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Abstract—This paper introduces a new approach to improve
the search capabilities of a reduced real swarm of robots based on
the classical Particle Swarm Optimization (PSO) by employing a
larger virtual swarm. The central idea is to add more particles
in the virtual swarm using them to aid the real search. This
approach aims to reduce costs once that increasing the quantity
of robots in the real swarm implies higher costs related to robots
acquisition and its maintenance. To work around this issue,
we insert particles only in the virtual swarm. These particles
are able to interact with the real robots and help them. The
description functions of virtual and real environment are slightly
different to represent dynamic changes on real data environment.
Preliminary results indicates that the virtual particles aid the real
ones improving its search mechanisms. The virtual aided the few
number of real robots obtained equivalent solutions than the
larger number of robots in the same search space.
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I. INTRODUCTION

There are situations that a certain environment can be
affected and changed as such in disaster contexts. In these
cases, the changes in the environment are distributed in specific
points and with a limited coverage. That is, the altered environ-
ment kept some characteristics that original one. Thus, if the
original environment is previously known, it is possible to use
the original informations for navigation in the environment.

Employ robots to hazardous tasks is an alternative to
safeguard human lives. In this context, the use of robots in
disaster environments is the focus of various research groups
[1]. One of the strategies is to use a group of robots to search
the environment. The target of the search vary depending on
the objective determined for the robots group.

When these robots act in a community way, cooperating to
achieve a common objective, they are referenced as a swarm of
robot. In this swarm, the robots share the information obtained
individually about the environment to help the swarm perform
certain task. From the interaction among the individuals capa-
ble of adapting itself to changes in the environment through
feedback mechanism, emerges the collective behavior [2]. In
this context, arises the swarm intelligence concept.

The swarm intelligence can be defined as a collective behav-
ior of self-organized particles with a decentralized controller
that is, usually, observed in the nature [3].

The goal in optimization problems is achieve the minimum
(maximum) value of the objective function. The objective

function is the function that describe the system behavior. In
general, such function is not known hence the optimization
techniques try to find its minimum (maximum) value through
an estimate or approximation.

If a problem can be transformed into an optimization
problem, it can be associated to swarm intelligence in order
to obtain its solution [4]. Thus, tasks like path definition and
target search can be handle by swarm intelligence algorithms.

Swarm of robots are think to be robustness, scalables and
flexibles [5]. In swarm paradigm, robustness is the ability to
handle members losses without damage the swarm; scalability
refers to property of keep swarm performance with the intro-
duction or removal of member in the group; flexibility is the
ability to handles different tasks and environments [5] [6].

In real-life application, usually, the employ of swarms of
robots happens through small swarms [7]. This is due because
the costs associate with robots. The costs to acquire a group
of robots and to do periodic maintenance are some of the
limitations. Moreover, depending on the kind of robot, the
infrastructure to operate a large swarm can be costly; for
example with communication data transfer. Thereby, improve
the capabilities of small swarm of robots can aid to reduce the
outgoings and work around the involved issues without apply
a large swarm of robots.

II. PARTICLE SWARM OPTIMIZATION

Among the bio-inspired algorithms, exist a subgroup of
algorithms which takes inspiration from social interaction of
animals swarms such as bird flocks, ant colony and fish school.

The Particle Swarm Optimization (PSO) is a bio-inspired
algorithm for optimization problems introduced by Kennedy
and Eberhart [8], in 1995. Its computational implementation is
simple and is grounded on determining parameters that change
the motion trend (velocity) of each member of the swarm. For
it, the individuals of the swarm search the environment and
make a movement through the evaluation of the information
obtained by itself and its neighbors [8].

This algorithm is widely known and used in different
applications scenarios.

In the PSO algorithm each member of the swarm is known
as particle. Each particle is a candidate solution for the
problem. Each particle changes its position according to its



own experience and the experience of the other members of
the swarm [9].

To assess the performance of the solution, it is necessary
to define a fitness function which is responsible for indicating
how good is the solution achieved by each particle [9]. This
function is an essential part of the algorithm since it influences
directly the movement process of the particles [9].

Furthermore, Shi and Eberhart [10] in 1998 introduced
the concept of inertia weight that affects the velocity of the
particle. This parameter is responsible to refine the exploration
and exploitation control [11].

Regarding a swarm of particles with P particles, in a given
instant t, each particle p in the D-dimensional search space
is represented by a position xp = {xp1 , xp2 , xp3 , ..., xpD

} and
by a velocity vp = {vp1 , vp2 , vp3 , ..., vpD

}.
By a iterative method, the particle movement is given

by Equation 1 and the velocity vp by Equation 2, where t
represents the current iteration.

xt+1
p = xt

p + vt
p (1)

vt+1
p = wpvtp + cp1

rp1
∗ (pbestp− xtp) + cp2

rp2
∗ (gbest− xtp)

(2)
in which w denotes a inertia weight; rp1 = {rp1 , rp2 , ..., rpD

}
and rp2

= {rp1
, rp2

, ..., rpD
} are random vectors generated

by a uniform distribution in the interval [0,1]; cp1
and cp2

are, respectively, cognitive and social constants/rates; pbestp
is the best position found by particle p until the iteration t,
that is, the position xp in which the fitness function of particle
p returned the best result; gbest is the best position found by
the swarm or by a set of neighbors of p.

In order to restrict the velocity of the particle in each
dimension, a parameter vpmax

= [−vmax, vmax] is applied. In
the execution of the algorithm, when a velocity vp is evaluated
and this velocity is out of the range [−vmax, vmax] of vpmax ,
vp is set to respective limit defined in vpmax

.
A parameter bp = {bp1

, bp2
, bp3

, ..., bpD
} is responsible to

restrict the bounds of the search space where the swarm acts.
If the position xp of a particle is evaluated and it is out of
the bounds of the search space, xp is set to respective limit
defined in bp.

All particles are considered similar to each other, thus, as
default, the parameters cp1

, cp2
, wp, vmax, bp are equals for

all particles.
For minimization problem, we wish for find xp minimizes

the function. The classical PSO Algorithm is shown in Algo-
rithm 1.

III. PROPOSED TECHNIQUE/METHOD

Considering a D-dimensional space S described through a
vector x = {x1, x2, x3, ..., xD}. We assume that some prop-
erties of the space can be mapped to a function f . For robots
application, this space is associated with the environment
where they operate, thus f(x) represents a map of original
environment.

If a change occurs in the environment, the original map
is degraded and a new function h(x) is a better candidate to

Algorithm 1: PSO Pseudo-code

1 Initialize swarm/particles parameters;
2 Initialize particles in the search space;
3 Be f(xp) the fitness function of particle p;
4 gbest← x0;
5 while stop condition not satisfied do
6 foreach particle p do
7 Generate the random vectors rp1 and rp2 ;
8 Update velocity vp;
9 Update position xp;

10 Evaluate fitness f(xp);
11 Update pbestp and gbest ;
12 end
13 end
14 return f(gbest)

map the altered environment. Depending on level of changes
in the environment, f(x) function can still keep representa-
tive characteristics of the altered/new environment. With this
assumption, h can be interpreted as a combination of f and
another function g which the last one model the degradation in
the environment. If the level of degradation in the environment
is low, f tend to h as we can observe in Equation 3.

h(x) = f(x) + g(x) (3)

To better understand, let f be the three dimensional Sphere
function which represents the original environment. The orig-
inal environment is shown in Figure 1(a). In a given moment
occurs a change in that environment. This change will be
represented by the three dimensional Rastrigin function g.
Thus, h function which represents the degraded environment
is given by a combination of Sphere and Rastrigin function
shown in Figure 1(b).

In the same way, a original environment represented by the
three dimensional Rastrigin function shown in Figure 1(c).
The changes in this environment are represented by the three
dimensional Ackley function. The new environment, that is,
after degradation is shown in Figure 1(d).

In both examples, the changes are applied centered in the
origin and limited in range [-1,1] in each dimension.

The performance of a small swarm of robots operating
in a environment could be increased with the addition of
more robots in this swarm. However, increase in this number
implicates higher costs with hardware and infrastructure to
control them. To balance this deadlock, we can increase the
number of members in the swarm employing virtual particles
able to assist the robots in the real environment.

While the robots operate in the real world, virtual particles
operate in a simulated computational world which resembles
the real one. These two scenarios can be associated to origi-
nal environment represented by f and degraded environment
represented by h respectively.

In a real context that functions are defined according to
application and they depend on environment and robots char-



Fig. 1. Three Dimensional Environments: original environments (a) and (c)
and correspondent degraded environments (b) and (d).

acteristics. Some important variables in robot context are, for
example, battery level and communication signal level and
they can be consider in the fitness calculation. For example,
under some conditions, a low battery level can penalize the
evaluated fitness to save energy and ensure the robot achieve
the end of the mission. Another example: a robot with good
signal level may have the evaluated fitness improved because
it owns better chances to relaying a message than other robots.
In both examples, the functions f and h can be affected by
different ways.

In this context, we can create a hybrid swarm composed by
the virtual particles and the robots. As in a common swarm, the
members of hybrid swarm are able to exchange information
and cooperate with each other to achieve a mutual objective.
However, they operate in different search spaces.

In general, these virtual particles can mirror the character-
istics and behavior of the real robots or simply a set of that
characteristics and behavior in view of to save computational
resources.

Therefore, an adaptation in the PSO Algorithm is necessary
to cover the situation cited. First, we split the original swarm
in two set of particles, one corresponding to virtual particles
and other to real robots. The second one is used to store the
information obtained for robots in the real world. Both acts as
a single swarm, sharing same gbest, however each particles
set has its own fitness function.

Along this paper, we will use the index p for virtual
particles in the set of size P and index q for particles
bounded/associated to robots; Q denotes the number of real
robots in the swarm.

To associate the particles with robots we make a binding
process: for each robot in the swarm, its state is copied to a
virtual particle in order to this particle reproduce the real-life

robot behavior into computational simulation. The state of the
robot is represented by a D-dimensional vector which stores
significant informations of the robot. In PSO approach, this
vector is the position vector x.

The binding process is described in Algorithm 2.

Algorithm 2: BindProcess() Pseudo-code (input: number
of robots Q)

1 for robot q ← 0 to Q do
2 Copy state of the robot q to particle xq;
3 end

To model the movement of virtualized robots, Equation 1
and Equation 2 can be rewritten as Equation 4 and Equation
5.

xt+1
q = xt

q + vtq (4)

vt+1
q = wqvtq+cq1rq1∗(pbestq−xtq)+cq2rq2∗(gbest−xtq) (5)

where wq , cq1 , cq2 , rq1 , rq2 , pbestq are, respectively, the equiv-
alents to wp, cp1 , cp2 , rp1 , rp2 , pbestp of classical PSO. In the
same way, the restrictors parameters vpmax , bp are respectively
replaced for vqmax

and bq in the swarm of robots. Worth
mentioning that these parameters are intrinsically related to
the characteristics of the robots and to problem specificity.

The parameters wq , vqmax
and bq depends on the kind of

robots and the physical parameters related to environment.
According to kind of the robot, that parameter can vary
significantly.

As we are using different sets of particles acting in distinct
environments, we use different fitness functions for each set.
For virtual particles and robots we use f and h as fitness
functions, respectively.

Such as classical PSO, the proposed technique returns a
candidate solution associated with a member of the swarm.
In this case, this member can be a virtual particle or a robot
depending on value given by respectively fitness function. For
minimization problem, the returned value is the lower met by
a candidate, regardless of it be a robot or a virtual particle.

In real-life application, if the solution is given by a virtual
particle, it is necessary to send a robot to that position to verify
the solution found.

In order to verify a possible modification occurred in the
original map, the fitness function of particles q are evaluated
with older estimator for environment (f ) and compared to
fitness obtained by the robots using h function. If there is
a difference among the results evaluated, we make a mark
on map and position xq and the value of fitness function
evaluated with h are stored in the object map respectively
in map.position and map.value attributes.

With this mark, we can, for example, make a update in the
original map and, in the next time, the updated map can be
used instead the old one. The object map is implemented to
provide a indication of the changed regions in the environment.
In real-life application, for example in search and rescue



missions, this indication can be used by the manager of the
mission or the stakeholders to take decisions and coordinate
the teams involved in the mission.

The steps to implement the PSO Algorithm with virtual
particles and robots are shown in Algorithm 3.

Algorithm 3: Hybrid PSO Pseudo-code

1 Initialize parameter of swarm of robots;
2 Initialize virtual swarm/particles parameters;
3 Initialize robots in real environment;
4 BindProcess(Q);
5 Initialize virtual particles in the virtual search space;
6 gbest← f(x0);
7 i← 0;
8 while stop condition not satisfied do
9 foreach virtual particle p do

10 Generate the random numbers r1 and r2;
11 Update velocity vp according to Equation 2;
12 Update position xp according to Equation 1;
13 Evaluate fitness f(xp);
14 Update pbestp and gbest ;
15 if robot paired then
16 Generate the random numbers ra and rb;
17 Update velocity vq according to Equation 5;
18 Update position xq according to Equation 4;
19 Evaluate fitness h(xp);
20 Update pbestq and gbest ;
21 if f(xp)! = h(xq) then
22 Mark on/Update original map;
23 map.position[i]← xq;
24 map.value[i]← h(xq);
25 i← i+ 1;
26 xp ← xq;
27 vp ← vq;
28 end
29 end
30 end
31 end
32 if gbest is obtained from p group then
33 return f(gbest)
34 end
35 else
36 return h(gbest)
37 end

IV. COMPUTATIONAL EXPERIMENTS AND RESULTS

In order to measure the performance of the proposed method
some computational experiments are executed. We set a swarm
with 55 virtual particles (p=55) and 5 robots (q=5), therefore,
with a total of 50 agents because the binding process. As pa-
rameters for hybrid PSO are used cp1

=2.05, cp2
=2.05, wp=0.5,

cq1=2.05, cq2=2.05, wq=0.5. The restrictor parameters for each
dimension are vpmax

=[-1,1], bp=[-5.12, 5.12], vqmax
=[-1,1],

bq=[-5.12, 5.12]. We compare the proposed method with

classical PSO executed in two ways: with the same number of
virtual particles that our proposal (55 particles) and with the
same number of real particles that our proposal (5 particles).
Along this paper, the first way will be referenced as Large
Swarm, second one as Reduced Swarm and our proposal as
Hybrid Swarm. For each execution, the particles are initialized
in random positions. These initialization positions are same for
all three algorithms’ executions.

After tests, we observe that with 1000 iteration the method
converged. Even we are dealing with different population
sizes, we observed that all methods stabilized after about the
same iteration interval and don’t improve from then onward.
We use the number of iterations as stop criterion instead of
number of function evaluations because of the stabilization
observed. Thus, as stop condition it was used the number of
iteration, itermax=1000. We named as simulation each set of
execution of the algorithms.

As explained in previous session, the proposed technique
need a representation of the environment in original state (f )
and a representation for the degraded (altered) environment
state (h). To test the proposed technique, we create six
different scenarios through the change of functions f and h.

For each scenario, the function f that represent the original
environment is altered according to Equation 3 to generate
a modified environment represented by h. Table I shows
the tests scenarios with the respective original environment
representation (f ) and the environment modifier applied (g).
The scenarios are separated in two kinds for better inspection:
Sphere scenarios and Rastrigin scenarios. The Sphere scenar-
ios are SC-1, SC-2, SC-3 and SC-4. The Rastrigin scenarios
are SC-4 and SC-5.

TABLE I
TEST SCENARIOS

Original Environment
Scenario Environment Modifier

f g
SC-1 Sphere Rastrigin
SC-2 Sphere Ellipse
SC-3 Sphere Rosenbrock
SC-4 Sphere Ackley
SC-5 Rastrigin Ellipse
SC-6 Rastrigin Ackley

The benchmark functions used in the tests scenarios are
based on IEEE Congress on Evolutionary Computation (CEC)
functions [12]. These functions are employ to compose the
objective function in each scenario. For all scenarios we have
a minimization problem, thus the algorithms looking for the
minimum value of the objective functions.

All environment modifiers are apply centered in origin
and with action radius R. This radius is used to control the
level of changes in environment and is defined for each D
dimension, that is, R = {R1, R2, R3, ..., RD}. Radius R can
be interpreted as a limiter of the g function domain.

For all scenarios we used ten dimension (D=10) and actu-
ation radius of degradation R is set to 1.0 (R=1.0).



To compare the three algorithms, for each scenario, we
executed 50 simulations and the average convergences curves
were plotted. Figures 2, 3, 4 and 5 show the convergences
for scenarios SC-1, SC-2, SC-3 and SC-4 (Sphere scenarios).
Figures 6 and 7 show the convergences for scenarios SC-5
and SC-6 (Rastrigin scenarios). Our proposal and the Large
Swarm exhibited the same behavior and both converge to gbest
with similar values. Both presented better results than Reduced
Swarm for all test scenarios.

Fig. 2. Average convergence for 50 simulations in scenario SC-1

Fig. 3. Average convergence for 50 simulations in scenario SC-2

For all Scenarios our proposal (Hybrid Swarm) achieves
equivalent results than Large Swarm and superior results than
Reduced Swarm. The Figure 8 shows the boxplots for Sphere
scenarios (SC-1, SC-2, SC-3, SC-4) and Figure 9 for Rastritin
scenarios (SC-5, SC-6). We observe that the behavior of the
proposed technique is kept in all tests. These results show that
the proposed technique can improve search capabilities of a
small swarm of robots.

We executed tests with the scenarios shown in Table I
varying the number of dimensions D to verify the behavior of
the proposed technique. We use 20, 30, 50 and 100 dimensions
in the tests. In all tests the general behavior was kept, that
is, the swarm assisted by virtual particles (Hybrid Swarm)

Fig. 4. Average convergence for 50 simulations in scenario SC-3

Fig. 5. Average convergence for 50 simulations in scenario SC-4

achieves results close to Large Swarm and the Reduced Swarm
achieves the worst results.

This kind of test is important to assess the robustness of
the proposal. For robots application, the dimensions of the
problem can represent, beyond the environment itself, the state
of the robot. Each dimension can map a variable of the robot
such as a sensor, an actuator or internal informations. Some
examples of that variables are battery level, position in a
coordinate system, orientation, communication signal level,
position of the actuators, internal memory usage, internal
diagnostic indication.

V. CONCLUSIONS

The computational results show that is possible improve
the search capabilities of a small swarm of robots through
the usage of virtual entities. This proposal achieves similar
performance of a large swarm of robot, however with less costs
by using less robots. Furthermore, the technique demonstrates
be robust for application in large dimension problems.

As future works, we intent to assess the performance of the
proposed method in different environments to investigate its
robustness; investigate the influence of parameters of virtual
swarm in the convergence of the method. Implementing in



Fig. 6. Average convergence for 50 simulations in scenario SC-5

Fig. 7. Average convergence for 50 simulations in scenario SC-6

virtual simulators for robotics are interesting to validate the
technique with robots in a real environment.
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