
Feature Extraction Using Convolutional Neural

Networks for Anomaly Detection

Rodrigo de P. Monteiro

Electrical Engineering Postgraduate Program

Federal University of Pernambuco

Recife, Brazil

rodrigo.paula@ufpe.br

Carmelo J. A. Bastos-Filho

Computer Engineering Postgraduate Program

University of Pernambuco

Recife, Brazil

carmelofilho@ieee.org

Abstract—Anomaly detection is an import field of study,

which has many applications, e.g., fraud and disease detection. It

consists of identifying non-conforming patterns regarding an

expected behavior. Despite the improvements provided by deep

learning techniques in several areas, their use for anomaly

detection is not widespread. The main reason is the difficulty to

learn discriminative models when all the information available

regards one class, or the classes are highly unbalanced. We

propose a new deep learning-based solution for the anomaly

detection problem. It consists of a hybrid system, composed of a

feature extractor and a one-class classifier. The feature extractor

is a convolutional neural network, trained as a regressor to learn

a predefined distribution. The classifier is the one-class support

vector machine, which performs the anomaly detection by using

the outputs provided by the feature extractor. We used a gearbox

failure diagnosis data set to assess the performance of our

proposal. We also compared our anomaly detection system with

other deep learning-based techniques commonly found in the

literature. Our proposal presented an average accuracy close to

0.95, outperforming techniques based on the reconstruction error

and hybrid models.

Keywords— Anomaly Detection; Deep Learning; One-Class

Support Vector Machine; Convolutional Neural Network

I. INTRODUCTION

Anomaly detection has gained importance in many
applications, and it can be applied to multiple domains, e.g.,
fraud detection [1], network security [2], among others. It
consists of identifying non-conforming patterns (anomalies)
regarding an expected behavior [3]. Anomalous behaviors are
commonly caused by errors, defects, unseen patterns, presence
of contaminants, among other reasons [4]. The detection of
anomalies is an essential step in decision-making processes
[3, 4], e.g., to plan the maintenance of machines in a
manufacturing line.

The last decade witnessed the expansion of deep leaning to
several application domains, e.g., time series prediction, object
detection, and classification [4]. Deep learning is a subfield of
machine learning characterized by processing the information
through multiple layers. The advantage of these models is the
capability to represent implicitly features regarding the inputs
along with their hidden structure, which generates different

abstraction levels of a problem without human interference [5].
The performance of deep learning-based techniques proved to
be superior to traditional machine learning approaches, e.g.,
support vector machines, especially regarding problems with
images and a large amount of data [4, 5].

A standard solution that employs deep learning for anomaly
detection is the analysis of the reconstruction error [1, 6, 7]. In
this case, an algorithm learns to reconstruct a given input
pattern. Then, if we present an input with a different pattern to
the algorithm, the reconstruction error tends to be higher than
expected. The autoencoder is an example of an algorithm used
for this purpose. Another common anomaly detection approach
is to train the reconstruction algorithm, e.g., an autoencoder,
and use the outputs of intermediate layers as input features for
shallow anomaly detection algorithms [8, 9], e.g., one-class
support vector machine.

The anomaly detection also can be faced as a binary or
multi-class classification problem. However, it is necessary to
have prior knowledge concerning the anomalous classes to
train the model. One or more classes are defined as normal,
while the remaining ones are defined as anomalies [10, 11].
Generative adversarial networks have been employed in
anomaly detection, as well [12]. They are often used to
increase the number of samples to improve the learning process
of the anomaly detector.

Despite the improvements provided by employing deep
learning techniques in many areas, their use for anomaly
detection is not widespread, especially compared to other
applications, e.g., multi-class classification and time series
prediction. The main reason is the difficulty to learn
discriminative models when the only information available
belongs to one class, or the classes are highly unbalanced [4].

 Aware of this scenario, we propose a new deep learning-

based anomaly detection approach. It consists of a hybrid

system that combines implicit feature extraction by a deep

architecture with a one-class classifier, as already seen in the

literature [8, 9]. Our contribution focuses on the feature

extractor, which is a convolution neural network trained as a

regressor to learn a predefined distribution, randomly chosen.

The network training used the target distribution and data

belonging to the normal class. The structure of the CNN

consists of alternating convolutional and max-pooling layers,

followed by a fully connected output layer. By doing this, we

expect the inputs to belong to the normal class result in patterns

like the one used to train the network. On the other hand,

anomalous inputs result in outputs that differ from the expected

one. The anomaly detection is performed by the one-class

support vector machine, which is a shallow machine learning

architecture. The inputs are the features extracted by the CNN

model. We validate the proposed solution with a gearbox

diagnosis data set, already used in works like [13, 14]. We

compare our results with the ones obtained by deep learning-

based techniques commonly found in the literature.

The remainder of the paper is organized as follows: Section

II presents the theoretical background, which contains some

information about the algorithms used in this work. Section III

introduces the proposed model. Section IV describes the

methodology, in which we explain the experiments. Section V

shows the results and discussions, Section VI presents the

conclusion, and in Section VII we acknowledge for the

supports.

II. THEORETICAL BACKGROUND

A. Convolutional Neural Networks

Convolutional neural networks (CNN) are models inspired
by biological processes. They are composed of small
processing units, called neurons. The connections among
neurons present patterns like the ones observed in the animal
visual cortex [15]. They proved to be a useful tool regarding
applications such as object detection [16], fault diagnosis [13],
among others. The basic CNN is composed of an input layer,
alternating convolutional and pooling layers, fully connected
layers and an output layer [15]. Such configuration may be
modified according to the application. We explain the role of
each layer in the following:

1) Input layer: It receives the raw input data, and also

defines the width, height and number of channels of the input

[17].

2) Convolutional layer: It learns features, i.e. new

representations, from a set of inputs and generate feature

maps. The maps are created by convolving their inputs with a

set of learned weights [17]. Activation functions are used to

bound the outputs of this layer and to provide a given

behavior, e.g., non-linear [15]. Equation (1) shows the general

formulation of this kind of layer:

 (1)

in which l refers to the current layer, i and j are the indexes of

the elements of the previous and current layers, respectively,

 is a set of input maps, k is the weight matrix of the i-th

convolutional kernel of the l -th layer applied to the j-th input

feature map. b is the bias.

3) Pooling layer: This layer reduces the spatial resolution

of feature maps. It also improves the spatial invariance to

input distortions and translations [17]. Most of the recent

works employ a variation of this layer called max-pooling

[15]. It propagates to the next layer the maximum value of a

neighborhood of elements. Equation (2) defines this operation.

 (2)

in which is the output of the pooling process regarding the

j-th feature map and is the element at location (p,q)

contained by the pooling region . The pooling process is

also called subsampling [17].

4) Fully-connected and output layers: These layers

interpret the features provided by the previous layers and

perform high-level reasoning [15]. The output layer provides

the output of the model, which can be a class score, a

prediction, among others [17].

B. Autoencoders

Autoencoders (AE) are models which aim to reproduce

their inputs on their outputs, with the least possible amount of

distortion. They play a crucial role in unsupervised and semi-

supervised learning, as well as in applications such as data

compression, noise removal and anomaly detection [18].

Autoencoders can be modeled by using different

techniques, e.g. neural networks and restricted Boltzmann

machines. Also, their structure can present different features,

e.g. shallow or deep architectures, convolutional or densely

connected layers, among others [18]. Fig. 1 depicts an

example of an autoencoder that presents a simple structure.

Fig. 1. Scheme of an autoencoder with one hidden layer.

C. One-class support vector machines

The one-class support vector machine (OCSVM) is a semi-

supervised variant of the well-known support vector machine

(SVM). It is commonly employed on classification tasks in

which only data belonging to one class are available, e.g.

anomaly, outlier and novelty detection problems [3]. The

OCSVM proposed by Schölkopf et al. uses a hyperplane to

separate the normal data from the origin in the feature space.

At the same time, it maximizes the distance from this

hyperplane to the origin [19]. The quadratic error

minimization process works according to Equations (3), (4)

and (5):

 (3)

subject to:

 (4)

 (5)

in which ω is a weight vector, ρ is an offset that parameterizes

a hyperplane in the feature space associated with a kernel,

is the i-th sample from a data set with n samples, ϑ is a

parameter that characterizes the solution by setting an upper

bound on the fraction of outliers and, is a variable that

allows some data to lie within the margin.

III. PROPOSED MODEL: FEATURE EXTRACTION BASED ON

CONVOLUTIONAL NEURAL NETWORKS + OCSVM

The proposed feature extraction system is modeled as a

convolutional neural network. It consists of three pairs of

alternating convolutional and max-pooling two-dimensional

layers, followed by a densely connected one-dimensional

layer, which provides the system output. We adopted a two-

dimensional configuration for the convolutional and max-

pooling layers due to the kind of input data, i.e. two-

dimensional 128x128 images. The strides of those layers were

1 and 2, respectively. The model architecture was inspired by

[13, 14], and it is illustrated in Fig. 2.

The model is expected to work as a regressor, i.e. we

trained it to fit a set of target distributions, and not to classes.

Those distributions were randomly defined because we do not

intend to find an optimal set of values for this problem, but to

show that training neural networks, i.e. the feature extractors,

to learn a predefined pattern can improve the anomaly

detection process. The target values are features that are used

by the OCSVM to perform the anomaly detection. We used

the backpropagation algorithm to train the model in a

supervised way. The model was trained for 50 epochs, and the

batch size was 144.

Fig. 2. The configuration of the proposed

feature extraction model.

The activation functions employed on the convolutional

layers are rectified linear units (ReLU) since they have

provided good results in several applications when

convolutional neural networks are used [15]. We also used the

ReLU as the activation function of the output layer, since the

proposed solution does not require the model output to have

an upper boundary. The loss function adopted is the mean

squared error, since this is a regression problem.

IV. METHODOLOGY

A. Data set

We employed a gearbox fault diagnosis data set to assess
the performance of the proposed solution. This data set
contains 18,000 spectrograms of vibration signals collected
from a gearbox operating according to multiple scenarios, e.g.
different rotation frequencies and load conditions. All
spectrograms are 128 x 128 grayscale images. One example is
depicted in Fig. 3.

Fig. 3. Spectrogram that belongs to the gearbox fault diagnosis
data set.

http://scholar.google.nl/citations?view_op=view_citation&hl=en&user=DZ-fHPgAAAAJ&cstart=400&pagesize=100&sortby=pubdate&citation_for_view=DZ-fHPgAAAAJ:GFxP56DSvIMC

Those spectrograms are divided into 10 classes, in which
the first one regards the normal scenario, and the other 9
classes refer to 9 fault severity levels. Each level regards a
tooth breakage percentage of one gear in the gearbox. Those
levels are exposed in Fig. 4 and Table I. The normal scenario
does not present tooth breakage.

Fig. 4. All ten classes of gear tooth breakage [14].

Table I – Damage severity levels of the gear tooth breakage

Code Damage
(mm)

Tooth remaining
percentage (%)

P1 0.00 100.00

P2 2.37 88.42

P3 4.00 80.42

P4 5.73 71.94

P5 7.60 62.81

P6 10.57 48.29

P7 12.37 39.48

P8 14.33 29.85

P9 17.15 14.36

P10 20.43 0.00

B. Experimental setup

We compared the proposed solution, which was described

in Section III, with two anomaly detection techniques

commonly found in the literature. The first technique regarded

using autoencoders to reconstruct the input data, so we could

define a threshold based on the reconstruction error and use it

to detect the anomalies. The architecture of those

autoencoders is presented in Fig. 5. The encoder presents the

same structure informed in Fig. 2, while the decoder is

symmetrical to the encoder relative to the densely connected

layer.

Fig. 5. The configuration of the autoencoder.

The second technique employed the encoders of those

autoencoders as feature extractors. They worked together with

a shallow machine learning technique, the OCSVM, which

performed the anomaly detection by using the features

extracted.

We did not regard in this work the comparison with a

classifier-based anomaly detection approach, as in [13], since

it supposes that we have prior information about the abnormal

classes, and we intend to use only the information provided by

the normal class to train the anomaly detection models. The

spectrograms of anomalous classes are used only to evaluate

the model.

The data set used to train those models consisted of 1440

spectrograms, which belonged to the normal class. The test

set, on the other hand, contained 2160 spectrograms, in which

360 belonged to the normal class and the remaining ones were

divided among the faulty classes, i.e. 200 spectrograms by

class. Those spectrograms were randomly selected. We used

this number of anomalous spectrograms not to distort the

evaluation metrics since the number of anomalous images is

much higher than the number of normal ones. 15 models were

trained for 50 epochs in each scenario. The training process

was performed on Google Colaboratory [20]. All scripts were

written in Python programming language [21].

V. RESULTS AND DISCUSSIONS

 The first analysis was about the anomaly detection

based on the reconstruction error. We used the model

configuration illustrated in Fig. 5 to build the autoencoders.

We considered 4 different sizes of dense layers: 32, 64, 96 and

128 neurons. The threshold adopted to distinguish between

normal and abnormal samples was the 95th percentile of the

reconstruction error distribution, which was obtained from the

training data. Each model had its own threshold. The average

classification metrics for 60 trained models (15 in each

scenario, i.e. size of dense layer) are listed in Table II, in

which n means the number of neurons in the dense layer.

Those results regard only test samples.

Table II – Average classification metrics for the anomaly
detection based on the reconstruction error

n Accuracy Precision Recall
F1-

Score
AUC

32 0.518 0.251 0.950 0.397 0.614

64 0.488 0.239 0.947 0.382 0.607

96 0.477 0.236 0.945 0.377 0.604

128 0.451 0.227 0.941 0.365 0.597

We observe that the best performance was achieved by the

autoencoders with 32 neurons in the dense layer. However, the

results of accuracy, precision, F1-Score and AUC were

inferior for all configurations, e.g. for n = 32 the models

classified correctly just over half of the test samples. The

recall and precision scores help to understand what happened.

The high recall shows that the model has good results

regarding the normal class, while the low precision shows a

high occurrence of false positives concerning the number of

true positives, suggesting that many abnormal samples were

incorrectly classified as normal. Fig. 6 shows the average

accuracy when the autoencoders have dense layers with 32

neurons, regarding each class individually. Although the

anomaly detection regards only normal and abnormal classes,

the damage levels are considered in this analysis only to

understand the strengths and weaknesses of each approach

better.

Fig. 6. Average accuracy of anomaly detectors based on the

reconstruction error, considering 32 neurons on the dense

layer, and regarding the normal class (P1) and all damage

classes (P2 to P10).

According to Fig. 6, the accuracy tends to increase as the

tooth damage level raises for the anomalous classes. It

suggests that small damages on gears did not result in

significant changes in the patterns of reconstructed anomalous

spectrograms. This way, the anomaly detection based on

reconstruction error presented the worst results in those

scenarios. On the other hand, more severe damages resulted in

higher hit rates. Figs. 7 and 8 help to understand this problem.

They show the reconstruction error histograms regarding the

normal class (P1), and the anomalous classes P2 and P10, i.e.,

the minimum and maximum damage levels. We observe

overlapping distributions in Fig.7, making it difficult to define

normal and abnormal data by setting a threshold. Fig. 8 shows

that this problem is smaller regarding the abnormal class P10.

Fig. 7. Distribution of the reconstruction errors regarding

classes P1 (normal) and P2 (anomaly).

Fig. 8. Distribution of the reconstruction errors regarding

classes P1 (normal) and P10 (anomaly).

The second analysis regarded the use of encoders as

features extractors. These features were used by the OCSVM

to perform anomaly detection. We used the encoders of the

same autoencoders employed in the previous analysis. The

results, i.e. classification metrics, are listed in Table III. The

OCSVM was trained to classify 95% of the training data as

normal, while the 5% remaining were classified as the

anomaly.

Table III – Average classification metrics for the anomaly
detection based on encoders + OCSVM.

n Accuracy Precision Recall
F1-

Score
AUC

32 0.844 0.558 0.949 0.691 0.773

64 0.865 0.580 0.954 0.715 0.785

96 0.851 0.598 0.961 0.723 0.794

128 0.902 0.656 0.959 0.773 0.823

This combination presented significantly better results

regarding the ones based on the reconstruction error, e.g. the

average accuracy for n=32 in this new scenario was about

63% higher regarding the previous one. However, the best

results were provided by the encoders with 128 output

neurons, i.e. the autoencoders with 128 neurons in the dense

layers. It suggests that a higher amount of information (128

inputs) improved the OCSVM capability of defining a suitable

decision border. Also, the scenario with 96 output neurons

presented the highest average recall, but the remaining metrics

were lower regarding the scenario with 128 neurons. It means

that systems for n=96 have less false negatives, i.e. less false

alarm rates, although their capability of detecting anomaly is

not as good as the one of systems for n=128.

Fig. 9. shows the same information presented in Fig. 6,

i.e., the average accuracy regarding each class individually. As

we observe, the main improvement provided by using

encoders and OCSVM is a higher accuracy regarding the

classes related to smaller damages. It means that a more

substantial amount of information, i.e. 128 features instead of

just the reconstruction error, allows the system to identify

more relevant differences among closer classes such as P1 and

P2, for example. It helps to understand the advantages of our

proposal over the one based on the reconstruction error.

Fig. 9. Average accuracy of anomaly detectors based on

encoders and OCSVM, considering 128 neurons on the output

layer, and regarding the normal class (P1) and all damage

classes (P2 to P10).

The last analysis regarded the proposed solution, i.e,, a

feature extractor trained to learn a predefined and randomly

chosen pattern. We used the configuration illustrated in Fig. 4,

with 4 different sizes of output layers: 32, 64, 96 and 128

neurons. The feature extractor based on a CNN was trained to

learn features with random values between 0 and 10. We have

tested random values with different upper bounds, e.g. 1, 2.5,

5 and 10, and the best results were achieved using 10. We did

not test higher values for the upper bound. However, as the

results improved from 1 to 10, we have reasons to believe that

higher values of upper bounds can improve the system

performance even more, but it will be analyzed on future

work. The high range of expected output values, i.e. up to 10,

was the reason to adopt the ReLU activation function also for

the output layer.

The average results of the 60 trained models (15 in each

scenario) are listed in Table IV, in which n means the number

of neurons in the dense layer. The OCSVM was also trained to

classify 95% of the training data as normal. Those results

regard only test samples.

Table IV – Average classification metrics for the anomaly

detection based on CNN + OCSVM.

N Accuracy Precision Recall
F1-

Score
AUC

32 0.940 0.764 0.937 0.841 0.875

64 0.944 0.774 0.941 0.849 0.881

96 0.948 0.789 0.946 0.860 0.890

128 0.946 0.780 0.947 0.855 0.884

Table IV shows that the best performance was achieved by

the models with output layers with 96 neurons. However, the

scenario with 128 neurons presented the highest recall values.

It suggests that models in this scenario, i.e., 128 neurons,

presented lower false alarm rates. On the other hand, they

have more chances to misclassify anomalous examples. Also,

we observe that all scenarios presented results very close to

each other.

Fig. 10 shows the average accuracy for models that have

output layers with 96 neurons, regarding each class

individually. As in previous approaches, we observe that the

best results were achieved by those classes with higher gear

damages, although the overall accuracy values regarding all

classes were higher with respect to the other anomaly

detection approaches.

Fig. 10. Average accuracy of anomaly detectors based on

CNNs and OCSVM, considering 96 neurons on the output

layer, and regarding the normal class (P1) and all damage

classes (P2 to P10).

In addition, the results achieved by combining the CNN-

based feature extractor with the OCSVM were superior to the

ones presented by the previous solutions, e.g., the worst

average accuracy value of the proposed solution was 4.2%

higher than the best solution provided by the scenario

regarding the encoder + OCSVM approach, and more than

81% higher than the best solution provided by the approach

based on reconstruction error. Regarding the higher average

accuracy achieved by the proposed solution, those

improvements were 5.1% and 83%, respectively. Table V

shows the best results achieved by all the techniques we

assessed. We observe that the proposed solution presented the

best performance regarding 4 out of 5 metrics. The exception

was the recall, suggesting that our anomaly detection system

performs better at identifying anomalies. On the other hand,

the false alarm rate is higher regarding the other techniques,

but the recall values are close to each other.

Table V – Best average classification metrics regarding the

assessed techniques

Approach Accuracy Precision Recall
F1-

Score
AUC

Reconstruction
Error

0.518 0.251 0.950 0.397 0.614

Encoder +
OCSVM

0.902 0.656 0.959 0.773 0.823

CNN + OCSVM 0.948 0.789 0.946 0.860 0.890

Those results show that training the feature extractor to

learn a specific distribution may be better than training models

in unsupervised way to extract features, or to use the

reconstruction error. In unsupervised training, the model

learns the average characteristics of a given data set.

Regarding the anomaly detection problem, such characteristics

may or not belong to abnormal samples as well, what may

decrease the system performance.

On the other hand, by training a model to learn a specific

distribution, we can create relations among input data

characteristics and output features. Those relations are built in

such a way that, when we provide an input with different

characteristics regarding the inputs used to train the model, the

output features are different from the ones expected. This way,

an algorithm such the OCSVM use these features and identify

normal and abnormal behaviors.

VI. CONCLUSION

This paper presented a new solution based on hybrid

systems for the anomaly detection problem. The proposed

approach combined feature extraction with one-class

classifier. Our contribution focused on the feature extractor,

which was a convolution neural network trained for a

regression task to learn a predefined distribution. Their

outputs fed the one-class support vector machine, which

performed the anomaly detection.

We assessed the performance of the proposed system on a

gearbox diagnosis data set. We also compared the

performance of the proposed approach with anomaly detection

solutions commonly found in the literature. After performing a

few analyzes, we observed that the proposed anomaly

detection technique provided better results regarding the other

solutions. We believe that training the feature extractor

allowed the model to create more specific relations among

input data characteristics and output features, instead of just

learning general attributes of the training data, as unsupervised

trained usually do.

As a future work, we could perform a deeper investigation

about the influence of the target distribution on the results

achieved by the feature extractor with OCSVM. Also, we

could look for ways to determine the target distribution

autonomously, aiming to improve the system performance.

Other anomaly detection algorithms could be assessed as well,

e.g. k-nearest neighbors.

VII. AKNOWLEDGEMENTS

This study was financed in part by the Coordenação de

Aperfeiçoamento de Pessoal de Nível Superior – Brasil

(CAPES) – Finance Code 001.

VIII. BIBLIOGRAPHY

[1] M. Raza and U. Qayyum, "Classical and Deep Learning

Classifiers for Anomaly Detection," in 2019 16th

International Bhurban Conference on Applied Sciences

and Technology (IBCAST), Islamabad, 2019.

[2] Q. Tian, J. Li and H. Liu, "A Method for Guaranteeing

Wireless Communication Based on a Combination of

Deep and Shallow Learning," IEEE Access, vol. 7, pp.

38688-38695, 2019.

[3] V. Chandola, A. Banerjee and V. Kumar, "Anomaly

detection: A survey," ACM computing surveys (CSUR),

vol. 41, no. 3, p. 15, 2009.

[4] R. Chalapathy and S. Chawla, "Deep learning for

anomaly detection: A survey.," arXiv preprint

arXiv:1901.03407, 2019.

[5] I. Goodfellow, Y. Bengio and A. Courville, Deep

Learning, MIT Press, 2016.

[6] O. M. Ezeme, Q. H. Mahmoud and A. Azim, "Dream:

deep recursive attentive model for anomaly detection in

kernel events," IEEE Access, vol. 7, pp. 18860-18870,

2019.

[7] W. Chu, H. Xue, C. Yao and D. Cai, "Sparse coding

guided spatiotemporal feature learning for abnormal

event detection in large videos," IEEE Transactions on

Multimedia, vol. 21, no. 1, pp. 246-255, 2018.

[8] S. Garg, K. Kaur, N. Kumar and J. J. Rodrigues, "Hybrid

Deep-Learning-Based Anomaly Detection Scheme for

Suspicious Flow Detection in SDN: A Social Multimedia

Perspective," IEEE Transactions on Multimedia, vol. 21,

no. 3, pp. 566-578, 2019.

[9] W. Lu, Y. Cheng, C. Xiao, S. Chang, S. Huang, B. Liang

and T. Huang, "Unsupervised sequential outlier detection

with deep architectures," IEEE transactions on image

processing, vol. 26, no. 9, pp. 4321-4330, 2017.

[10] S. Xu, H. Wu and R. Bie, "CXNet-m1: Anomaly

detection on chest X-rays with image-based deep

learning," IEEE Access, vol. 7, pp. 4466-4477, 2018.

[11] Z. Li, A. L. G. Rios, G. Xu and L. Trajković, "Machine

Learning Techniques for Classifying Network Anomalies

and Intrusions," in 2019 IEEE International Symposium

on Circuits and Systems (ISCAS), Sapporo, 2019.

[12] M. B. Fadhel and K. Nyarko, "GAN Augmented Text

Anomaly Detection with Sequences of Deep Statistics,"

in 2019 53rd Annual Conference on Information Sciences

and Systems (CISS), Baltimore, 2019.

[13] R. Monteiro, C. Bastos-Filho, M. Cerrada, D. Cabrera

and R. V. Sánchez, "Convolutional neural networks using

fourier transform spectrogram to classify the severity of

gear tooth breakage," in 2018 International Conference

on Sensing, Diagnostics, Prognostics, and Control

(SDPC), Xi'an, 2018.

[14] R. P. Monteiro, M. Cerrada, D. R. Cabrera, R. V.

Sánchez and C. J. Bastos-Filho, "Using a Support Vector

Machine Based Decision Stage to Improve the Fault

Diagnosis on Gearboxes," Computational Intelligence

and Neuroscience, 2019.

[15] W. Rawat and Z. Wang, "Deep convolutional neural

networks for image classification: A comprehensive

review," Neural computation, vol. 29, no. 9, pp. 2352-

2449, 2017.

[16] S. M. Abbas and S. N. Singh, "Region-based object

detection and classification using faster R-CNN," in 2018

4th International Conference on Computational

Intelligence & Communication Technology (CICT),

Ghaziabad, 2018.

[17] J. Patterson and A. Gibson, Deep learning: A

practitioner's approach, Sebastopol: O'Reilly Media, Inc.,

2017.

[18] P. Baldi, "Autoencoders, unsupervised learning, and deep

architectures," in Proceedings of ICML workshop on

unsupervised and transfer learning, Bellevue, 2012.

[19] B. Schölkopf, R. C. Williamson, A. J. Smola, J. Shawe-

Taylor and J. C. Platt, "Support vector method for

novelty detection.," in Advances, Denver, 2000.

[20] Carneiro, T., Da Nóbrega, R. V. M., Nepomuceno, T.,

Bian, G. B., De Albuquerque, V. H. C., & Reboucas

Filho, P. P. (2018). Performance Analysis of Google

Colaboratory as a Tool for Accelerating Deep Learning

Applications. IEEE Access, 6, 61677-61685.

[21] Van Rossum, G., & Drake, F. L. (2011). The python

language reference manual. Network Theory Ltd.

