
Temporal Classification of Turbofan Engine Health
using Elman Recurrent Network

Navar M. M. Nascimento∗†, Guilherme A. Barreto†, Cairo L. Nascimento Jr.∗, Pedro P. Rebouças Filho†

∗Instituto Tecnológico de Aeronáutica, São José dos Campos - SP, Brazil
Emails: navar@lapisco.ifce.edu.br, cairo@ita.br

†Graduate Program on Teleinformatics Engineering (PPGETI),
Federal University of Ceará, Fortaleza - CE, Brazil

Emails: gbarreto@ufc.br, pedrosarf@ifce.edu.br

Abstract—Prognosis and health management (PHM) plays
an essential role in condition-based maintenance routines. For
such purposes, academy and industry have devoted considerable
efforts into providing efficient, safe and reliable solutions. In
this regard, we aim at contributing to this field by proposing a
temporal classifier for engine’s health state identification based
on the Elman recurrent neural network. The evaluation of the
proposed approach involves a benchmarking data set originated
from the C-MAPSS, a flexible turbofan engine simulation by
NASA. A comprehensive performance comparison with state of
the art approaches is then carried out. The proposed system is
able to identify engine’s total degradation 125 steps in advance,
with 86.21% of confidence and low false negative rate, i.e. less
than 2% of engines faulty conditions are identified as normal.
With a temporal-based classification, the proposed approach
reaches over 95% of accuracy on turbofan diagnosis.

Index Terms—Prognosis, Turbofan engine, C-MAPSS, fault
detection, machine learning, Elman network

I. INTRODUCTION

Health prognosis of an industrial equipment is a key process
in condition-based maintenance strategies, since it contributes
to reduce related risks and maintenance costs of the equipment
under supervision, improving its availability, reliability and
security issues. In recent years, data-driven approaches have
gained momentum for prognosis purposes in order to improve
system’s health management [1]. In this regard, it is com-
mon to evaluate data-driven approaches for health prognosis,
especially those based on machine learning methods, using
benchmarking data sets [2], with special attention devoted to
the C-MAPSS1 database provided by the National Aeronautics
and Space Administration (NASA) [3].

A common goal of data-driven approach to equipment
health prognosis is the estimation of the remaining useful life
(RUL) of its components [4]–[6]. Bearing this in mind, in this
paper we aim at contributing to the portfolio of machine learn-
ing tools for equipment prognosis by introducing a neural-
based temporal classifier for engine’s health state identification
based on the Elman recurrent network. The evaluation of the
proposed approach involves the aforementioned C-MAPSS
data sets and a comprehensive performance comparison with

1Acronym for Commercial Modular AeroPropulsion System Simulation.

state of the art approaches. We report results showing that the
proposed system is able to identify engine’s total degradation
125 steps in advance, with 86.21% of confidence and low false
negative rate, i.e. less than 2% of engines faulty conditions are
identified as normal. With a temporal-based classification, the
proposed approach is able to reach over 95% of accuracy on
turbofan diagnosis.

The remainder of the paper is organized as follows. In
Section II details on the C-MAPSS database are presented. We
also discuss state of art approaches for the problem of interest.
In Section III an exploratory analysis is carried out in the
PHM’08 database. In Section IV the experimental settings and
simulations are described. The obtained results are reported in
Section V. The paper is concluded in Section VI.

II. DETAILS ON THE C-MAPSS DATA SET

NASA plays an important role on the problem of interest to
the current paper, since it provides the most important database
for prognosis and health management on turbofan engines [1].
The NASA’s concern on this field is such that Frederick et
al. [3] provide a user’s guide for the C-MAPSS simulation
tool2 with which advanced control and diagnostic algorithms
can be developed and quickly tested on a generic turbofan
engine simulation. NASA’s Prognostics Center of Excellence
(PCoE) maintains a repository3 full of different data sets for
such purposes.

Among them one have attracted special interest from system
modeling community: the PHM’08 data set for health state
segmentation/classification. It has been developed for the Prog-
nosis and Health Management competition occurred in 2008
and since then has been used for performance benchmarking
of machine learning algorithms due to its complexities and
high fidelity to real world scenarios [1].

Ramasso and Gouriveau [7], working on this data set and
using a neurofuzzy classifier, reported 66.25% of accuracy.
This work provides an important baseline of comparison
for research on this data set for machine learning methods.

2www.grc.nasa.gov/www/cdtb/software/mapss.html
3https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/



Ramasso [8] evaluated Hidden Markov models (HMM) and
reached 69% of accuracy, but using a slightly different version
of the PHM’08 data set (one with only a single operational
setting and two types of faults, having labeled data as well).
Tamilselvan and Wang [9] achieved over 90% of accuracy,
being a state of art approach on this problem. Zhao et al. [10]
also reports 90% of accuracy on their paper. However, there
are quite a few missing details about the used methodology
for a fair comparison. For example, the authors fail to explain
how the operational setting are taken into account, if this was
the case; and, if the health state definitions used were the same
as proposed by Ramasso and Gourivea [7].

III. EXPLORATORY ANALYSIS

There a five different data sets from turbofan engine sim-
ulation model [1] available from NASA PCoE. Frederick et
al. [3] and Saxena et al. [2] explain in details how the data
can be generated. These databases were first introduced during
the PHM’08 challenge and since then are public available from
NASA’s data repository.

Among the five NASA’s turbofan degradation databases, we
have chosen the one named “PHM08 Challenge Data Set”,
still publicly available for download by the time the current
research was developed. There is also a further one named
“5T” in the review of Ramasso and Saxena [2]. However, this
data set poses an additional difficulty with respect to other
turbofan data sets, because there is no ground truth to measure
performance.

A. Description of the PHM’08 data set

The data set is already split into train an test sets. The
guidelines of the competition are strict into using only the
training set for model selection and evaluation. We recommend
to addresses NASA’s guideline for further details [3].

The database contains records of 21 sensors in 218 units. A
sample from these records are exhibited in Fig. 2b, wherein
the time series of the engine decay is represented in sensors
3, 4, 11 and 12. These records are from unit number 1. There
are different approaches in literature to address this data set,
some of them intend to predict when the failure will occur,
while others aim at detecting the engine’s health state [1].
Our approach aims at creating a reliable and expert system to
detect turbofan’s health state.

B. Preprocessing steps

Most of the approaches reported on literature are based on
supervised learning, a scenario where labels are known. This
is not the case for the PHM’08 data set. However, researchers
have addressed this issue already. Ramasso and Gouriveau [7]
proposed an algorithm for signal segmentation into four health
state (HS), which has received a ground truth years ahead [11].
Tamilselvan and Wang [9] used a slightly different ranges for
labeling HS at the signals. We follow the same procedures,
which are described in the following.

• The last 50 time cycles in each signal are labeled as HS-4.
It corresponds to a on-failure state on the engine.;

TABLE I: Summary of the PHM’08 database with the number
of samples, sensors and units and, the subsets created by
clustering the operational settings.

Full database Subset of operational settings
Train database OS-1 OS-2 OS-3 OS-4 OS-5 OS-6

N. Samples 45918 6882 6771 6954 11680 6750 6881
N. Units 218
N. Sensors 21

• The next 51 to 125 time cycles are HS-3. It is to a caution
state because there is an imminent failure to occur;

• The followed 126 to 200 are a transition, HS-2. And,
there is not much different from a normal health state.

• Time cycles longer than 200 from the signal ending are
considered normal steady state, HS-1.

The result of this process is shown in Fig. 1b. However,
engines have different degrees of initial manufacturing, which
means that the number of time cycles until total degradation
varies from unit to unit within the range [128, 357]. Among
all engines, 25% have been degraded before 180 time cycles,
50% before 210 time cycles and 75% before 240 time cycles.

Wang et al. [12] identified that the operational settings (OS)
can be grouped into six clusters, as in Fig. 2a. The point is to
identify the OS of readings each time cycle. This procedure
results in dispersion such as the one in Fig. 2b. The evolution
of readings on sensor 1, for operational setting 1, indicates the
decay of engine’s health.

Furthermore, Wang et al. [12] claims that some of the 21
sensor contain redundancy and useless information, so they
propose to work with sensors 2, 3, 4, 7, 11, 12 and 15 only.
Indeed, after grouping the operational settings, some of theses
sensors did not show a trend as the one exhibited in Fig. 2b.
The readings of these sensors will be used as the feature set
for all classifiers.

In order to compare with the state of the art approaches,
as Tamilselvan and Wang [9], we have followed the same
methodology, creating subsets of data by clustering operational
settings. This leads to six different data sets to work with.
In Table I we provide a summary of all generated data sets.
The next steps concerns the description of the experimental
procedures used in the simulations.

IV. EXPERIMENTAL SETTINGS AND SIMULATIONS

In this section we describe the methodology that has been
followed to compare the performances of various machine
learning techniques for turbofan engine diagnosis.

A. evaluated classifiers and their configurations

There are several paradigms that can be used for pattern
classification purposes, each one with its own motivation,
assumptions and discriminative power. In our work, we aim at
evaluating different paradigms, including non-parametric and
parametric, linear and nonlinear classifiers.

The k-nearest neighbors (KNN) is a non-parametric method
that can be used for classification purposes, predicting class
labels by calculating distances (e.g. euclidean distances) from



0 50 100 150 200
time (cycles)

0

500

1000

1500

2000

2500

S
en
so
r
re
ad
in
gs

Sensor 12 Sensor 11 Sensor 3 Sensor 4

(a) Readings of sensors in unit number 1.

0 50 100 150 200
time (cycles)

540

560

580

600

620

640

S
en
so
r
1

Health State (HS)

1 2 3 4

(b) Degradation evolution of sensor 1 in unit number 1.
The Health states proposed by Tamilselvan and Wang [9].

Fig. 1: Example of sensor readings during the engine degradation.

0
10

20
30

40 0.0
0.2

0.4
0.6
0.8

0

20

40

60

80

100

(a) Clusters of operational settings (OS).

0 100 200 300
time (cycles)

45.0

45.5

46.0

S
en
so
r
10

HS
1 2 3 4

(b) Readings of sensor 1, grouped by OS 1. The
shades of red indicate the engine’s health decay.

Fig. 2: Diagrams from NASA’s C-MAPSS technical report.

the current input pattern to all examples in the training data
set. Then, the input pattern is assigned to the most frequent
class label among those associated with the k closest examples.
Another widely used non-parametric method is the Random
Forest, which is in essence an ensemble of decision trees.

The simplest type of neural network based method is the
Perceptron. It was proposed by Rosenblatt [13] and is based
on the neuron model of McCulloch and Pitts [14]. It is
basically a linear classifier with an adaptive learning rule
for weight adjustments. Among the various flavors of arti-
ficial neural network architectures, the multilayer perceptron

(MLP) network is a powerful tool for nonlinearly separable
pattern classification problems. The MLP is comprised of a
system of interconnected perceptrons, capable of representing
a nonlinear mapping between the input and output variables.
Connection weights link the inputs to output signals, through
a layer of hidden nonlinearly neurons [15].

Of particular interest to this work is the Elman recurrent
network [16], a dynamic MLP-based network in which the
outputs of the hidden neurons are fed back to the augmented
input layer. This feedback path gives rise to a short-term mem-
ory mechanism capable of handling temporal dependencies
present in the input signal.

Bayesian Gaussian classifiers use Bayes probability rule to
classify new samples as belonging to the most likely class
given the current data [17]. An unknown example is assigned
to the class with the highest score given by the maximum
value of the a posteriori probability density function. For this
purpose, one must assume that the data in separate classes
follows a Gaussian probability density model, with their own
mean vector and covariance matrix.

Support vector machines (SVM) are kernel-based classifiers
introduced by Cortes and Vapnik [18]. Originally, SVM was
designed to solve binary problems, but it can be extended
to multiclass problems in several ways using pairwise ap-
proaches, such as one-versus-one and one-versus-all, to men-
tion a few possibilities. These kernel machines provide a
powerful way of designing nonlinear classifiers by projecting
data samples into a new high-dimensional feature space in
which they can be separated by a hyperplane.

The minimal learning machine (MLM), recently proposed
by Souza Junior et al. [19] for supervised learning problems,
is a distance-based regression and classification method. In
this regard, it builds a map not between the input and output
vectors, but rather between the distance matrices of the input
and output data vectors. Data representation via distance
matrices may reveal hidden structure and relationships among
original data samples that cannot be easily seen in the original
data representation. The found hidden structures can then be



used for classification purposes.
The configurations of all the the classifiers evaluated in this

paper are listed below.
• KNN - Distance metric: euclidean; number of neighbors:

5 to 10.
• Random Forest - number of estimators: 10; maximum

depth: 10; maximum number of ramifications: 10; Meta-
algorithm: bagging.

• Perceptron LMS - η = 0.01; maximum number of
epochs: 1000; error tolerance: 10−4.

• Perceptron SGD - η0 = 0.005; maximum number of
epochs: 1000; error tolerance: 10−4; regularization: L2;
α : 0.0001.

• MLP - Cost function: cross-entropy; activation function:
hyperbolic tangent; η0 = 0.001; error tolerance: 10−5;
training algorithm: ADAM [20] and L-BFGS. [21]; num-
ber of neurons ranging from 2 to 1000; number of hidden
layers: 1 to 2;

• MLM - Number of reference points ranges from 10 to
20.

• SVM - γ ∈ [2−15, 233]; C ∈ [2−5, 215]; kernels: linear,
polynomial and RBF.

B. Experimental settings

The training runs for tuning of hyperparameter and model
selection are carried out using the train file in the given data,
while the test of the best model is made upon the test file.
All classifiers are trained on the six data sets, representing
the operational conditions of the engine. The goal is to end
up with a well-tuned model for each one of these subsets.
A simulation using 10-fold cross validation is performed to
emulate a Monte Carlo simulation on all classifiers. We used
a random search [22] with 50 candidates for hyperparameter
choosing.

The metrics used for evaluation is both accuracy and con-
fusion matrix. The configurations of the classifiers are chosen
based on these metrics and only the best results are reported
in the next section. The experiments were conducted in a PC
Intel i7 with 3.1 GHz and 8Gb of RAM running under a
Linux Ubuntu operating system installed in a solid-state drive.
We coded the experiments using the Python language and the
simulations and results are available online4.

V. RESULTS AND DISCUSSIONS

In this section the results are presented following the
chronological order in which the experiments were conducted.
Each stage of the research has risen hypothesis and important
questions that motivated the subsequent actions regarding the
design of the experiments, until we eventually reached our
ultimate goal.

The results achieved by all classifiers on the OS-1 and
OS-2 subsets of data are exhibited in Tables II and Tab.
III, respectively. Results from subsets 0S-3 to OS-6 will not
be presented due to limited space, but they lead to similar

4https://github.com/navarmn/Turbofan-Airplane-fault-prognosis

conclusions as the ones discussed presented here. Anyway,
these undiscussed results can be reached at the aforementioned
web repository. Note that we provided the results on the
training set, as a means to evaluate overfitting.

A closer look at the results on the OS-1 subset, the KNN
classifier performed 14% better on the training stage than on
the testing set. The Random Forest classifier achieved 98.51%
on the training, but achieved only 58% on the testing set,
indicating that it has been overfitted despite any precautions.
Among the Gaussian classifiers, the linear variant with same
covariance matrix computed over the whole set of training
data, performed slightly better than the Naive Bayes classifier5

and 13% better than the quadratic Gaussian classifier. Among
the linear classifiers, the perceptron trained with the Hinge
loss function performed 11% better than its similar with
the Widrow-Hoff learning rule. The MLP network achieved
62.06% of accuracy, performing similarly to the Gaussian clas-
sifiers; however, the MLP still has room left to improvements,
e.g. by increasing the number of hidden layers.

The results from the OS-2 data set, shown in Table III,
follow the same performance patterns as those achieved for the
OS-1 data set, with the Random Forest overfitting the training
data and performing poorer than other classifiers in the testing
set. The Elman has achieved the same performance, along with
MLP in its both configurations. The SVM classifier using the
RBF Kernel has achieved over 61% of accuracy.

Comparing to related results reported on literature, Ramasso
[8] reached 69.25%, using a simplified version of these data
sets, while Ramasso and Gouriveau [7] uses the same one.
In both reports, the authors based their approaches on the
HMM model, which is a probabilistic approach. Tamilselvan
and Wang [9] reached 90.72% and 95.80% on the OS-1 and
OS-2 data sets, respectively. The author used DBN which is
also a probabilistic model. As already mentioned w could not
made a fair comparison to Zhao et al. [10] since the lack of
methodological details. From now on, the results to be reported
originated from experiments designed to closely follow the
approach by Tamilselvan and Wang [9].

By analyzing the confusion matrix of the MLP classifier in
Table IV one can easily observe that most of the misclassifi-
cation involves the health state 1 (HS-1) and the health state
2 (HS-2).

The model’s misclassification rates are the following ones:
HS-1 ⇒ HS-2 (24.06%), HS-1 ⇒ HS-3 (74.06%), and HS-
1 ⇒ HS-4 (0.27)%. It should be noted, however, that to
misclassify HS-1 as either HS-2 or HS-3 does not incur in a
serious problems because HS-1, HS-2 and HS-3 are not faulty
states. The false positive rate for the MLP classifier is very
small (0.27%)

The false positive rate is 0.92%, 0.53% and 0% for HS-2,
HS-3 and HS-4 respectively. So, very few of faulty samples
are misclassified as in a Normal health state. It is much lower
than the false negative error, showing a robustness in false

5Also a Gaussian classifier with the assumption of independence between
input attributes. This is equivalent to a Mahalanobis distance-based classifier
using a diagonal covariance matrix.



TABLE II: Results from all classifiers on the OS-1 data set.
Features are the sensors reading just as reported by Wang [12]

Classifier Acc - Train (%) Acc (%) - Test
KNN 69.71±0.34 55.18±1.87
Random Forest 98.51±1.06 58.01±1.72
Gaussian Naive-Bayes 61.87±0.23 61.55±2.13
Gaussian Linear discriminant 62.42±1.06 62.35±1.25
Gaussian Quadratic discriminant 38.95±9.71 39.39±10.07
Perceptron - LMS 45.61±7.07 45.07±6.98
Perceptron - HL 56.83±3.44 56.30±3.73
MLP 63.18±0.29 62.70±1.45
MLP-2 hidden 64.27±1.13 63.15±0.17
Elman 62.27±2.15 63.06±3.78
MLM 61.15±1.04 60.97±0.23
SVM-Linear 60.13±1.15 59.15±0.54
SVM-Polynomial 62.87±1.63 61.97±1.15
SVM-RBF 61.57±2.17 62.54±2.07

Reports on literature
Ramasso [8] - HMM - 69.25
Ramasso and Gouriveau [7] - HMM + Fuzzy - 66.25
Zhao et al. [10] - SVM - 90
Tamilselvan and Wang [9] - DBN - 90.72

TABLE III: Results from all classifiers on the OS-2 data set.
Features are the sensors reading just as reported by [12]

Classifier Acc - Train (%) Acc (%) - Test
KNN 69.10±0.54 55.10±0.99
Random Forest 98.42±2.03 56.34±1.36
Gaussian Naive-Bayes 60.15±0.23 56.74±2.12
Gaussian Linear discriminant 63.15±1.06 62.93±1.36
Gaussian Quadratic discriminant 35.54±7.71 29.46±10.59
Perceptron - LMS 54.74±3.04 54.95±6.79
Perceptron - SGD 53.83±3.12 54.76±6.30
MLP 62.90±0.27 62.06±0.12
MLP-2 hidden 63.17±1.15 61.15±0.58
Elman 61.27±1.15 62.19±1.95
MLM 60.27±1.14 59.57±0.38
SVM-Linear 61.23±1.38 61.15±1.44
SVM-Polynomial 61.58±0.83 60.75±0.85
SVM-RBF 60.37±0.98 61.23±1.57

Reports on literature
Ramasso [8] - HMM - 69.25
Ramasso and Gouriveau [7] - HMM + Fuzzy - 66.25
Zhao et al. [10] - SVM - 90
Tamilselvan and Wang [9] - DBN - 90.72

positive errors. This is very important, because in a real-world
scenario scenario this type of error means the expert system
is indicating to the maintenance team that the aircraft is ready
to go, but it is not, especially if it is on HS-3 and HS-4. It
may eventually lead to several damage in both airplane and
personnel. This type of error is considered very serious and can
not be tolerated while designing a classifier for such purposes.

It should be noted that, due to the nature of the problem, the
degradation grows in magnitude from HS-1 to HS-4, passing
through all health states. There is no scenario where the
degradation happens in HS-1, for instance. What might happen
is the degradation grows faster in some engine than in others,
but always going through all this predefined states. It means
the following errors are reinterpreted as: (i) 23.62% of HS-4
classified as HS-3 is not very critical because those are faulty
stage regions, as shown in Figure 2b; so as the 79.95% of
errors from misclassification of HS-2 into HS-3, since those
are transition stages. This analysis indicates the MLP is being
conservative in its classifications and taking care for faulty

TABLE IV: The confusion matrix of the MLP network on the
OS-1 data set. The features are the sensor readings suggested
by Wang et al. [12].

Labels Predictions
HS-1 HS-2 HS-3 HS-4

HS-1 1.6% 24.06% 74.06% 0.27%
HS-2 0.92% 18.55% 79.95% 0.58%
HS-3 0.53% 5.71% 86.21% 7.55%
HS-4 0.0% 0.0% 23.62% 76.38%

classes more than the normal one.
Furthermore, another interpretation from the confusion ma-

trix in Table IV is that the classifier predicts with 76.38%
of confidence that the failure will happen in no more than
50 engine cycles. And with 86.21% of confidence the total
degradation of the engine will occur up to 125 time cycles.
18.55% of confidence in 200 engine’s time cycle and 1.6% in
more than 200 engine’s time cycle. The furthest the engine is
from its degradation, the harder is to predict it with confidence.
The classifiers also performs like an expert engineer, making
no strong assumptions without prior knowledge. Thus, this can
be a powerful indicator for the maintenance team, because
even if they do not have a precise knowledge of the time at
which the failure will occur, they have a good indicator based
on the engine’s operational cycle.

In short, by the proposed approach we were able to detect
with 86.21% of confidence the engine’s total degradation with
more than 100 operational cycles in advance, with less than
2% of false negatives. But even so, we have questioned our-
selves if there was room for improvements in the classifiers’
performances.

A detailed analysis of all the features was carried out and
different sensors were chosen, removing the ones with lower
variance. Thus, we came up with the following set of sensors’
readings as the new feature set: 1, 2, 3, 6, 8, 10, 11, 12, 13,
14, 19, 20. Then, a new round of performance comparison
involving all the classifiers was executed. The obtained results
are reported in Table V. The SVM and MLM classifiers
were not taken into consideration in this step, since they did
not show any improvements over the MLP classifier. By the
same token, the one-hidden-layered MLP classifier was chosen
instead of the two-hidden-layered architecture.

The results are slightly different than that using the sensors’
reading proposed by Wang et al. [12] and from now on our
proposed set of sensors’ readings will be the one used in this
work. In summary, the MLP classifier kept basically the same
performance, while the Elman network had a 2% improvement
in the accuracy rate. This apparently minor result then led us to
elaborate further on the design of the Elman-based classifier,
aiming to improve the performance of this classifier even
further.

The confusion matrices for the MLP and Elman networks
are reported in Figures VI and VII, respectively. As expected,
the performance pattern follows basically the same as before.
Misclassifications tend to occur between states HS-2 and HS-
3. The Elman network misclassified HS-1 and HS-2 as HS-3



TABLE V: Results from all classifiers on the OS-1 data
set (testing data). Features are the readings from sensors
[1,2,3,6,8,10,11,12,13,14,19,20]

Classifier Acc after (%) Acc before (%)
KNN 57.90±0.27 55.10±0.99
Random Forest 60.51±2.03 56.34±1.36
Gaussian Naive-Bayes 58.28±3.23 56.74±2.12
Gaussian Linear discriminant 63.61±1.33 62.93±1.36
Gaussian Quadratic discriminant 61.39±2.23 29.46±10.59
Perceptron - LMS 56.40±6.25 54.95±6.79
Perceptron - SGD 56.48±2.81 54.76±6.30
MLP 63.70±0.20 62.06±0.12
Elman 65.58±0.38 64.07±1.15

Reports on literature
Ramasso [8] - HMM - 69.25
Ramasso and Gouriveau [7] - HMM + Fuzzy - 66.25
Zhao et al. [10] - SVM - 90
Tamilselvan and Wang [9] - DBN - 90.72

TABLE VI: The confusion matrix of the MLP classifier on the
OS-1 data set. The selected features are the sensors’ readings
[1,2,3,6,8,10,11,12,13,14,19,20]

Labels Predictions
HS-1 HS-2 HS-3 HS-4

HS-1 3.16% 38.05% 58.79% 0%
HS-2 3.84% 26.37% 69.79% 0%
HS-3 0.74% 9.88% 83.55% 5.82%
HS-4 0.0% 0.0% 18.07% 81.93%

with higher rates. However, it should be noted that the power
of this network comes from its short-term memory ability.
Thus, using standard (i.e. static) classification methodology
for designing a recurrent network is not adequate to handle
time series data.

Thus, we decided to follow a temporal classification ap-
proach with the hope of improving the performance of the
Elman-based classifier. This works in two simple steps. Firstly,
we collect the classification results of the Elman network over
a predefined time window, e.g. 20 time steps. Then, the final
classifier’s decision is taken as the most frequent class label
occurring within the time window. This simple change has
improved considerably the overall accuracy rate of the Elman
network since it was able to capture the temporal dependencies
leading to the increase of the degradation state of the engine.

In Figure 3 the accuracy of the Elman network as a function
of the time window is exhibited. With a time window of
size 40, this temporal classifier achieved 95% of accuracy, a
number equivalent to that reported by Tamilselvan and Wang
[9], but using a much simpler approach. The temporal Elman-
based classifier was then selected as the best performing one
among all the classifiers evaluated in this research.

As a final remark, we arrived at the following conclusion.
We tried to simplify too much a complex dynamic problem by
adopting standard static classification methodology to handle
it. Even well-known powerful nonlinear classifiers, such as
the SVM and the MLP, performed poorly in identifying the
health states of a turbofan engine. At the end, a simple but ef-
ficient approach using a simple recurrent network consistently
outperformed all static classifiers.

TABLE VII: The confusion matrix of Elman on
OS-1 subset of data. The features are the sensors
[1,2,3,6,8,10,11,12,13,14,19,20]

Labels Predictions
HS-1 HS-2 HS-3 HS-4

HS-1 1.68% 17.43% 77.05% 3.81%
HS-2 1.34% 15.52% 78.98% 4.15%
HS-3 0.66% 10.38% 77.84% 11.10%
HS-4 0.04% 3.26% 41.10% 55.59%

Fig. 3: Accuracy of Elman classifier, on subset of OC-1,
ranging the number of iterations from 1 to 125.

0 20 40 60 80 100 120
Number of iterations

60

70

80

90

100

Ac
cu

ra
cy
 (%

)

VI. CONCLUSIONS

In this paper, we reported a comprehensive performance
comparison involving multiple classifiers for detection of the
health states of turbofan engines, on a benchmarking data set.
By following the methodology of other reports on literature we
were able to design experiments and evaluate a considerable
number of classification paradigms, including neural networks
and kernel methods.

The best performing classifier was based on the Elman
recurrent network. This system was able to detect engine’s
total degradation with 125 step in advance, with 86.21%
of confidence, with less than 2% of false negative rates,
i.e., engine’s faulty conditions identified as normal. By using
slightly modification in the Elman neural network prediction
we could reach over 95% of accuracy for engine’s health
state identification, similar to the state of art approach of
Tamilselvan and Wang [9], using a much simpler approach.

Currently, we are evaluating deep learning based architec-
tures, e.g. LSTM-based deep networks, to design efficient
temporal classification strategies on the same task.

ACKNOWLEDGMENTS

This study was financed by the following Brazilian research
funding agencies: CAPES (Finance Code 001) and CNPq
(grant 309451/2015-9).

REFERENCES

[1] E. Ramasso and A. Saxena, “Performance benchmarking and analysis
of prognostic methods for cmapss datasets.” International Journal of
Prognostics and Health Management, vol. 5, no. 2, pp. 1–15, 2014.



[2] A. Saxena, K. Goebel, D. Simon, and N. Eklund, “Damage propagation
modeling for aircraft engine run-to-failure simulation,” in Proceedings
of the 2008 IEEE International Conference on Prognostics and Health
Management (PHM’2008), 2008, pp. 1–9.

[3] D. K. Frederick, J. A. DeCastro, and J. S. Litt, “User’s guide for the
commercial modular aero-propulsion system simulation (C-MAPSS),”
NASA Glenn Research Center, Tech. Rep. NASA/TM–2007-215026,
2007.

[4] A. K. Jardine, D. Lin, and D. Banjevic, “A review on machinery di-
agnostics and prognostics implementing condition-based maintenance,”
Mechanical Systems and Signal Processing, vol. 20, no. 7, pp. 1483–
1510, 2006.

[5] A. Heng, S. Zhang, A. C. Tan, and J. Mathew, “Rotating machinery
prognostics: State of the art, challenges and opportunities,” Mechanical
Systems and Signal Processing, vol. 23, no. 3, pp. 724–739, 2009.

[6] M. Pecht, “A prognostics and health management for information
and electronics-rich systems,” in Engineering Asset Management and
Infrastructure Sustainability. Springer, 2012, pp. 19–30.

[7] E. Ramasso and R. Gouriveau, “Prognostics in switching systems: Evi-
dential markovian classification of real-time neuro-fuzzy predictions,” in
Proceedings of the 2010 IEEE International Conference on Prognostics
and Health Management (PHM’2010), 2010, pp. 1–10.

[8] E. Ramasso, “Contribution of belief functions to hidden markov models
with an application to fault diagnosis,” in Proceedings of the 2009 IEEE
International Workshop on Machine Learning for Signal Processing
(MLSP’2009, 2009, pp. 1–6.

[9] P. Tamilselvan and P. Wang, “Failure diagnosis using deep belief learning
based health state classification,” Reliability Engineering & System
Safety, vol. 115, pp. 124–135, 2013.

[10] D. Zhao, R. Georgescu, and P. Willett, “Comparison of data reduction
techniques based on SVM classifier and SVR performance,” in Signal
and Data Processing of Small Targets 2011, vol. 8137. International
Society for Optics and Photonics, 2011, p. 81370X.

[11] E. Ramasso and R. Gouriveau, “Remaining useful life estimation by
classification of predictions based on a neuro-fuzzy system and theory
of belief functions,” IEEE Transactions on Reliability, vol. 63, no. 2,
pp. 555–566, 2014.

[12] T. Wang, J. Yu, D. Siegel, and J. Lee, “A similarity-based prognostics
approach for remaining useful life estimation of engineered systems,” in
Proceedings of the 2008 IEEE International Conference on Prognostics
and Health Management (PHM’2008), 2008, pp. 1–6.

[13] F. Rosenblatt, “The perceptron: a probabilistic model for information
storage and organization in the brain.” Psychological review, vol. 65,
no. 6, p. 386, 1958.

[14] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent
in nervous activity,” The bulletin of mathematical biophysics, vol. 5,
no. 4, pp. 115–133, 1943.

[15] S. Haykin, “Neural networks: principles and practice,” Bookman, 2001.
[16] J. L. Elman, “Finding structure in time,” Cognitive science, vol. 14,

no. 2, pp. 179–211, 1990.
[17] N. M. Nasrabadi, “Pattern recognition and machine learning,” Journal

of electronic imaging, vol. 16, no. 4, p. 049901, 2007.
[18] C. Cortes and V. Vapnik, “Support Vector Networks,” Machine Learning,

vol. 20, no. 3, pp. 273–297, 1995.
[19] A. H. de Souza Júnior, F. Corona, G. A. Barreto, Y. Miche, and

A. Lendasse, “Minimal learning machine: a novel supervised distance-
based approach for regression and classification,” Neurocomputing, vol.
164, pp. 34–44, 2015.

[20] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[21] M. F. Møller, “A scaled conjugate gradient algorithm for fast supervised
learning,” Neural Networks, vol. 6, no. 4, pp. 525–533, 1993.

[22] J. Bergstra and Y. Bengio, “Random search for hyper-parameter opti-
mization,” Journal of Machine Learning Research, vol. 13, no. Feb, pp.
281–305, 2012.


