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Abstract—Speech enhancement is a crucial task for several
applications. Among the most explored techniques are the Wiener
filter and the LogMMSE, but approaches exploring deep learning
adapted to this task, such as SEGAN, have presented relevant
results. This study compared the performance of the mentioned
techniques in 85 noise conditions regarding quality, intelligibility,
and distortion; and concluded that classical techniques continue
to exhibit superior results for most scenarios, but, in severe noise
scenarios, SEGAN performed better and with lower variance.
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I. INTRODUCTION

Since the 1980s, speech enhancement and denoising re-
searches exploit neural networks’ ability to work as non-linear
filters [1]–[3], but it’s performance was often unsatisfactory —
usually due to the reduced amount of training data or even the
limited flexibility of the networks, caused by the inefficiency of
the training algorithm for more extensive networks, with more
neurons and layers. A new perspective for the use of neural
networks arose after [4], which has exhibited that employing
an unsupervised pre-training of the network for layers can
bypass the limitation found by gradient-based algorithms. This
new possibility, coupled with the rise of new tools for training
neural nets using GPU (Graphics Processing Unit) [5], has
rekindled interest in neural networks.

Implementations of neural networks with large numbers of
neurons and layers now include the term “Deep” in their
nomenclature, and therefore the term Deep Learning has
become popular when referring to Deep Neural Networks
(DNN). The flexibility and power of this type of neural
network have shown promising results and have attracted
a growing number of researchers in the field. However,
there is a wide variety of DNN architectures; each with its
respective characteristics and particularities, which may be
more convenient for specific applications and therefore less
suitable for others. For the applications discussed in this paper,
an architecture known as convolutional autoencoder will be
explored.

A recent approach called Generative Adversarial Networks
(GAN) [6] is a structure composed of individuals — usually,
two neural networks — competing against each other and
exploring concepts of Game Theory and Deep Learning. In

this competitive two-player game, there is a well-prepared
dataset, composed of samples of the same type, appropriately
chosen, but with different attribute values. The Discriminator
player, D, has the purpose of discriminating whether a sample
came from the original dataset or not; the Generator, G,
must capture the distribution of the original dataset and use
it to generate entirely new samples. Thus, while one of the
players intends to generate the perfect imitation of the original
data, the other player tries to be the best possible counterfeit
identifier.

For GAN-based methodes, the network training should
occur gradually and concomitantly for both players, otherwise,
an evolutionary imbalance may occur in favor of one of the
actors, therefore, instead of achieving a good evolution for
both, only one network will evolve minimally compared to
the other, which does not even guarantee good results for at
least one of the players. The GAN adjusting criterion is given
by:

min
G

max
D

V (D,G) = Exxx∼pdata(xxx) [logD (xxx)] +

+ Ez∼pz(z) [log (1−D (G (z)))] , (1)

where V is the value function; D is the Discriminator (player),
a multi-layer perceptron that generates the probability that
xxx has originated from the legitimate data instead of the
distribution pG; G is the Generator (player); pdata is the data
distribution; and pzzz is a prior in the input noise variables.

In the same way that GAN can learn a generative model for
training data, conditional GAN (cGAN) [7], as its name may
suggest, provides a conditional generative model for the data.
The data generation is based on a prior distribution and also
on an additional input xxxc, thus conditioning the distribution of
the generated data to the additional information provided by
xxxc. The cost function of cGAN is given by:

min
G

max
D

V (D,G) = Exxx,xxxc∼pdata(xxx,xxxc) [logD (xxx,xxxc)] +

+ Ez∼pz(z),xxxc∼pdata(xxxc) [log (1−D (G (z,xxxc) ,xxxc))] , (2)

Despite the advancement of the original GAN’s and cGANs
based on minimizing (1) and (2), in some cases the training
may converge to solutions with performance below desired.
For this reason, in [8], an alternative proposal was presented,



called Least Squares GAN (LSGAN), which seeks to adapt
the discriminator and the generator according to the following
criteria:

min
D

VLSGAN (D) =
1

2
Exxx,xxxc∼pdata(xxx,xxxc)

[
(D (xxx,xxxc)− 1)

2
]
+

+
1

2
Ez∼pz(z),xxxc∼pdata(xxxc)

[
D (G (z,xxxc) ,xxxc)

2
]
, (3)

min
G

VLSGAN (D) =

=
1

2
Ez∼pz(z),xxxc∼pdata(xxxc)

[
(D (G (z,xxxc) ,xxxc)− 1)

2
]
, (4)

A few years later, a GAN-based approach called Speech
Enhancement GAN (SEGAN) was introduced in [9], exploring
autoencoders neural networks adapted using RMSProp. Also,
it has presented promising results. Further details on SEGAN
will be provided in Section II.

One of the most decisive aspects regarding the adoption
of an autoencoder, which in this case is fully convolutional,
is its infundibuliform architecture capable of preserving the
signal structure, ensuring that the obtained output will respect
the same form used as network input. Also, the autoencoder
can discard dispensable parts of the signals, i.e., noise, which
causes the preservation of signal information to occur. How-
ever, due to the connections between encoding layers and
decoding layers, the denoising effect caused by the network
does not occur aggressively to the point of destroying the
signal in terms of quality and intelligibility only for if noise
reduction is achieved.

This work’s objective is to compare SEGAN’s performance
against Wiener filter and Log Minimum Mean Square Error
(LogMMSE), concerning quality and intelligibility through
objective and perceptual metrics, for several different noise
scenarios. However, different from [9], this work considered
LogMMSE in its comparisons, in addition to Wiener’s filter
and SEGAN itself. Moreover, in addition to the Perceptual
Evaluation of Speech Quality (PESQ) metric, explored in
both studies, this work includes the Short-Time Objective
Intelligibility (STOI) and Signal-to-Distortion Ratio (SDR)
metrics. This work considered 5 different SNR scenarios (0
dB, 5 dB, 10 dB, 15 dB and 20 dB), which includes a new SNR
value (20 dB) compared to those used in [9]. The scenarios
used in this paper considered 17 different types of noise, while
[9] used 5 types of noise.

In order to present the results of this study, the article
adopts the following structure: section II presents a review
on the main concepts related to SEGAN; section III covers
the simulation scenarios and the metrics; section IV discuss
the results and offers the final comments on the study; and
section V exhibits the conclusions of the work.

II. SPEECH ENHANCEMENT GAN - SEGAN

Speech Enhancement Generative Adversarial Network
(SEGAN) [9] is based on the idea introduced by cGAN,
discussed in the previous section. The proposed structure for
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Figure 1. Autoencoder architecture for speech enhancement. Based on [9].

the generator, in this case, resembles an autoencoder, shown
in Figure 1. The successive convolutional layers provide, at the
end of the coding process, a vector c which corresponds to a
condensed representation of the input signal. In this process,
strided convolutions layers are used, since this type of layer
has been shown to be more stable in GAN training.

However, unlike the structure of a traditional autoencoder,
the decoding process is done from the vector c concatenated
with the vector of latent variables z. This new vector is then
subjected to a sequence of layers that seek to reverse the cod-
ing process by means of fractional-strided transposed convolu-
tions [9]. The network structure also includes skip connections
connecting the outputs of the layers in the encoding process
directly to corresponding layers in the decoding process. The
reason for this was to try to maintain the underlying structure
of the observed (noisy) data in the data being generated by
GAN.

Although the presented LSGAN criterion may help with
some known problems of structure adaptation, the authors pro-
pose, based on preliminary simulations, that the cost function
includes an additional term in order to favor solutions that
minimize the distance between generated data and authentic
examples. The distance, however, is measured with the norm
`1, so that the adopted criterion is defined by:



min
G

VLSGAN (G) =

1

2
Ezzz∼pzzz(zzz), x̃̃x̃x∼pdata(x̃̃x̃x)

[
(D (G (zzz, x̃̃x̃x) , x̃̃x̃x)− 1)

2
]
+

+ λ ‖G (zzz, x̃̃x̃x)− xxx‖1, (5)

where x̃̃x̃x represents the input (noisy) signals.

III. SIMULATION SETUPS

To evaluate the performance, several testing scenarios were
created from the combination of 20 voices of different people
from the dataset VCTK-Corpus [10] reading three different
sentences; (0 dB, 5 dB, 10 dB, 15 dB and 20 dB) for each of
the 17 types of noise, all coming from the DEMAND [11]
dataset, resulting in 85 different noise conditions for each
sentence read by each person. In order to preserve a variability
that would assist in the quest for broader generalizability in
the SEGAN model training, the selected corpus was chosen to
maintain a uniform gender distribution and to ensure different
accents. Although the datasets were used in SEGAN’s work,
the selected individuals were not the same and more types of
noise were used, including an extra SNR level (20 dB) that
was not explored in the mentioned work.

With all different voice and noise scenarios previously de-
tailed, 5100 different mixtures were obtained to be processed
by the three speech enhancement techniques (Wiener filter,
LogMMSE, and SEGAN). Using SoX, pre-processing was
performed to ensure that all input signals conform to the 16
kHz, 16-bit, and mono configuration in WAV format. The
selected Wiener filter belongs to the Scipy library; LogMMSE
[12], [13], is also available as a Python package of the same
name; and the SEGAN (pre-trained) model is the same as
the original work [9], which is openly distributed by the
SEGAN authors themselves in their GitHub repository. Such
a model had been trained for 86 times using RMSprop [14]
and learning rate of 0.0002 in batches of size 400 [9].

For each technique, after processing, an enhanced signal
was obtained for each noisy signal used as input; and, based
on the improved signal and the reference clean voice signal
(directly from the VCTK-Corpus dataset), the (PESQ) [15],
a perceptual quality metric with values from -0.5 to 4.5; the
STOI [16], which measures the improvement of intelligibility
with values from 0 to 1; and the SDR [17], which quantifies
the rate between the speech signal and the distorting effects
of improved speech signal, were calculated to perform the
improvement evaluation.

IV. RESULTS

The average values of PESQ can be seen on Figures 2 and
3. It can be noted that the Wiener filter maintained a near
linear behavior as the SNR was increased; although it was
the technique with the worst performance for SNR 0 dB, it
reached the best result of PESQ observed in this work for the
case in 20 dB. LogMMSE has proven to be very effective from
the start, going through all the scenarios as one of the best in
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Figure 2. Average PESQ for different noise levels.
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Figure 3. PESQ for different noise levels.

terms of quality. SEGAN, on the other hand, showed a subtle
superiority in the 0 dB scenario, but showed little improvement
for higher SNR values, being on average much lower than the
other two quality techniques analyzed during the enhancement
process. Nevertheless, it is important to highlight the fact that
the variance of SEGAN was lower in all scenarios.

Figures 4 and 5 show STOI averages. The intelligibility is
shown to be higher for the Wiener filter in all scenarios, which
means that such a technique resulted in lower degeneration of
speech comprehension. The LogMMSE showed a much lower
performance than the other techniques for low SNR scenarios;
improved slightly for 15 dB and 20 dB, but still got much
worse than the Wiener filter. SEGAN showed a performance
similar to that of the Wiener filter for the 0 dB scenario and
remained superior to LogMMSE for this relation between the
signal and distortions for almost all scenarios of different SNR
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Figure 4. Average STOI for different noise levels.
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Figure 5. STOI for different noise levels.

values, except for 20 dB.
The performance of each technique in terms of SDR can be

seen in Figures 6 and 7. Notwithstanding the poor performance
of Wiener filter for cases of lower SNR, it proved to be quite
effective for higher SNR scenarios. The LogMMSE approach
presented a similar performance to the Wiener filter. And,
although it was the technique with the best performance for
low SNR cases, SEGAN showed little improvement for cases
with higher SNR; in the case with SNR 20 dB, its performance
was well below that obtained by the other techniques; however,
as with the PESQ metric, the variance of this technique was
much lower than the other techniques.

V. DISCUSSION

Although it was not the focus of this paper, there are some
considerations to be made regarding the performance in terms
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Figure 6. Average SDR for different noise levels.
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Figure 7. SDR for different noise levels.

of resources required for the speech enhancement process
to be performed. While both classical methods adopted are
based on an unsupervised approach, the GAN-based method
is supervised, which requires a fundamental training step to
be performed based on a pre-selected data set; and this step is
computationally expensive as it took several hours to complete,
even though it was performed on a GPU. Still, the application
of the enhancement process itself through SEGAN’s trained-
model is not fast either, and it may take several seconds to
complete the application over a single audio track of a few
seconds. By contrast, classical methods performed the process
almost instantaneously for each audio track and required no
prior training.

Regarding speech quality and intelligibility, even consid-
ering the respectable, effective and efficient existing objective



metrics, such as PESQ and STOI, respectively, if the enhanced
signal is aimed for direct use by people, the use of metrics
that still have the opinion of people, like Mean Opinion
Score (MOS) [18], may continue to be utilized, even if it
has a lesser weight; after all, for various purposes, the human
sense to evaluate and perceive distinct levels of quality may
not yet have been well-enough designed in computational
algorithms and metrics. The use of before-mentioned metrics
would introduce factors of subjectivity into the process, which
can be understood as something to be avoided; yet, if their
influence is carefully managed in the appraisal and weighting,
perhaps the results may be more satisfactory.

It is appropriate to indicate that Figure 5 also shows
two critical details respecting the STOI results: an enormous
variance and a colossal amount of outliers. The results show
a considerable decrease in variance accompanied by a notice-
able increase in already evident outliers. Such peculiarities
described in this paragraph are worrisome regarding speech
perception issues in noisy scenarios. This result may have been
negatively affected by an innocently naive choice of complex
audios, or by a training step that underwent from severe data
frugality.

Given the observations indicated in the preceding paragraph,
which emphasize certain undesired peculiarities about part of
the results, especially regarding intelligibility, improvements
may be perceived if meaningful arrangements are implemented
to the assembled speech corpus. Perhaps using more numerous
personalities of diverse ages, with different accents and more
notable distinction in their vocal characteristics may enhance
the results in future work.

About SDR, despite its relevance in this work, also because
it is a usual objective metric, which tends to reduce human-
related failures, it may be a less robust metric for some
scenarios of speech enhancement or source separation, mainly
for monoaural signals, which are of the type discussed in this
paper. In order to address the problems associated with this
metric, work [19] proposed an alternative metric called SI-
SDR. Thus, in a future continuation of this work, this new
metric proposal can be explored.

VI. CONCLUSIONS

The results show that, although it is a classic technique
confronted by more advanced ones, at least for the scenarios
covered in this particular paper, the Wiener filter is still able
to perform speech enhancement tasks for several scenarios,
and remains a proper method for quality, intelligibility and
distorting effects on speech signals. Despite its subtly inferior
performance for some considered scenarios, SEGAN did well
at 0 dB SNR scenarios, which are much more complicated,
as well as exhibiting substantially lower variances. Although
results obtained in [9] indicate superiority over the Wiener
filter, the divergence of results in relation to this work may be
due to the wider variety of scenarios considered in this work. It
is noteworthy, however, the need for a more detailed analysis
of specific scenarios and also a more in-depth investigation
into SEGAN.
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