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Abstract—Anomaly detection is an import field of study, 

which has many applications, e.g., fraud and disease detection. It 

consists of identifying non-conforming patterns regarding an 

expected behavior. Despite the improvements provided by deep 

learning techniques in several areas, their use for anomaly 

detection is not widespread. The main reason is the difficulty to 

learn discriminative models when all the information available 

regards one class, or the classes are highly unbalanced. We 

propose a new deep learning-based solution for the anomaly 

detection problem. It consists of a hybrid system, composed of a 

feature extractor and a one-class classifier. The feature extractor 

is a convolutional neural network, trained as a regressor to learn 

a predefined distribution. The classifier is the one-class support 

vector machine, which performs the anomaly detection by using 

the outputs provided by the feature extractor. We used a gearbox 

failure diagnosis data set to assess the performance of our 

proposal. We also compared our anomaly detection system with 

other deep learning-based techniques commonly found in the 

literature. Our proposal presented an average accuracy close to 

0.95, outperforming techniques based on the reconstruction error 

and hybrid models. 

Keywords— Anomaly Detection; Deep Learning; One-Class 

Support Vector Machine; Convolutional Neural Network 

 

I. INTRODUCTION 

Anomaly detection has gained importance in many 
applications, and it can be applied to multiple domains, e.g., 
fraud detection [1], network security [2], among others. It 
consists of identifying non-conforming patterns (anomalies) 
regarding an expected behavior [3]. Anomalous behaviors are 
commonly caused by errors, defects, unseen patterns, presence 
of contaminants, among other reasons [4]. The detection of 
anomalies is an essential step in decision-making processes   
[3, 4], e.g., to plan the maintenance of machines in a 
manufacturing line. 

The last decade witnessed the expansion of deep leaning to 
several application domains, e.g., time series prediction, object 
detection, and classification [4]. Deep learning is a subfield of 
machine learning characterized by processing the information 
through multiple layers. The advantage of these models is the 
capability to represent implicitly features regarding the inputs 
along with their hidden structure, which generates different 

abstraction levels of a problem without human interference [5]. 
The performance of deep learning-based techniques proved to 
be superior to traditional machine learning approaches, e.g., 
support vector machines, especially regarding problems with 
images and a large amount of data [4, 5]. 

A standard solution that employs deep learning for anomaly 
detection is the analysis of the reconstruction error [1, 6, 7]. In 
this case, an algorithm learns to reconstruct a given input 
pattern. Then, if we present an input with a different pattern to 
the algorithm, the reconstruction error tends to be higher than 
expected. The autoencoder is an example of an algorithm used 
for this purpose. Another common anomaly detection approach 
is to train the reconstruction algorithm, e.g., an autoencoder, 
and use the outputs of intermediate layers as input features for 
shallow anomaly detection algorithms [8, 9], e.g., one-class 
support vector machine. 

The anomaly detection also can be faced as a binary or 
multi-class classification problem. However, it is necessary to 
have prior knowledge concerning the anomalous classes to 
train the model. One or more classes are defined as normal, 
while the remaining ones are defined as anomalies [10, 11]. 
Generative adversarial networks have been employed in 
anomaly detection, as well [12]. They are often used to 
increase the number of samples to improve the learning process 
of the anomaly detector.  

Despite the improvements provided by employing deep 
learning techniques in many areas, their use for anomaly 
detection is not widespread, especially compared to other 
applications, e.g., multi-class classification and time series 
prediction. The main reason is the difficulty to learn 
discriminative models when the only information available 
belongs to one class, or the classes are highly unbalanced [4]. 

 Aware of this scenario, we propose a new deep learning-

based anomaly detection approach. It consists of a hybrid 

system that combines implicit feature extraction by a deep 

architecture with a one-class classifier, as already seen in the 

literature [8, 9]. Our contribution focuses on the feature 

extractor, which is a convolution neural network trained as a 

regressor to learn a predefined distribution, randomly chosen. 

The network training used the target distribution and data 

belonging to the normal class. The structure of the CNN 

consists of alternating convolutional and max-pooling layers, 



followed by a fully connected output layer. By doing this, we 

expect the inputs to belong to the normal class result in patterns 

like the one used to train the network. On the other hand, 

anomalous inputs result in outputs that differ from the expected 

one. The anomaly detection is performed by the one-class 

support vector machine, which is a shallow machine learning 

architecture. The inputs are the features extracted by the CNN 

model. We validate the proposed solution with a gearbox 

diagnosis data set, already used in works like [13, 14]. We 

compare our results with the ones obtained by deep learning-

based techniques commonly found in the literature. 

The remainder of the paper is organized as follows: Section 

II presents the theoretical background, which contains some 

information about the algorithms used in this work. Section III 

introduces the proposed model. Section IV describes the 

methodology, in which we explain the experiments. Section V 

shows the results and discussions, Section VI presents the 

conclusion, and in Section VII we acknowledge for the 

supports. 

 

II. THEORETICAL BACKGROUND 

A. Convolutional Neural Networks 

Convolutional neural networks (CNN) are models inspired 
by biological processes. They are composed of small 
processing units, called neurons. The connections among 
neurons present patterns like the ones observed in the animal 
visual cortex [15]. They proved to be a useful tool regarding 
applications such as object detection [16], fault diagnosis [13], 
among others. The basic CNN is composed of an input layer, 
alternating convolutional and pooling layers, fully connected 
layers and an output layer [15]. Such configuration may be 
modified according to the application. We explain the role of 
each layer in the following: 

1) Input layer: It receives the raw input data, and also 

defines the width, height and number of channels of the input 

[17]. 

 

2) Convolutional layer: It learns features, i.e. new 

representations, from a set of inputs and generate feature 

maps. The maps are created by convolving their inputs with a 

set of learned weights [17]. Activation functions are used to 

bound the outputs of this layer and to provide a given 

behavior, e.g., non-linear [15]. Equation (1) shows the general 

formulation of this kind of layer: 

 

      (1) 

 

 

 

 

 

 

 

in which l refers to the current layer, i and j are the indexes of 

the elements of the previous and current layers, respectively, 

 is a set of input maps, k is the weight matrix of the i-th 

convolutional kernel of the l -th layer applied to the j-th input 

feature map. b is the bias. 

 

3) Pooling layer: This layer reduces the spatial resolution 

of feature maps. It also improves the spatial invariance to 

input distortions and translations [17]. Most of the recent 

works employ a variation of this layer called max-pooling 

[15]. It propagates to the next layer the maximum value of a 

neighborhood of elements. Equation (2) defines this operation. 

 

        (2) 

 

in which  is the output of the pooling process regarding the 

j-th feature map and  is the element at location (p,q) 

contained by the pooling region  . The pooling process is 

also called subsampling [17]. 

 

4) Fully-connected and output layers: These layers 

interpret the features provided by the previous layers and 

perform high-level reasoning [15]. The output layer provides 

the output of the model, which can be a class score, a 

prediction, among others [17].  

 

B. Autoencoders 

Autoencoders (AE) are models which aim to reproduce 

their inputs on their outputs, with the least possible amount of 

distortion. They play a crucial role in unsupervised and semi-

supervised learning, as well as in applications such as data 

compression, noise removal and anomaly detection [18]. 

 

Autoencoders can be modeled by using different 

techniques, e.g. neural networks and restricted Boltzmann 

machines. Also, their structure can present different features, 

e.g. shallow or deep architectures, convolutional or densely 

connected layers, among others [18]. Fig. 1 depicts an 

example of an autoencoder that presents a simple structure. 

 

 
Fig. 1. Scheme of an autoencoder with one hidden layer. 

 

 

 

 



C. One-class support vector machines 

The one-class support vector machine (OCSVM) is a semi-

supervised variant of the well-known support vector machine 

(SVM). It is commonly employed on classification tasks in 

which only data belonging to one class are available, e.g. 

anomaly, outlier and novelty detection problems [3]. The 

OCSVM proposed by Schölkopf et al. uses a hyperplane to 

separate the normal data from the origin in the feature space. 

At the same time, it maximizes the distance from this 

hyperplane to the origin [19]. The quadratic error 

minimization process works according to Equations (3), (4) 

and (5): 

 

       (3) 

 

subject to: 

 

                   (4) 

 

                                   (5) 

 

in which ω is a weight vector, ρ is an offset that parameterizes 

a hyperplane in the feature space associated with a kernel,  

is the i-th sample from a data set with n samples, ϑ is a 

parameter that characterizes the solution by setting an upper 

bound on the fraction of outliers and,  is a variable that 

allows some data to lie within the margin. 
 

III. PROPOSED MODEL: FEATURE EXTRACTION BASED ON 

CONVOLUTIONAL NEURAL NETWORKS + OCSVM 

 

The proposed feature extraction system is modeled as a 

convolutional neural network. It consists of three pairs of 

alternating convolutional and max-pooling two-dimensional 

layers, followed by a densely connected one-dimensional 

layer, which provides the system output. We adopted a two-

dimensional configuration for the convolutional and max-

pooling layers due to the kind of input data, i.e. two-

dimensional 128x128 images. The strides of those layers were 

1 and 2, respectively. The model architecture was inspired by 

[13, 14], and it is illustrated in Fig. 2. 

 

The model is expected to work as a regressor, i.e. we 

trained it to fit a set of target distributions, and not to classes. 

Those distributions were randomly defined because we do not 

intend to find an optimal set of values for this problem, but to 

show that training neural networks, i.e. the feature extractors, 

to learn a predefined pattern can improve the anomaly 

detection process. The target values are features that are used 

by the OCSVM to perform the anomaly detection. We used 

the backpropagation algorithm to train the model in a 

supervised way. The model was trained for 50 epochs, and the 

batch size was 144. 

 
 

Fig. 2. The configuration of the proposed 

feature extraction model. 

 

The activation functions employed on the convolutional 

layers are rectified linear units (ReLU) since they have 

provided good results in several applications when 

convolutional neural networks are used [15]. We also used the 

ReLU as the activation function of the output layer, since the 

proposed solution does not require the model output to have 

an upper boundary. The loss function adopted is the mean 

squared error, since this is a regression problem. 

 

 

IV. METHODOLOGY  

A. Data set 

We employed a gearbox fault diagnosis data set to assess 
the performance of the proposed solution. This data set 
contains 18,000 spectrograms of vibration signals collected 
from a gearbox operating according to multiple scenarios, e.g. 
different rotation frequencies and load conditions. All 
spectrograms are 128 x 128 grayscale images. One example is 
depicted in Fig. 3. 

 

Fig. 3. Spectrogram that belongs to the gearbox fault diagnosis 
data set.  

http://scholar.google.nl/citations?view_op=view_citation&hl=en&user=DZ-fHPgAAAAJ&cstart=400&pagesize=100&sortby=pubdate&citation_for_view=DZ-fHPgAAAAJ:GFxP56DSvIMC


Those spectrograms are divided into 10 classes, in which 
the first one regards the normal scenario, and the other 9 
classes refer to 9 fault severity levels. Each level regards a 
tooth breakage percentage of one gear in the gearbox. Those 
levels are exposed in Fig. 4 and Table I. The normal scenario 
does not present tooth breakage. 

 

 

Fig. 4. All ten classes of gear tooth breakage [14]. 

 

Table I – Damage severity levels of the gear tooth breakage 

Code Damage 
(mm) 

Tooth remaining 
percentage (%) 

P1 0.00 100.00 

P2 2.37 88.42 

P3 4.00 80.42 

P4 5.73 71.94 

P5 7.60 62.81 

P6 10.57 48.29 

P7 12.37 39.48 

P8 14.33 29.85 

P9 17.15 14.36 

P10 20.43 0.00 

 

B. Experimental setup 

We compared the proposed solution, which was described 

in Section III, with two anomaly detection techniques 

commonly found in the literature. The first technique regarded 

using autoencoders to reconstruct the input data, so we could 

define a threshold based on the reconstruction error and use it 

to detect the anomalies. The architecture of those 

autoencoders is presented in Fig. 5. The encoder presents the 

same structure informed in Fig. 2, while the decoder is 

symmetrical to the encoder relative to the densely connected 

layer. 

 
Fig. 5. The configuration of the autoencoder. 

 

The second technique employed the encoders of those 

autoencoders as feature extractors. They worked together with 

a shallow machine learning technique, the OCSVM, which 

performed the anomaly detection by using the features 

extracted.  

 

We did not regard in this work the comparison with a 

classifier-based anomaly detection approach, as in [13], since 

it supposes that we have prior information about the abnormal 

classes, and we intend to use only the information provided by 

the normal class to train the anomaly detection models. The 

spectrograms of anomalous classes are used only to evaluate 

the model. 

 

The data set used to train those models consisted of 1440 

spectrograms, which belonged to the normal class. The test 

set, on the other hand, contained 2160 spectrograms, in which 

360 belonged to the normal class and the remaining ones were 

divided among the faulty classes, i.e. 200 spectrograms by 

class. Those spectrograms were randomly selected. We used 

this number of anomalous spectrograms not to distort the 

evaluation metrics since the number of anomalous images is 

much higher than the number of normal ones. 15 models were 

trained for 50 epochs in each scenario. The training process 

was performed on Google Colaboratory [20]. All scripts were 

written in Python programming language [21]. 

 

 

V. RESULTS AND DISCUSSIONS 

 

     The first analysis was about the anomaly detection 

based on the reconstruction error. We used the model 

configuration illustrated in Fig. 5 to build the autoencoders. 

We considered 4 different sizes of dense layers: 32, 64, 96 and 

128 neurons. The threshold adopted to distinguish between 

normal and abnormal samples was the 95th percentile of the 

reconstruction error distribution, which was obtained from the 

training data. Each model had its own threshold. The average 

classification metrics for 60 trained models (15 in each 

scenario, i.e. size of dense layer) are listed in Table II, in 



which n means the number of neurons in the dense layer. 

Those results regard only test samples. 

 

 

Table II – Average classification metrics for the anomaly 
detection based on the reconstruction error 

n Accuracy Precision Recall 
F1-

Score 
AUC 

32 0.518 0.251 0.950 0.397 0.614 

64 0.488 0.239 0.947 0.382 0.607 

96 0.477 0.236 0.945 0.377 0.604 

128 0.451 0.227 0.941 0.365 0.597 

 

 

We observe that the best performance was achieved by the 

autoencoders with 32 neurons in the dense layer. However, the 

results of accuracy, precision, F1-Score and AUC were 

inferior for all configurations, e.g. for n = 32 the models 

classified correctly just over half of the test samples. The 

recall and precision scores help to understand what happened. 

The high recall shows that the model has good results 

regarding the normal class, while the low precision shows a 

high occurrence of false positives concerning the number of 

true positives, suggesting that many abnormal samples were 

incorrectly classified as normal. Fig. 6 shows the average 

accuracy when the autoencoders have dense layers with 32 

neurons, regarding each class individually. Although the 

anomaly detection regards only normal and abnormal classes, 

the damage levels are considered in this analysis only to 

understand the strengths and weaknesses of each approach 

better. 

 

 
Fig. 6. Average accuracy of anomaly detectors based on the 

reconstruction error, considering 32 neurons on the dense 

layer, and regarding the normal class (P1) and all damage 

classes (P2 to P10). 

 

According to Fig. 6, the accuracy tends to increase as the 

tooth damage level raises for the anomalous classes. It 

suggests that small damages on gears did not result in 

significant changes in the patterns of reconstructed anomalous 

spectrograms. This way, the anomaly detection based on 

reconstruction error presented the worst results in those 

scenarios. On the other hand, more severe damages resulted in 

higher hit rates. Figs. 7 and 8 help to understand this problem. 

They show the reconstruction error histograms regarding the 

normal class (P1), and the anomalous classes P2 and P10, i.e., 

the minimum and maximum damage levels. We observe 

overlapping distributions in Fig.7, making it difficult to define 

normal and abnormal data by setting a threshold. Fig. 8 shows 

that this problem is smaller regarding the abnormal class P10. 

 

 
 

Fig. 7. Distribution of the reconstruction errors regarding 

classes P1 (normal) and P2 (anomaly). 

 

 

 
 

Fig. 8. Distribution of the reconstruction errors regarding 

classes P1 (normal) and P10 (anomaly). 

 

 

The second analysis regarded the use of encoders as 

features extractors. These features were used by the OCSVM 

to perform anomaly detection. We used the encoders of the 

same autoencoders employed in the previous analysis. The 

results, i.e. classification metrics, are listed in Table III. The 

OCSVM was trained to classify 95% of the training data as 

normal, while the 5% remaining were classified as the 

anomaly.  



Table III – Average classification metrics for the anomaly 
detection based on encoders + OCSVM. 

n Accuracy Precision Recall 
F1-

Score 
AUC 

32 0.844 0.558 0.949 0.691 0.773 

64 0.865 0.580 0.954 0.715 0.785 

96 0.851 0.598 0.961 0.723 0.794 

128 0.902 0.656 0.959 0.773 0.823 

 

This combination presented significantly better results 

regarding the ones based on the reconstruction error, e.g. the 

average accuracy for n=32 in this new scenario was about 

63% higher regarding the previous one. However, the best 

results were provided by the encoders with 128 output 

neurons, i.e. the autoencoders with 128 neurons in the dense 

layers. It suggests that a higher amount of information (128 

inputs) improved the OCSVM capability of defining a suitable 

decision border. Also, the scenario with 96 output neurons 

presented the highest average recall, but the remaining metrics 

were lower regarding the scenario with 128 neurons. It means 

that systems for n=96 have less false negatives, i.e. less false 

alarm rates, although their capability of detecting anomaly is 

not as good as the one of systems for n=128. 

 

Fig. 9. shows the same information presented in Fig. 6, 

i.e., the average accuracy regarding each class individually. As 

we observe, the main improvement provided by using 

encoders and OCSVM is a higher accuracy regarding the 

classes related to smaller damages. It means that a more 

substantial amount of information, i.e. 128 features instead of 

just the reconstruction error, allows the system to identify 

more relevant differences among closer classes such as P1 and 

P2, for example. It helps to understand the advantages of our 

proposal over the one based on the reconstruction error. 

 

   

 
Fig. 9. Average accuracy of anomaly detectors based on 

encoders and OCSVM, considering 128 neurons on the output 

layer, and regarding the normal class (P1) and all damage 

classes (P2 to P10). 

 

 

The last analysis regarded the proposed solution, i.e,, a 

feature extractor trained to learn a predefined and randomly 

chosen pattern. We used the configuration illustrated in Fig. 4, 

with 4 different sizes of output layers: 32, 64, 96 and 128 

neurons. The feature extractor based on a CNN was trained to 

learn features with random values between 0 and 10. We have 

tested random values with different upper bounds, e.g. 1, 2.5, 

5 and 10, and the best results were achieved using 10. We did 

not test higher values for the upper bound. However, as the 

results improved from 1 to 10, we have reasons to believe that 

higher values of upper bounds can improve the system 

performance even more, but it will be analyzed on future 

work. The high range of expected output values, i.e. up to 10, 

was the reason to adopt the ReLU activation function also for 

the output layer. 

 

The average results of the 60 trained models (15 in each 

scenario) are listed in Table IV, in which n means the number 

of neurons in the dense layer. The OCSVM was also trained to 

classify 95% of the training data as normal. Those results 

regard only test samples. 

 

Table IV – Average classification metrics for the anomaly 

detection based on CNN + OCSVM. 

 

N Accuracy Precision Recall 
F1-

Score 
AUC 

32 0.940 0.764 0.937 0.841 0.875 

64 0.944 0.774 0.941 0.849 0.881 

96 0.948 0.789 0.946 0.860 0.890 

128 0.946 0.780 0.947 0.855 0.884 

 

Table IV shows that the best performance was achieved by 

the models with output layers with 96 neurons. However, the 

scenario with 128 neurons presented the highest recall values. 

It suggests that models in this scenario, i.e., 128 neurons, 

presented lower false alarm rates. On the other hand, they 

have more chances to misclassify anomalous examples. Also, 

we observe that all scenarios presented results very close to 

each other.  

 

Fig. 10 shows the average accuracy for models that have 

output layers with 96 neurons, regarding each class 

individually. As in previous approaches, we observe that the 

best results were achieved by those classes with higher gear 

damages, although the overall accuracy values regarding all 

classes were higher with respect to the other anomaly 

detection approaches. 

 



  
 

Fig. 10. Average accuracy of anomaly detectors based on 

CNNs and OCSVM, considering 96 neurons on the output 

layer, and regarding the normal class (P1) and all damage 

classes (P2 to P10). 

 

 

In addition, the results achieved  by combining the CNN-

based feature extractor with the OCSVM were superior to the 

ones presented by the previous solutions, e.g., the worst 

average accuracy value of the proposed solution was 4.2% 

higher than the best solution provided by the scenario 

regarding the encoder + OCSVM approach, and more than 

81% higher than the best solution provided by the approach 

based on reconstruction error. Regarding the higher average 

accuracy achieved by the proposed solution, those 

improvements were 5.1% and 83%, respectively. Table V 

shows the best results achieved by all the techniques we 

assessed. We observe that the proposed solution presented the 

best performance regarding 4 out of 5 metrics. The exception 

was the recall, suggesting that our anomaly detection system 

performs better at identifying anomalies. On the other hand, 

the false alarm rate is higher regarding the other techniques, 

but the recall values are close to each other.   

 

Table V – Best average classification metrics regarding the 

assessed techniques 

 

Approach Accuracy Precision Recall 
F1-

Score 
AUC 

Reconstruction 
Error 

0.518 0.251 0.950 0.397 0.614 

Encoder + 
OCSVM 

0.902 0.656 0.959 0.773 0.823 

CNN + OCSVM 0.948 0.789 0.946 0.860 0.890 

 

Those results show that training the feature extractor to 

learn a specific distribution may be better than training models 

in unsupervised way to extract features, or to use the 

reconstruction error. In unsupervised training, the model 

learns the average characteristics of a given data set. 

Regarding the anomaly detection problem, such characteristics 

may or not belong to abnormal samples as well, what may 

decrease the system performance.  

On the other hand, by training a model to learn a specific 

distribution, we can create relations among input data 

characteristics and output features.  Those relations are built in 

such a way that, when we provide an input with different 

characteristics regarding the inputs used to train the model, the 

output features are different from the ones expected. This way, 

an algorithm such the OCSVM use these features and identify 

normal and abnormal behaviors. 

 

 

VI. CONCLUSION 

This paper presented a new solution based on hybrid 

systems for the anomaly detection problem. The proposed 

approach combined feature extraction with one-class 

classifier. Our contribution focused on the feature extractor, 

which was a convolution neural network trained for a 

regression task to learn a predefined distribution. Their 

outputs fed the one-class support vector machine, which 

performed the anomaly detection. 

 

We assessed the performance of the proposed system on a 

gearbox diagnosis data set. We also compared the 

performance of the proposed approach with anomaly detection 

solutions commonly found in the literature. After performing a 

few analyzes, we observed that the proposed anomaly 

detection technique provided better results regarding the other 

solutions. We believe that training the feature extractor 

allowed the model to create more specific relations among 

input data characteristics and output features, instead of just 

learning general attributes of the training data, as unsupervised 

trained usually do. 

  

As a future work, we could perform a deeper investigation 

about the influence of the target distribution on the results 

achieved by the feature extractor with OCSVM. Also, we 

could look for ways to determine the target distribution 

autonomously, aiming to improve the system performance. 

Other anomaly detection algorithms could be assessed as well, 

e.g. k-nearest neighbors. 
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