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Abstract—Recent developments in the NLP (Natural Language
Processing) field have shown that deep transformer based lan-
guage model architectures trained on a large corpus of unlabeled
data are able to transfer knowledge to downstream tasks effi-
ciently through fine-tuning. In particular, BERT and XLNet have
shown impressive results, achieving state of the art performance
in many tasks through this process. This is partially due to the
ability these models have to create better representations of text in
the form of contextual embeddings. However not much has been
explored in the literature about the robustness of the transfer
learning process of these models on a small data scenario. Also
not a lot of effort has been put on analysing the behaviour of the
two models fine-tuning process with different amounts of training
data available. This paper addresses these questions through an
empirical evaluation of these models on some datasets when fine-
tuned on progressively smaller fractions of training data, for the
task of text classification. It is shown that BERT and XLNet
perform well with small data and can achieve good performance
with very few labels available, in most cases. Results yielded with
varying fractions of training data indicate that few examples are
necessary in order to fine-tune the models and, although there
is a positive effect in training with more labeled data, using
only a subset of data is already enough to achieve a comparable
performance with traditional non-deep learning models trained
with substantially more data. Also it is noticeable how quickly
the transfer learning curve of these methods saturate, reinforcing
their ability to perform well with less data available.

Keywords—Small data, text classification, NLP, contextual
embeddings, representation learning, deep learning

I. INTRODUCTION

There is a well known bias in the literature about the use
of large amounts of data as a sufficient condition for the good
performance of deep learning models. This is reasonable since
training complex models (with a huge amount of parameters)
from small data sets are prone to cause overfitting. Never-
theless, the paradigm for the use of deep models on smaller
datasets have shifted with transfer learning [1]. Such technique
has enabled to train deep models on a large volume of data
and transfer part of this knowledge to solve correlated tasks,
sometimes with much less data, by using what was learned
in the representation scheme obtained on previous training
processes.

Recent advancements in the NLP field showed that deep
transformer based language models trained on a large corpus
of unlabeled data were able to transfer knowledge efficiently
to downstream tasks [2], [3], [4], [5], [6]. These models
all achieved state of the art results on several NLP tasks
through the process of pre training in a unsupervised fashion
on a large corpus of data and fine-tuning on a specific task.
Besides that, they all have in common the fact they have great
capacity, having millions of parameters, they all make use of
the attention mechanism [7] and the transformer architecture
[8]. They create a new type of embedding, that is deeper
and carries more information than its predecessors, called
contextual embedding. Such embedding is able to capture the
context of a document and use that in a way that each word
has a different meaning depending on the sentence it is in.
This enables it to keep important aspects of language such as
polysemy, sarcasm and several other important characteristics
that are context dependent.

However it is not clear how well these models can transfer
knowledge when fine-tuned on very small datasets, which
imposes a bigger challenge, given the risk of overfitting
becomes higher due to their high model capacity. In Devlin at
al. [2] it is discussed how BERT (one of the most successful
transformer language models) has a higher probability of
generating degenerate results when the dataset is small. This
is to be expected of a 340M parameter model that has fine-
tuned on little data. The small data transfer ability is specially
critical due to its practical value since in many scenarios it is
common to have very little labeled data available. It is also
unexplored in literature how models like BERT perform with
different amount of training data of a same dataset during
the fine-tuning process. A result in which the model achieves
high performance with small subsets of data would be a great
indication of the generalization effectiveness of its contextual
embeddings.

In this paper, an empirical analysis is conducted on the
two most successful transformer based language models, that
have achieved state of the art performance on several tasks
at the time they were proposed, BERT [2] and XLNet [9]. In



this analysis the robustness of the transfer learning process
of these models on a small data scenario will be put to
the test by analysing how they perform when fine-tuned on
progressively smaller fractions of training data, for the task
of text classification. These two models are tested against
two baselines, for comparison purposes. The baselines use
simpler forms of text representation, bag of words [10] and TF-
IDF [11] combined with an SVM-based classifer [12]. Those
were chosen as baseline because they represent the standard
statistical learning procedure for dealing with text and also
due to the contrast between the simplicity of their way of
representing text in comparison to contextual embeddings.

The remainder of the paper is organized as follows: Sec-
tion II discusses some of the previous works that motivate
the experiment and how they relate to the empirical study
presented in this paper. Section III presents the models used,
their differences and similarities and a theoretical standpoint
on their expected behaviour, then in Section IV the datasets
and experiment setup are presented. In sections V and VI
the results and conclusions taken from the experiments are
outlined.

II. RELATED WORK

Prior to the advent of BERT and XLNet models, previous
attempts at fine tuning language models on relatively small
datasets had failed [13], [14], however authors such as Howard
et al [15] and Cer et al [16] were able to, each with its own
model architecture, fine tune their language models on small
datasets with a certain degree of success.

In Howard et al, his model ULMFit uses a bi-LSTM lan-
guage model optimized with specific learning rate schedules
and shows that fine-tuning his model had much better perfor-
mance that training it from scratch [15], using some datasets
with different fractions of training data available. Although this
comparison is very important and shows a transfer capability
of his model, a better transfer performance versus training
from scratch is somewhat expected, since it is well known
that models with high capacity trained with little data tend
to overfit. Other differences are that the architecture ULMFit
uses is very different from the transformer architecture and
the model has orders of magnitude fewer parameters. By
looking at his achieved results, the transfer curve of his model
is not very steep and takes long to saturate [15], which is
an indicative of a not as robust pretraining, which is also
evidenced by its worse performance in comparison to BERT
and XLNet in most cases [2].

In Cer et al [16], the USE model is presented and it is also
shown that it has a good transfer capability and, in that case it
is compared against other models pre-trained with word2vec
embeddings [17] and trained from scratch. The transfer curves
shown in USE are steep but its results are not quite as good
as BERT or XLNet and require considerable amounts of extra
data in order to be achieved.

Despite their results, these earlier studies have motivated
our empirical study in order to observe what is the actual
behaviour of BERT and XLNet in a scenario of small data and

decreasing dataset sizes. This comparison also aims to find
about the transfer capabilities of these two models, inspired
by the preceding works before mentioned. The obvious dif-
ferences are that these two particular models have had, to the
knowledge of the authors of this paper, no prior work regarding
their transfer capabilities in small data scenarios, specially in
regards to datasets with fairly distinct characteristics. Also,
these models have considerably different architectures than
their predecessors. BERT and XLNet models capacity is vastly
superior and their number of parameters far surpasses their
predecessors, which makes the fine tuning a much more
challenging process and, in this paper, the amount of data used
to fine-tune is particularly smaller than what has been used in
previous experiments [15], [16]. Being state of the art models,
the performance of these methods on many full datasets,
including ones used in this paper, is well established and
obviously superior to other candidates, but their transfering
behaviour and ability to operate on a small data scenario is
not known and that is, arguably, one of their main possible
benefits, given their main contribution is a novel and more
robust way of representing text data [2].

III. MODELS

A. BERT

The BERT model [2] is based on the transformer architec-
ture described in Vaswani et al [8]. The transformer is a model
that uses the attention mechanism [7], originally intended for
neural machine translation tasks [7], [8] that, at a very high
level, learns to focus on which parts of a document/sentence
are important. The transformer is purely based on the attention
mechanism and uses no type of recurrent network, as described
by Vaswani et al [8]. Instead, the transformer uses multiple
attention heads and is very efficient in terms of implementation
making good use of highly parallelizable hardware such as
GPUs [8]. The transformer consists of an encoder and a
decoder part, as illustrated in Fig1.

BERT uses only the encoder part of the transformer archi-
tecture which is bidirectional by design [8]. In order to train
a language model using a bi-directional encoder, which the
authors believe is strictly more powerful than a left-to-right
or left-to-right right-to-left shallow concatenated language
model [2] the authors come with a novel way of performing
the pre-training processes called masked language modeling,
which is BERTs main contribution. Through masked language
modeling, the bidirectional conditioning problem of allowing
each word to indirectly ”see itself” in a multilayered context
is solved, as described by Devlin et al [2], thus making
it possible to train a language model while still being bi-
directional. Masked language modeling involves masking a
percentage of tokens (replacing them by the [MASK] token)
that are fed into the LM (language model) and trying to predict
those masked tokens. This creates a mismatch between pre-
training and fine-tuning, since the actual [MASK] token is
never seen during fine-tuning so, in order to mitigate that,
some small percentage of tokens that would be masked are
replaced with random tokens instead and, in some cases, they



Fig. 1. The transformer - on the left side, the encoder, and on the right side,
the decoder [8]

remain unchanged in order to bias the representation to the
actual observed word [2]. BERTs input originally takes two
sentences separated by the [SEP] token, as it is also intended
to be able to transfer knowledge to sentence pair classification
tasks [2]. As a secondary task, BERT performs the task of
next sentence prediction as well, which is beneficial to some
downstream tasks as discussed by Devlin et al [2].

BERT stands for bidirectional encoder representations from
transformers, which shows the emphasis on the importance of
bidirectionally in LM training, as discussed by the authors [2].
The deep bidirectional representations generated by BERT dur-
ing its pretraining are powerful contextual embeddings. Con-
textual embeddings can represent the meaning of the context in
each word during its embedding process. As an example, the
word bank can refer to a financial institution or a river bank
and, through the use contextual embeddings, that confusion
would be solved given the words are in different contexts and
therefore would have two different representations. This is a
very powerful benefit in terms of representational power and
allows pre-trained BERT representations to be fine-tuned with
just a single output layer [2]. BERTs transformer architecture
is also favorable to be fine-tuned, as discussed in Radford et
al [6], and it is more robust during fine-tuning than recurrent
networks.

BERT has a larger and smaller version, with 340M and
110M parameters respectively, which will both be tested in
this paper. Its input is carefully described by Devlin et al
[2]. For this work, the [CLS] token, which is part of BERTs
input, is specially important since it is the first token in the
beginning of every sentence and is used for text classification.
The final hidden state corresponding to this token is used as
the aggregate sequence representation for classification tasks
[2]. This final hidden state is concatenated with a classification

layer that consists of a standard Softmax in order to produce
the labels for text classification and fine-tuning of the model.

B. XLNet

The way BERT uses masked tokens in its language model
pre-training categorizes it as an autoencoder language model,
since it reconstructs original data from corrupted input. XLNet
changes from the autoencoder architecture to an auto regres-
sive one, while it overcomes some of the AR (autoregressive)
language model limitations [9], and attacks some other aspects
where, acording to Yang et al [9], BERT is said to be limited.
Another significant change XLNet introduces is to use a
different transformer architecture, the Transformer-XL [4],
that fits XLNets AR framework better since it is itself an
AR language model [9]. The Transformer-XL uses segment
level recurrence and relative positional embeddings. Those two
changes make it able to capture longer contexts, which was
one of the limitations of the original transformer, since it had
a fixed input size [4], and as a consequence, enables XLNet
to do the same [9].

AR (autoregressive) language modeling seeks to estimate
the probability distribution of a text corpus with an autore-
gressive model by factorizing probabilities of words given the
previous words through the product rule. The main drawbacks
of AR language modeling is that it is not bi directional by
design, being able to factorize probabilities in either a forward
product or a backward one. As it was seen with BERT, having
bi directional context is very important [2]. That motivated the
authors of XLNet to propose an AR language model which
uses permutation language modeling and keeps benefits of AR
modeling while incorporating bi directional context [9].

Permutation language modeling consists of predicting the
next token in a way the order of prediction is not necessarily
left to right and is sampled randomly instead [9]. This does not
break with the AR model, it just changes the order the words
are predicted. In other words it permutes the factorization
order, not the sequence order. While feeding tokens in a
random order for prediction, it is still possible to maintain
awareness of their actual right position in the sentence, which
is detailed in Yang et al [9]. This is illustrated in Fig 2, where
the difference between BERTs autoencoder language model
pre-training and XLNets autoregressive language model pre-
training can be seen.

According to Yang et al [9], one of the main benefits of
the AR model utilization is that it models the join probability
of the sentence using the product rule which is something
BERT is not able to, and instead, treats each masked token
as an independent prediction. That, according to the authors
of XLNet, is one of the important advantages it brings [9].
Also, XLNet does not require the use of the [MASK] token
specifically, which is argued to also improve performance,
since this token in BERT training is only seen during pre-
training and not fine tuning, which generates a pre-training/
fine-tuning discrepancy [2], [9].

XLNet also uses an [CLS] token which is used in the same
way as BERT for classification. It has a base and large model



Fig. 2. BERTs autoencoder languange model vs XLNets autoregressive
language model [3]

version with the same equivalent number of parameters to
BERT, but with the difference XLNet was trained on more
data [9].

While the permutation language modeling objective has
some benefits, it is a more challenging optimization problem
[9]. Also, according to Yang et al., XLNet is able to cover more
dependencies than BERT, and the XLNet objective contains
more effective training signals [9].

IV. EXPERIMENTS

In this experiment, both BERT and XLNet are compared on
a small data scenario for the task of text classification using
progressively smaller fractions of training data. The datasets,
training fractions used, test size, total train size, number of
classes and average sentence length of each dataset can be
seen in Table I.

TABLE I
CHARACTERISTICS OF THE DATASETS USED IN THE EXPERIMENTS

Data Classes
Avg

sentence
length

Train
size

Test
Size

Sampled
training sizes

IMDb 2 230 25k 25k [500 1k 2.5k 5k 10k]
CR 2 19 3016 755 [250 500 1k 2k 3k]

SST-2 2 19 6920 1821 [250 500 1k 1.5k 3k]
MPQA 2 3 8482 2121 [250 500 1k 2k 4k]

The choice of datasets aims to bring diversity, in terms of
size and sequence length. The sampled sizes are defined in
order to contemplate scenarios with very little data available
and progressively increasing it while still being considered
small data.

The models compared in the experiment are BERT large
and base, which are its 340M and 110M parameter versions
respectively, XLNet large and base, that also have 340M and
110M parameters respectively, and two baselines, BOW +
SVM and TF-IDF + SVM. The available pre-trained version
of BERT and XLNet, provided by its authors [2], [9], are used
in this experiment and fine-tuned for text classification in each
available dataset.

All models are evaluated on the same test set, for fair
comparison (Ref Table I). The datasets had the same pre-
processing applied before being fed to the models for training,
which involved removing punctuation and lowering the text.

The baselines were trained in a cross-validation process with
3 folds, and had its hyper-parameters searched in a grid-search
scheme, including the n-gram range used for the BOW and TF-
IDF representations, which used character level tokenization.

BERT and XLNet used the recommended parameters for
fine-tuning, given the task of text classification, according to
the authors of their respective papers [2], [9]. Those parameters
are a batch size of 32, a learning rate of 2e-5, on 3 to 5 epochs.
The max sequence length of both BERT and XLNet was set
to 256, due to hardware restrictions, which is not a problem
in the vast majority of cases. It is also worth mentioning
that the base models were trained on a GPU while the large
versions were trained on a TPU. No extensive hyperparameter
search was performed, since the experiments objective is not
to extract the absolute best performance of the methods, but
instead to evaluate their behavior on low data scenarios and
transfer learning ability.

Each scenario of model, dataset and training fraction was
ran multiple times (at least 3) in order to ensure more accurate
statistical properties to the experiment. Runs of XLNet and
BERT that did not converge or produced degenerate results,
as it is possible and described by Devlin et al [2], were not
discarded. Instead, the top performance of all models was
computed together with the standard deviation of the execu-
tions, that help quantify that phenomena. Recording the top
results from each scenario also helps debias possible sampling
problems during the process, which could compromise any
model during the experiments.

V. RESULTS

Results from the experiments proposed in section IV can
be seen in Table II and figures 3 and 4. Figure 3 in particular,
is the visual representation of the results exposed in Table II,
where the best results from each model are shown.

By looking at Figure 3, it is possible to see that the models
based on contextual embeddings are able to perform well with
low volumes of data and their results are, in most cases, better
than the baselines. It is clear that they are able to achieve very
high levels of accuracy with few training examples. Although
it is not the main focus of this paper, if one was to compare
the results achieved in this experiment by BERT and XLNet
with results obtained by its predecessors such as USE [16] and
ULMfit [15], briefly mentioned in Section II, it is noticeable
that they are far better in a small data scenario.

It is also noticeable that there is a positive effect in fine-
tuning with more labeled data, however, using a small subset
of data is already enough to achieve comparable or better
performance than traditional non-deep learning models trained
with substantially more data.

BERT base performs very well in all datasets and in all sub-
samples of data. BERT large does not and it is possible to see
that in scenarios with the lowest availability of training data



Fig. 3. Accuracy results of the models on the different datasets

Fig. 4. Difference in accuracy between BERT base, the best performing model in a small data scenario, and the strongest baseline model, TF-IDF + SVM



TABLE II
EXPERIMENT RESULTS - BEST ACCURACY AND STANDARD DEVIATION

CR Number of samples
Model 250 500 1k 2k 3k
BERT
base

0.8794
0.0022

0.9033
0.0112

0.9152
0.0060

0.9178
0.0026

0.9231
0.0095

BERT
large

0.9089
0.1515

0.9171
0.0133

0.9048
0.1631

0.9184
0.0142

0.9361
0.0027

XLNet
base

0.6794
0.0440

0.8821
0.0159

0.9112
0.0084

0.9192
0.0037

0.9298
0.0028

XLNet
large

0.6211
0.0018

0.7139
0.0674

0.9165
0.0327

0.9298
0.0056

0.9271
0.0037

BOW
SVM

0.7178
0.0200

0.7072
0.0272

0.7615
0.0235

0.7894
0.0249

0.8000
0.0072

TFIDF
SVM

0.7033
0.0199

0.7443
0.0173

0.7682
0.0094

0.8026
0.0144

0.8105
0.0058

MPQA Number of samples
Model 250 500 1k 2k 4k
BERT
base

0.8821
0.0043

0.8920
0.0046

0.8882
0.0043

0.9024
0.0053

0.9085
0.0013

BERT
large

0.6780
0.0000

0.6780
0.0000

0.9034
0.0944

0.9000
0.1570

0.9128
0.0003

XLNet
base

0.6789
0.0000

0.6789
0.0000

0.8066
0.0066

0.9024
0.0020

0.9042
0.0053

XLNet
large

0.6789
0.0000

0.6789
0.0000

0.6789
0.0000

0.6789
0.0000

0.8976
0.0333

BOW
SVM

0.7265
0.0191

0.7388
0.0097

0.7685
0.0070

0.8015
0.0035

0.8345
0.0095

TFIDF
SVM

0.7067
0.0115

0.7553
0.0123

0.7727
0.0074

0.8095
0.0195

0.8264
0.0038

IMDb Number of samples
Model 500 1k 2.5k 5k 10k
BERT
base

0.8754
0.0038

0.8789
0.0034

0.8970
0.0033

0.9036
0.0016

0.9111
0.0015

BERT
large

0.8798
0.0066

0.8916
0.0005

0.9036
0.0012

0.9070
0.0052

0.9222
0.0014

XLNet
base

0.9007
0.0097

0.9129
0.0058

0.9256
0.0023

0.9313
0.0009

0.9342
0.0014

XLNet
large

0.9286
0.0071

0.9412
0.0011

0.9440
0.0013

0.9452
0.0003

0.9474
0.0004

BOW
SVM

0.7659
0.0066

0.7904
0.0069

0.8175
0.0038

0.8467
0.0054

0.8593
0.0033

TFIDF
SVM

0.8058
0.0109

0.8275
0.0014

0.8448
0.0098

0.8672
0.0021

0.8802
0.0017

SST2 Number of samples
Model 250 500 1000 1500 3000
BERT
base

0.8720
0.0209

0.8753
0.0248

0.8841
0.0027

0.8995
0.0081

0.9022
0.0023

BERT
large

0.9034
0.0098

0.8967
0.0015

0.8973
0.0005

0.9112
0.0323

0.9140
0.0007

XLNet
base

0.6858
0.0221

0.8747
0.0069

0.8852
0.0112

0.9028
0.0023

0.9154
0.0007

XLNet
large

0.6342
0.0935

0.6133
0.0710

0.9082
0.0896

0.9006
0.0291

0.9280
0.0081

BOW
SVM

0.6479
0.0198

0.6655
0.0144

0.6990
0.0190

0.7243
0.0214

0.7715
0.0092

TFIDF
SVM

0.6501
0.0338

0.6897
0.0129

0.7265
0.0138

0.7594
0.0121

0.7896
0.0123

BERT large has issues. The difference between BERT base
and BERT large is exclusively in the number of parameters
[2], therefore it is a reasonable assumption that, given they
both are architecturally the same (the only difference being in
terms of capacity), by sufficiently regularizing BERT large or
maybe by trying extra random restarts of the model, it should
be able to achieve good results as well and converge. In Devlin
at al. [2], it is discussed how BERT has a higher probability
of generating degenerate results when the dataset is small and
this is seen in this experiment. BERT large suffers more than
BERT base with very small data, as it is to be expected given
the bigger capacity makes it more prone to overfitting and also
harder to optimize. However, it is worth noticing that reliability
is also a factor in a models performance and, therefore, a
learned lesson is that, when the dataset is really small, the
base version of BERT is, as experiments show, more reliable
and recommended.

Nevertheless, despite reliability concerns for some of the
models presented, all of them are based on the concept of
generating deeper and more robust representations and share
a common framework of pre-training and fine-tuning, using
transformer based architectures. As it is possible to see by the
results of BERT base, that architecture is able to be very data
efficient. Noticeably, the MPQA dataset, which has an average
sequence length of 3 tokens, still benefits from pre-training
and from the use of contextual embeddings (as evidence by
the performance of BERT base). This is remarkable given this
is a very unfavorable scenario for contextual representations
given there is very little context to be captured and, in spite of
that, these methods outperform the baselines by a very large
margin.

XLNet is also good at dealing with small data. As their
authors state and as previously discussed in section III.B
XLNet is capable of covering more dependencies than BERT
[9]. Noticeably, on the IMDb dataset XLNet thrives, since
it contains very long sentences and, even in the smallest
subsamples of training data attempted, XLNet outperforms
the other models. However, permutation language modeling
is a more challenging optimization problem in comparison to
BERT, despite its benefits [9]. As evidenced by results on
very small data scenarios, XLNet suffers more than the other
methods. The empirical results obtained in this paper show that
its extra model complexity might present itself as a trade-off
when dealing with very small data, in which the cost is lower
performance as the available fine-tuning labeled data is less.
This can be seen by negative results on datasets other than the
IMDb, in which sentences are smaller and labeled examples
are fewer. That is not sufficient to say XLNet is not capable of
performing well in very small data scenarios, however, given
a considerable amount of testing has been made, it is possible
to say it is at least not as reliable as BERT.

Figure 4 compares the performance of BERT base, the
best performing model in a very small data scenario, and the
strongest baseline model, TF-IDF + SVM. It is possible to see
a very good transfer behaviour even in scenarios of very small
data and it is also noticeable how the model is considerably



better than the baseline in all cases. By looking at Fig 3 and
Fig 4 it is remarkable how quickly the transfer learning curves
of the transformer based models saturate, which reinforces the
finding that these models are able to perform well in scenarios
where little data is available.

VI. CONCLUSION

In this paper, transformer based language models archi-
tectures, that have deep text representations in the form of
contextual embeddings, more specifically BERT and XLNet,
were subject to an empirical analysis that had the objective of
evaluating its performance on scenarios with low availability
of data for tasks of text classification. The results achieved
provide the means of empirically being able to say that the
analysed methods are good in small data scenarios and can
transfer knowledge well in that same scenario.

It is also possible to see that BERT base was the best
performing model with the lowest amount of data available
across all datasets. This model has proven to be robust and
capable of performing well on small data reliably. This further
reinforces the findings that this class of models are good
performers in the proposed scenario.
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