
A Chaotic Grey Wolf Optimizer Applied to
Condition-Based Maintenance Optimization

Leonardo Ramos Rodrigues
Electronics Engineering Division

Aeronautics Institute of Technology - ITA
São José dos Campos-SP, Brazil, 12228-900

Email: leonardolrr2@fab.mil.br

João Paulo Pordeus Gomes
Department of Computer Science

Federal University of Ceará - UFC
Fortaleza-CE, Brazil, 60440-554

Email: jpaulo@dc.ufc.br

Abstract—The Grey Wolf Optimizer (GWO) algorithm is a
nature-inspired population-based metaheuristic that simulates
the social behavior observed in a grey wolf pack. GWO has
been successfully applied to different optimization problems. In
this paper, we propose a chaotic version of GWO, denoted by
CGWO, that uses a chaotic variable to define the number of
wolves in the pack that will act as leaders, i.e. the number of
wolves that guide the hunting process in each iteration of the
algorithm. The proposed algorithm is used to find the optimal
maintenance scope for a series-parallel system. We assume
that a Prognostics and Health Management (PHM) system is
available and provides the degradation level and the Remaining
Useful Life (RUL) prediction for each component. The goal
is to find the maintenance scope that minimizes the expected
total cost per cycle until the next maintenance intervention.
The performance of the proposed model is compared with the
performance of the original GWO and the well-studied Ant
Colony Optimization algorithm (ACO). Different chaotic maps
were tested. The results show that the proposed model presented
a competitive performance.

Keywords—Grey Wolf Optimizer; Chaotic Maps; Condition-
Based Maintenance; Maintenance Optimization

I. INTRODUCTION

Bio-inspired optimization algorithms have become very popu-
lar due to their capability of finding close-to-optimal solutions
in an acceptable amount of time, even for difficult optimiza-
tion problems. Methods such as Particle Swarm Optimization
(PSO) [1], Genetic Algorithms (GA) [2] and Ant Colony Opti-
mization (ACO) [3] are among the most common alternatives
to classical gradient-based optimization methods. Although
such methods reached remarkable results, no method was able
to outperform the existing ones in all optimization problems
[4]. As a result, proposing new metaheuristic algorithms and
developing improvements for the existing ones is still an
active research topic [5]. Also, the large number of existing
metaheuristic algorithms allows researchers to develop hybrid
methods that take into account the advantages of different
metaheuristics to build solutions for complex problems [6],
[7].

In [8], the authors introduced a new bio-inspired technique,
named Grey Wolf Optimizer (GWO). This algorithm is based
on the leadership hierarchy and the hunting mechanisms
observed in grey wolves. The GWO algorithm is a competitive
alternative for the solution of different optimization problems
such as optimal power flow problems [9], feature selection
problems [10], human recognition [11], among others.

Although the GWO algorithm is a recently proposed meta-
heuristic, many variants have been proposed aiming at im-
proving the performance of the algorithm in different aspects.
In [10], the authors propose a binary version of GWO. The
performance of the proposed variant is assessed using classifi-
cation benchmark problems from a public data repository. The
binary version presented good results when compared to the
results obtained with a Particle Swarm Optimization (PSO)
and a Genetic Algorithm (GA). In [12], the authors propose a
modified version of GWO in which a statistical mean param-
eter is used to modify the original mathematical formulation
of GWO to improve the balance between the intensification
and the diversification capabilities of the algorithm.

Aiming at improving the convergence rate of GWO, a hybrid
version of GWO using an elite opposition-based learning
strategy was proposed in [13]. In [14], the authors proposed a
hybrid PSO-GWO algorithm to balance the local and global
search capabilities of GWO. Another hybrid version of GWO
was presented in [15], where the authors combined GWO with
the Cuckoo Search (CS) algorithm in order to improve the
performance of GWO in high-dimensional problems.

Most of the evolutionary algorithms include in their math-
ematical formulation a parameter that is randomly changed
during the execution of the method. A study on the impact
of using chaotic parameters instead of random parameters in
evolutionary algorithms is presented in [16]. Many works have
been published reporting the successful use of chaotic mech-
anisms in different algorithms such as Symbiotic Organisms
Search (SOS) [17], Firefly algorithm [18], Whale Optimiza-
tion [19], and Teaching-Learning Based Optimization (TLBO)
[20].

Chaotic versions of GWO have also been investigated re-
cently. The first variant of GWO that incorporated a chaotic
mechanism was proposed in [21], where the authors intro-
duced a Chaotic Local Search (CLS) that is conducted at the
end of each iteration of the algorithm. A search neighborhood
centered at the current position of the wolf with the best fitness
value is considered, and the size of the search neighborhood is
narrowed during the execution of the algorithm. Tests using
twelve chaotic maps and several benchmark functions were
conducted, and the authors concluded that the use of chaotic
mechanisms improved the balance between the diversification
and intensification capabilities of GWO, improving its perfor-
mance.

In [22], the authors used a different strategy to include a
chaotic mechanism in GWO. Aiming at improving the al-
gorithm capability to escape from local optima, they replaced
the random procedure used to define the control parameters
in the original GWO with a chaotic sequence. The authors
concluded that, due to the pseudo-randomness and the ergod-
icity of chaotic variables, this strategy allows the algorithm to
alternate between diversification and intensification, resulting
in a better performance.

In this paper, we propose a new strategy to introduce a chaotic
mechanism into the GWO algorithm, denoted by CGWO.
In the proposed version, instead of using a fixed number
of leaders during the execution of the algorithm, a chaotic
variable is used in order to define, in each iteration, the
number of wolves that are considered as leaders in the pack.
The proposed model can be used with other modified versions
of GWO in a straightforward way.

The remaining sections of this paper are organized as follows.
Section II presents the original version of GWO. Section
III describes the proposed version of GWO. Section IV
presents the maintenance scope definition problem. Section
V illustrates the application of the proposed version of GWO
in a numerical example of the maintenance scope definition
problem. Concluding remarks and opportunities for future
research are presented in section VI.

II. GREY WOLF OPTIMIZER

The Grey Wolf Optimizer (GWO) algorithm is a population-
based metaheuristic inspired by the behavior of grey wolves,
originally proposed in [8]. The algorithm simulates both the
leadership hierarchy and the hunting mechanisms observed in
grey wolves in nature. Grey wolves often prefer to live in a
packs with a well-defined hierarchy, as presented in Fig. 1.

Figure 1. Hierarchy of a grey wolf pack [8].

The social hierarchy in a pack contains four levels that are
described as follows:

• The alpha wolves (α) are at the top of the hierarchy. They
are the leaders of the pack and are responsible for making
decisions that are followed by all other wolves. These
decisions are related to hunting time, prey selection,
sleeping place, etc.

• Beta wolves (β) are in the second level in the pack
hierarchy. They coordinate the lower-level wolves, acting
as advisors of the alphas and helping them in their
activities.

• Delta wolves (δ) are in the third level of the hierarchy.
Their main function in the pack is to execute the deci-
sions of the leaders. They are responsible for performing
different tasks such as watching the territory, helping
the alphas and betas during a hunt, taking care of weak
wolves, among others.

• In the lowest hierarchy level are the omega wolves (ω).
Omega wolves submit to all the other dominant wolves.

The GWO algorithm model considers not only the social
hierarchy observed in a pack, but also the group hunting
behavior. The grey wolf hunting procedure can be divided
into the following three main phases [23], [24]:

• Tracking, chasing, and approaching the prey.
• Pursuing, encircling, and harassing the prey.
• Attacking the prey.

The social hierarchy and the hunting behavior described above
are modeled to optimize the GWO algorithm. First, a group
of candidate solutions for the optimization problem under
consideration is randomly generated in the search space. Then,
the best, the second best, and the third best solutions in the
initial population are identified as the α, β, and δ wolves,
respectively. Then, the positions of the wolves are updated as
a function of their distances to the α, β, and δ wolves, aiming
at getting closer to the prey and encircle it, as explained in
the following sections.

A. GWO Mathematical Model

Let M be the number of wolves in the pack. Also, let Xi =
[x1, x2, . . . , xK] be the vector that defines the position of the
i-th wolf. The model used to update the position of each wolf
based on the encircling behavior is presented in Eqs. (1) and
(2).

D = |C ·Xp(t)−X(t)| (1)
X(t+ 1) = Xp(t)−A ·D (2)

where t is the current iteration, X(t) is the current position of
the wolf, and Xp(t) is the position of the prey. A and C are
vectors computed according to Eqs. (3) and (4), respectively.

A = 2a · r1 − a (3)
C = 2 · r2 (4)

where r1 and r2 are random vectors in [0,1], and a is a vector
whose components decrease linearly from 2 to 0 during the
execution of the algorithm.

Figure 2 illustrates the encircling behavior of the wolves while
hunting in a 2D scenario. A wolf updates its position based
on the estimated position of the prey. A wolf may move to
different new positions based on vectors A and C. In the
example presented in Fig. 2, the position of a grey wolf that
is originally in point (xW , yW) is updated considering the
estimated position of the prey, denoted by (xP , yP). Different
values for vectors A and C allows the wolf to move to

different new locations. Vectors r1 and r2 allow the wolf to
move to any point in the indicated area.

Figure 2. Encircling behavior of a pack.

Equations (1) and (2) indicate that the positions of the wolves
are updated based on the position of the prey. However,
the exact position of the prey (i.e. the optimal solution of
the problem under consideration) is unknown. As mentioned
earlier, the hunting procedure is guided by the α, β and δ
wolves. In order to model this characteristic, GWO assumes
that the α, β and δ wolves, which are the candidate solutions
with the best fitness values, have more accurate knowledge
on the location of the prey. Thus, the positions of the wolves
are updated according to the position of the α, β and δ
wolves, as shown in Eqs. (5) to (11). Figure 3 illustrates the
procedure to update the position of the wolves. A pseudo-code
to implement the GWO algorithm is presented in Algorithm
1.

Dα = |C1 ·Xα −X| (5)
Dβ = |C2 ·Xβ −X| (6)
Dδ = |C3 ·Xδ −X| (7)
X1 = Xα −A1 ·Dα (8)
X2 = Xβ −A2 ·Dβ (9)
X3 = Xδ −A3 ·Dδ (10)

X(t+ 1) =
X1 +X2 +X3

3
(11)

III. CHAOTIC GWO

As mentioned earlier, in the original GWO algorithm the
hunting process is always guided by the three best wolves
in the pack. However, when this strategy is adopted, if the
three best wolves are close to each other in the first iterations,
the exploration capability of the algorithm is reduced and its
capability of escaping from local optima is affected.

In the proposed algorithm, for each iteration t, the number
of wolves that are considered as leaders, denoted by n(t), is
computed according to Eq. (12).

n(t) = round
[
M · g(t)

2

]
(12)

Figure 3. Position update in the GWO algorithm [24].

Algorithm 1: A pseudo code to implement the GWO
algorithm.

1: Initialize the population Xi, for i = 1, . . . ,M
2: Initialize a = 2
3: Initialize vectors A and C
4: Compute the fitness value of each wolf
5: Xalpha = the wolf with the best fitness value
6: Xbeta = the wolf with the second best fitness value
7: Xdelta = the wolf with the third best fitness value
8: While t < max. number of iterations do
9: For each wolf i do

10: Update its position according to Eq. (11)
11: End For
12: Update a, A, and C
13: Compute the new fitness value of each wolf
14: Update Xα, Xβ , and Xδ

15: increment the iteration number (t = t+ 1)
16: End While
17: Return Xα =0

where M is the number of wolves in the pack, and g(t) is a
chaotic variable in the range [0,1].

Chaotic mathematical sequences are ruled by iterated func-
tions that return an output value in each iteration. The se-
quence of values generated by a chaotic function is called an
orbit. An orbit is represented by a chaotic map that maps an
input value in output value. Chaotic maps have the following
characteristics [16]:

• The rule of generating the sequence of numbers is
deterministic;

• The orbits are aperiodic;
• The orbits are bounded (the chaotic variables assume a

value between an upper and a lower limit); and
• The sequence has a sensitive dependence on the initial

condition.

In the proposed model, the position of each wolf is not

updated according to Eq. (11). Instead, it is updated according
to Eq. (13).

X(t+ 1) =

n(t)∑
v=1

Xv

n(t)
(13)

where

Xv = Xj(t)−Aj ·Dj (14)

where Xj(t) is the position of the wolf with the j-th best
fitness value in iteration t, Aj is a random vector, and Dj is
computed according to Eq. (15).

Dj = |Cj ·Xj(t)−X| (15)

where Cj is a random vector, and X is the current position
of the wolf.

IV. MAINTENANCE SCOPE OPTIMIZATION

Consider a series-parallel system composed of a set of NP
components. We assume that the system has NS subsys-
tems connected in series. Each subsystem i has ni identical
components connected in parallel. A system level failure
occurs when all the components belonging to a subsystem
fail simultaneously.

Let S = [s1, . . . , sNP] be a maintenance scope vector.
Each element si of the maintenance scope vector, with i =
{1, . . . , NP }, is a binary variable that assumes value 1 if
component i is maintained and zero otherwise.

A fixed maintenance cost CF is incurred whenever at least
one component is maintained. A preventive maintenance cost
C

(i)
P is incurred whenever a preventive maintenance task is

performed in component i. A corrective maintenance cost
C

(i)
C is incurred whenever a corrective maintenance task is

performed in component i.

The following assumptions are also made:

• The system operates in cycles with a fixed interval.
Maintenance activities are carried out only at the end
of each cycle.

• Maintenance activities always bring the component to the
“as good as new” condition.

• A component fails whenever its degradation level reaches
a known failure threshold level FT .

• A preventive maintenance intervention is required if the
probability of the system finishing the next cycle without
failing is lower than a safety level SL.

The problem consists in finding the maintenance scope S that
minimizes the expected total cost per cycle, TC(S), until the
next maintenance activity is performed. The steps to compute
TC(S) are presented in section IV-B.

A. Degradation Process

Let zi(t) be the expected degradation level of component i at
the end of cycle t. The increment in the degradation level zi
of each component i in each cycle is a random variable that
follows a gamma distribution. The PDF (probability density
function) of the gamma distribution is presented in Eq. (16).

f(x|w, θ) =
xw−1 · exp−x

θ

Γ(w) · θw
;x,w, θ > 0 (16)

where w is the shape parameter and θ is the scale parameter
of the gamma distribution. Γ(w) is the Gamma function
evaluated at w, as presented in Eq. (17).

Γ(w) =

∞∫
x=0

xw−1 · exp−xdx (17)

B. Maintenance Cost Model

As mentioned earlier, the optimization problem consists in
finding the maintenance scope S that minimizes the expected
total cost per cycle until the next maintenance intervention.
It is assumed that the next maintenance intervention is per-
formed when the system-level failure probability reaches the
value 1 − SL. The expected total cost per cycle, TC(S), is
computed according to Eq. (18).

TC(S) =
M(S)

L(S)
(18)

where L(S) is the expected number of cycles the system will
operate until it reaches the safety level SL if a maintenance
activity with scope S is carried out, and M(S) is the total
maintenance cost associated with the maintenance scope S.

1) Computation of M(S): The total maintenance cost asso-
ciated with a maintenance activity with scope S is computed
according to Eq. (19).

M(S) = CF +

NP∑
i=1

si ·
[
δi · C(i)

C + (1− δi) · C(i)
P

]
(19)

where δi is a binary variable that assumes value 1 if a cor-
rective maintenance intervention is performed in component
i and zero otherwise.

2) Computation of L(S): In order to compute the expected
number of cycles the system will run until it reaches the safety
level if a maintenance activity with scope S is carried out,
the first step is to update the degradation levels of maintained
components. It is assumed that maintenance activities always
bring the component to the “as good as new” condition. So,
the degradation levels of maintained components are set to
zero. The degradation levels of the remaining components are
not affected.

Then, the RUL distribution for each component is computed.
Let zi(0) be the current degradation level of component i. Let
pi(j) be the probability that component i will fail at the end of

the j-th cycle from now. The RUL distribution of component
i is given by Eq. (20) [25].

pi(j + 1) = p{F (x|w, θ) ≥ FT − zi(j)|zi(j) < FT} (20)

where F (x|w, θ) is the CDF (cumulative distribution function)
of the gamma distribution, pi(j) is the probability that a
failure in component i will be detected at the end of the j-
th cycle from now, zi(j) is the expected degradation level of
component i at the end of the j-th cycle from now, and FT
is the failure threshold.

If component i fails, then pi(0) = 1 and pi(j) = 0 ∀j > 0. If
component i is functioning, then pi(0) = 0 and pi(j) ∀j > 0
can be recursively computed using Eq. (21).

pi(j + 1) =

[
1−

j∑
v=0

pi(v)

]
· Ω (21)

where

Ω = p [F (x|j · w, θ) ≥ FT − zi(j)] (22)

The next step is to compute the RUL distribution for each
subsystem. Let pk(j) be the probability that subsystem k will
fail at the end of the j-th cycle from now. Subsystem fails
when all components belonging to it fail simultaneously. The
failure probability of subsystem k can be obtained using Eq.
(23).

pk(j) =
∑
v∈V

[∏
i∈v

pi(j)

]
(23)

Let ps(j) be the probability that a system-level failure will
occur at the end of the j-th cycle from now. Once the failure
probability of each subsystem is known, the RUL distribution
of the whole system can be obtained using Eq. (24).

ps(j) = 1−
NS∏
k=1

[1− pk(j)] (24)

Finally, the expected number of cycles that the system will
operate until it reaches the safety level SL if a maintenance
activity with scope S is carried out can be obtained according
to Eq. (25).

L(S) = minj| [ps(j) > 1− SL]− 1 (25)

V. NUMERICAL EXPERIMENT

This section presents a numerical example to illustrate the
application of the proposed chaotic version of GWO to the
maintenance scope definition problem. In this example, we
consider a series-parallel system with 20 components. We
assume that components in the same subsystem are identi-
cal, and components in different subsystems have different
characteristics. The increment in the degradation level zi of

each component i during each cycle is a random variable that
follows a gamma distribution. Table I shows the parameters of
the gamma distributions and the preventive maintenance cost
CP of each component. Figure 4 shows the block diagram for
the system under consideration.

Table I
SYSTEM DATA.

Subsystem 1 2 3 4 5
ni 6 2 5 3 4
w 3.5 3.0 2.5 2.5 3.0
θ 2.5 2.0 2.0 1.5 1.5
CP 30 40 50 55 60

Figure 4. System block diagram.

A fixed maintenance cost CF of 20 is used. The corrective
maintenance cost CC is assumed to be 2.5 times the corre-
sponding preventive maintenance cost CP of each component.
The failure threshold level FT and the safety level SL are
100 and 0.95, respectively.

Table II shows the current degradation level of each compo-
nent. It can be seen that three components (B, D, and J) have
failed. However, the system as a whole is still functioning
since all subsystems have at least one functional component.
In this situation, maintenance interventions are mandatory for
the failed components, while preventive maintenance inter-
ventions can be performed in the remaining components to
reduce the expected maintenance cost per cycle.

Table II
CURRENT DEGRADATION LEVEL.

Component Degradation Component Degradation
A 9 K 33
B 100 L 51
C 23 M 38
D 100 N 43
E 41 O 58
F 56 P 62
G 25 Q 41
H 55 R 44
I 25 S 23
J 100 T 42

A. Chaotic Maps

Different chaotic maps are reported in the literature. Since
different maps may lead to different results, a set of chaotic
maps must be investigated to find the best one for the problem
under consideration. In this paper, nine different chaotic maps
are considered. These maps are presented in Table III.

Table III
CHAOTIC MAPS

Number Name Equation
1 Logistic map z(t+ 1) = 4z(t) · (1− z(t))

2 PWLCM z(t+ 1) =

{
z(t)/0.7 , 0 < z(t) ≤ 0.7

(1− z(t)) · (1− 0.7) , 0.7 < z(t) ≤ 1

3 Sine map z(t+ 1) = sin(πz(t))

4 Tent map z(t+ 1) =

{
z(t)/0.4 , 0 < z(t) ≤ 0.4

(1− z(t))/0.6 , 0.4 < z(t) ≤ 1

5 Bernoulli map z(t+ 1) =

{
z(t)/0.6 , 0 < z(t) ≤ 0.6

(z(t)− 0.6)/0.4 , 0.6 < z(t) < 1

6 Chebyshev map z(t+ 1) = cos(0.5cos−1z(t))
7 ICMIC z(t+ 1) = sin(70/z(t))
8 Cubic map z(t+ 1) = 2.59z(t) · (1− z2(t))
9 Singer map z(t+ 1) = 1.073[7.86z(t)− 23.31z2(t) + 28.75z3(t)− 13302875z4(t)]

B. Simulation Results

The results obtained with the proposed CGWO using the
different chaotic maps are compared with the performance
obtained with the original GWO algorithm, which is used
as a reference baseline. The performance obtained with the
Ant Colony Optimization (ACO) is also considered. The ACO
algorithm is a well-known metaheuristic that has been used
in combinatorial optimization problems with a competitive
performance [26], [13]. In this paper, the performance com-
parison is made in terms of the quality of solutions provided
by each algorithm.

For each algorithm, a Monte Carlo simulation with 30 runs
was carried out. Based on experimental observations, a pop-
ulation size of 50 wolves and a maximum number of 200
iterations were considered for GWO and CGWO. For the
ACO algorithm, a colony with 50 ants and a pheromone
evaporation rate of 5% were considered. A maximum number
of 200 iterations were used for the ACO algorithm so that the
number of objective function evaluations is the same for all
the methods. The average result, the variance, the best result,
and the average simulation time observed for each algorithm
are presented in Table IV.

Table IV
SIMULATION RESULTS.

Algorithm Average Variance Best Simulation
Time (s)

ACO 516.3 2.24 512.8 3.96
GWO 515.5 2.16 508.8 3.61
CGWO (Logistic) 516.7 2.17 510.0 3.70
CGWO (PWLCM) 514.1 2.00 507.4 3.63
CGWO (Sine) 514.3 4.92 507.4 3.65
CGWO (Tent) 515.7 2.45 508.8 3.54
CGWO (Bernoulli) 511.2 2.37 507.4 3.62
CGWO (Chebyshev) 510.4 3.08 507.4 3.57
CGWO (ICMIC) 516.0 2.38 507.4 3.51
CGWO (Cubic) 515.1 3.08 508.8 3.57
CGWO (Singer) 515.8 2.46 507.4 3.58

The original GWO and most of the proposed variants out-
performed the ACO in terms of average response. The only
exception was CGWO with the Logistic chaotic map. This
result validates the use of GWO as a good alternative for
the problem under consideration. The best result in terms of
average response was obtained with the Chebyshev chaotic
map in CGWO.

The average response obtained with the original GWO was
better than 4 out of the 9 CGWO variants. However, in terms
of best result, most of the variants outperformed the original
GWO or presented the same performance. Again, the only
exception was CGWO with the Logistic chaotic map. The
ACO presented the worst performance in terms of best result.

In terms of average simulation time, the GWO and all the
CGWO variants outperformed the ACO algorithm. Five vari-
ants of CGWO presented a smaller average simulation time in
comparison with the original GWO. However, the differences
in simulation time observed in the different CGWO versions
were small.

C. Statistical Test

This section presents the results of a statistical test conduct
to check whether the performance presented by each chaotic
variant of GWO is statistically different from the performance
obtained with the original version of GWO.

Let X and Y be two normally distributed random variables.
The mean and the variance of X are µX and σ2

X , respectively.
Similarly, the mean and the variance of Y are µY and σ2

Y ,
respectively. Also, assume that σ2

X ≥ σ2
Y .

In order to test whether X and Y have different means, the
first step is to conduct an F-Test to test whether X and Y can
be assumed to have the same variance. The null hypothesis
H0 for the F-Test is that σX = σY . The statistics Fcalc is
computed according to Eq. (26).

Fcalc =
σ2
X

σ2
Y

(26)

The statistics Fcalc is compared with a critical value Fcrit.
The critical value Fcrit is computed according to Eq. (27).
The null hypothesis H0 can be rejected if Fcalc > Fcrit.

F (Fcrit; dX , dY) = 1− α (27)

where F (·) is the cumulative Fisher-Snedecor distribution,
α is the confidence level for the test, dX is the number of
degrees of freedom associated to X , and dY is the number of
degrees of freedom associated to Y .

A T-Test is then conducted to test whether X and Y can be
assumed to have different means. The result of the F-Test is
used to define how to compute the statistics for the T-Test.
If the null hypothesis of the F-Test is rejected (i.e. X and
Y have different variances), then the statistics Tcalc for the
T-Test is computed according to Eq. (28). Otherwise, Tcalc is
computed according to Eq. (29).

Tcalc =
µX − µY√
σ2
X

nX
+

σ2
Y

nY

(28)

Tcalc =
µX − µY√

σ2
(

1
nX

+ 1
nY

) (29)

where nX and nY are the number of samples used to compute
the means and variances of X and Y , respectively, and σ2 is
computed according to Eq. (30).

σ2 =
(nX − 1)σ2

X + (nY − 1)σ2
Y

nX + nY − 2
(30)

Again, the statistics Tcalc is compared with a critical value
Tcrit. The critical value Tcrit is computed according to Eq.
(31). The null hypothesis H0 can be rejected if Tcalc > Tcrit.

T (Tcrit;n) = 1− alpha/2 (31)

where T (·) is the cumulative Student’s t distribution, and n is
the number of degrees of freedom computed using Eq. (32).

n =

[(
σ2
X

nX
+

σ2
Y

nY

)]2
(
σ2
X
nX

)2

nX−1 +

(
σ2
Y
nY

)2

nY −1

(32)

Table V shows the results obtained from the T-Test for each
CGWO algorithm. A confidence level α of 5% was used in
every test. The average result obtained with the original GWO
and with each chaotic version are presented again for clarity
purposes.

Table V
SIMULATION RESULTS.

Algorithm Average T-Test Result
GWO 515.5 N/A
CGWO (Logistic) 516.7 H0 rejected
CGWO (PWLCM) 514.1 H0 rejected
CGWO (Sine) 514.3 H0 rejected
CGWO (Tent) 515.7 H0 not rejected
CGWO (Bernoulli) 511.2 H0 rejected
CGWO (Chebyshev) 510.4 H0 rejected
CGWO (ICMIC) 516.0 H0 not rejected
CGWO (Cubic) 515.1 H0 not rejected
CGWO (Singer) 515.8 H0 not rejected

The null hypothesis of the T-Test could not be rejected in
four tests (Tent map, ICMIC map, Cubic map, and Singer
map). It means that these maps had a performance close to the
original GWO algorithm. The remaining five CGWO versions
provided a significant difference in comparison with GWO.
Four of them (PWLCM map, Sine map, Bernoulli map, and

Chebyshev map) presented a significantly better performance.
The Logistic map was the only chaotic map that presented a
significantly worse performance.

VI. CONCLUSION

This paper presented a modified version of the Grey Wolf
Optimizer (GWO) algorithm, denoted by CGWO. The pro-
posed method adds a chaotic variable to the mathematical
formulation of GWO to vary the number of wolves that guides
the hunting process during the execution of the algorithm.
This strategy differs from most models proposed in the
literature. With a dynamic number of leaders in each iteration
of the algorithm, wolves with poor solutions may influence
other wolves.

A numerical example of the application of the proposed
CGWO to solve the maintenance scope definition problem is
presented. Nine different chaotic maps were considered. The
performance of CGWO was compared with the performance
of the original GWO and the Ant Colony Optimization
algorithm (ACO) in terms of the average solution. Four
chaotic versions provided a significantly better performance
in comparison with the original GWO. The Logistic map was
the only chaotic version that was outperformed by the original
GWO with a significant difference.

The algorithm proposed in this paper differs from previously
modified versions of GWO found in the literature because it
does not add a chaotic behavior in the control parameters.
Instead, it changes the original GWO algorithm by changing
the number of leaders in the pack during the execution of the
algorithm. The proposed method can be combined with other
modified versions already proposed in a straightforward way.

Future research may extend the scope of this paper by inves-
tigating the performance of the CGWO algorithm in multi-
objective optimization problems. Another way to extend the
scope of this paper is to investigate the performance of CGWO
with other chaotic maps. The performance of the proposed
CGWO combined with other GWO variants proposed in the
literature can also be investigated.

ACKNOWLEDGMENTS

The authors would like to thank the Brazilian National Coun-
cil for Scientific and Technological Development - CNPq
(grants 423023/2018-7 and 305048/2016-3).

REFERENCES

[1] J. Kennedy and R. C. Eberhart, “Particle swarm optimization,” in
Proceedings of the IEEE International Conference on Neural Networks,
1995, pp. 1942–1948.

[2] J. H. Holland, Adaptation in Natural and Artificial Systems: An Intro-
ductory Analysis with Applications to Biology, Control and Artificial
Intelligence. Cambridge, MA, USA: MIT Press, 1992.

[3] M. Dorigo, “Optimization, Learning and Natural Algorithms,” Ph.D.
dissertation, Politecnico di Milano, Italy, 1992.

[4] D. H. Wolpert and W. G. Macready, “No free lunch theorems for
optimization,” IEEE Transactions on Evolutionary Computation, vol. 1,
no. 1, pp. 67–82, 1997.

[5] M.-Y. Cheng and D. Prayogo, “Symbiotic organisms search: A new
metaheuristic optimization algorithm,” Computers and Structures, vol.
139, pp. 98–112, 2014.

[6] T. Tometzki and S. Engell, “Systematic initialization techniques for
hybrid evolutionary algorithms for solving two-stage stochastic mixed-
integer programs,” IEEE Transactions on Evolutionary Computation,
vol. 15, no. 2, pp. 196–214, 2011.

[7] Q. Lin, J. Chen, Z. Zhan, W. Chen, C. A. C. Coello, Y. Yin, C. Lin, and
J. Zhang, “A hybrid evolutionary immune algorithm for multiobjective
optimization problems,” IEEE Transactions on Evolutionary Computa-
tion, vol. 20, no. 5, pp. 711–729, 2016.

[8] S. Mirjalili, S. M. Mirjalili, and A. Lewis, “Grey wolf optimizer,”
Advances in Engineering Software, vol. 69, pp. 46–61, 2014.

[9] H. A. Hassan and M. Zellagui, “Application of grey wolf optimizer
algorithm for optimal power flow of two-terminal HVDC transmission
system,” Advances in Electrical and Electronic Engineering, vol. 15,
no. 5, pp. 701–712, 2017.

[10] E. Emary, H. M. Zawbaa, and A. E. Hassanien, “Binary grey wolf
optimization approaches for feature selection,” Neurocomputing, vol.
172, pp. 371–381, 2016.

[11] D. Sánchez, P. Melin, and O. Castillo, “A grey wolf optimizer for mod-
ular granular neural networks for human recognition,” Computational
Intelligence and Neuroscience, vol. 2017, pp. 1–26, 2017.

[12] N. Singh and S. Singh, “A modified mean gray wolf optimization
approach for benchmark and biomedical problems,” Evolutionary Bioin-
formatics, vol. 13, pp. 1–28, 2017.

[13] Z. Zhang and K. Zou, “Simple ant colony algorithm for combinatorial
optimization problems,” in 2017 36th Chinese Control Conference
(CCC), July 2017, pp. 9835–9840.

[14] Z.-j. Teng, J.-l. Lv, and L.-w. Guo, “An improved hybrid grey wolf
optimization algorithm,” Soft Computing, vol. 23, no. 15, pp. 6617–
6631, 2019.

[15] H. Xu, X. Liu, and J. Su, “An improved grey wolf optimizer algo-
rithm integrated with cuckoo search,” in 2017 9th IEEE International
Conference on Intelligent Data Acquisition and Advanced Computing
Systems: Technology and Applications (IDAACS), vol. 1, Sep. 2017, pp.
490–493.

[16] E. Emary and H. M. Zawbaa, “Impact of chaos functions on modern
swarm optimizers,” Plos One, vol. 11, no. 7, pp. 1–26, 2016.

[17] M. Z. M. Khairuzzaman, I. Musirin, S. S. Izwan, and T. Bouktir,
“Chaos embedded symbiotic organisms search technique for optimal
FACTS device allocation for voltage profile and security improvement,”
Indonesian Journal of Electrical Engineering and Computer Science,
vol. 8, no. 1, pp. 146–153, 10 2017.

[18] I. Brajević and P. Stanimirović, “An improved chaotic firefly algorithm
for global numerical optimization,” International Journal of Computa-
tional Intelligence Systems, vol. 12, pp. 131–148, 2018.

[19] G. Kaur and S. Arora, “Chaotic whale optimization algorithm,” Journal
of Computational Design and Engineering, vol. 5, no. 3, pp. 275–284,
2018.

[20] A. Farah, T. Guesmi, H. H. Abdallah, and A. Ouali, “A novel
chaotic teaching-learning-based optimization algorithm for multi-
machine power system stabilizers design problem,” International Jour-
nal of Electrical Power & Energy Systems, vol. 77, pp. 197–209, 2016.

[21] H. Yu, Y. Yu, Y. Liu, Y. Wang, and S. Gao, “Chaotic grey wolf opti-
mization,” in 2016 International Conference on Progress in Informatics
and Computing (PIC), Dec 2016, pp. 103–113.

[22] H. Mehrotra and S. K. Pal, “Using chaos in grey wolf optimizer and
application to prime factorization,” in International Conference on Soft
Computing for Problem Solving (SocProS), 2018, pp. 25–43.

[23] C. Muro, R. Escobedo, L. Spector, and R. P. Coppinger, “Wolf-
pack (canis lupus) hunting strategies emerge from simple rules in
computational simulations,” Behavioural Processes, vol. 88, no. 3, pp.
192–197, 2011.

[24] S. Dai, D. Niu, and Y. Li, “Daily peak load forecasting based on com-
plete ensemble empirical mode decomposition with adaptive noise and
support vector machine optimized by modified grey wolf optimization
algorithm,” Energies, vol. 11, no. 1, pp. 1–25, 2018.

[25] L. R. Rodrigues, J. P. P. Gomes, F. A. S. Ferri, I. P. Medeiros, R. K. H.
Galvão, and C. L. Nascimento Júnior, “Use of PHM information and
system architecture for optimized aircraft maintenance planning,” IEEE
Systems Journal, vol. 9, no. 4, pp. 1197–1207, 2015.

[26] J. Yang and Y. Zhuang, “An improved ant colony optimization algorithm
for solving a complex combinatorial optimization problem,” Applied
Soft Computing, vol. 10, no. 2, pp. 653–660, 2010.

