of some parameters, to produce
the best possible solution for the data separation [26]. SVM
intrinsically tries to maximize the margin between hyper-
planes defined by the so-called support vectors. Therefore, if
normalization is used, SVM performs well because pattern
recognition is performed over data with the same scale. On
the other hand, RF works properly even when data are on
various scales, not requiring previous normalization process.
Moreover, RF is a committee method, meaning that potentially
better accuracy can be achieved by increasing the committee’s
complexity. Also, RF works very well even when the feature
space is non-linear, which is our case. This is why, in the end,
RF was chosen as the best model for classification. In Fig. 4
the learning and ROC curves of the Random Forest classifier
are shown. The learning curve shows that, with more than
2000 training samples, there is no substantial increase on the
accuracy value of a validation dataset. Thus, a higher number
of training samples is not necessary. Also we can notice that
the variance and the error in the case of the validation curve
are very low, suggesting that we do not observe overfitting or
underfitting conditions in our classifier.

The ROC curves show, instead, that the results achieved
for the RF classifier are really close to the ones of an ideal
classifier, meaning that the classifier is capable of discrim-
inating among different classes and identify them correctly.
Since we are in a multi-class problem and ROC curve is an
instrument for binary classification, for every class, a one-
versus-rest approach was used every time a ROC curve was
compiled.

C. Embedded System

The whole algorithms were embedded on the NVIDIA
Jetson TX1 board, as shown in Fig. 2, and directly ran from
the terminal.

Once a classifier has been trained, there is the possibility
of saving the respective model for further classification tasks.
Therefore, after the model evaluation process, the classifier
was included in the whole algorithm that, in sequence, applies
detection, disaggregation, features’ calculation, and classifica-
tion processes. This algorithm was used in simulations over the
test dataset to emulate a device capable of collecting external
data and recognize the respective loads. In the simulation, the
execution time of all the classifier models, when analyzing one
single appliance, were recorded:

• LR 1.47550± 0.0054 µs;
• SVM 2.71± 0.6 µs;
• KNN 4.140± 0.09 µs;
• RF 117.74± 1.4 µs.

It is interesting to see how the complexity of a classifier
influences the execution time. The tests evidence that, in gen-
eral, the RF classifier takes almost 100 times more than other
classifiers to be executed. That is because multiple decision
trees (18 in our case) are evaluated for the final classification.
Moreover, to see how much the whole process takes, also

500 1000 1500 2000 2500 3000
Number of training samples

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Random Forest Learning Curve

Training accuracy
Validation accuracy

(a) RF Learning curve

(b) RF ROC curve

Fig. 4: Random Forest classifier results for the LIT dataset.
The former figure shows that for a training dataset dimension
higher than 2000, the validation set’s performance is almost
constant, with very low variance and error. Instead, the latter
figure shows the mean ROC curve of 6 different classes
in LIT Dataset (please see Table II for the class ID-device
correspondence)

the execution times related to aggregated waveforms were
analyzed, i.e.:

• 1APP 0.13094± 0.0020 ms;
• 2APP 0.426± 0.07 ms;
• 3APP 0.688± 0.08 ms;
• 8APP 2.987± 0.08 ms.
Note that, in this case, the RF classifier was implemented.

In particular, for 1APP waveforms, the execution time takes a
little bit longer than the RF result previously registered due to
the detection and disaggregation processes. As expected, we
can see that higher the number of appliances, the longer it
takes to analyze them. This problem may be solved if all the
signals are processed in parallel.

VI. CONCLUSIONS AND FUTURE WORK

In this work, a possible real implementation of a NILM sys-
tem has been presented. By exploiting two publicly available
datasets, we showed that the proposed approach allows to build
a device that recognizes the appliances connected to the system
that we want to monitor. In particular, from the tests and



results, the random forest classifier appeared to be the most
robust classifier for our purposes, whose model misclassified
only 36 appliances over more than 4000 simulations.

The problem that limited the project was the lack of a robust
and reliable detector. Although the core part of the project is
the classifier, as long as a proper algorithm for detection is not
found, some important error components will prevent features
from being extracted correctly, therefore yielding errors in
classifiers’ predictions. A possible solution is provided in [23],
where the selectivity of multiple detectors is combined in an
ensemble detector, able to choose the best interval that has
been targeted from its sub-units. Its implementation might be
one of the future improvements in this project.

We also demonstrate that the algorithm fits the purposes of
building a device that collects current and voltage waveforms
and displays loads information. In this project, the NVIDIA
TX1 board turned out to be reliable and fast, requiring no such
high implementation and computational effort as expected. In
this sense, another further improvement is making the board
able to analyzed multiples signals in parallel. This could
be only achieved, for example, if the whole algorithm is
mapped to the GPU to exploit its power capability and parallel
computation, thus increasing code optimization and reducing
power consumption.
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