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Abstract—Solving linear regression problems on interval-
valued data is a challenging task that may arise in many
applications. Because of that, many researchers have designed
methods for such task in recent years. Although much effort
has been devoted to this problem, all available methods rely
on modeling the problem as a constrained optimization task,
which may lead to sub-optimal results. Moreover, no previous
work provide a way to train a model in a incremental way,
which is fundamental for big data problems. In this paper,
we address both problems by proposing two different linear
regression methods based on log-transformations. The proposed
methods, referred as Log-transformed OLS for interval data
(LOID) and Log-transformed LMS for interval data (LLID), are
compared to state-of-the-art methods on both synthetic and real-
world datasets. The obtained results indicate the feasibility of our
approaches. Furthermore, to the best of our knowledge, LLID is
the first sequential linear regression method for interval valued.
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I. INTRODUCTION

Linear regression models are widely used to predict numer-
ical values that are related to a set of independent measures
[1]. To fit the model to the data, it is necessary to estimate
a weight vector that defines the linear relationship between
the independent variables and the outputs. Such weight vector
is usually obtained by minimizing a predefined loss function.
Among all possible loss function, the sum of squared errors
is the most popular and it defines the so-called least squares
regression approach.

Although least squares methods have been successfully used
in various applications, all basic formulations are designed to
work with datasets where each column represents a variable. In
that sense, such models are not suitable to work with interval
data. Interval data consists on a representation where each
component of a given sample is modeled as an interval, as
opposed to a single value. Such data may arise, for instance,
due to imprecisions of the measurement devices or data
fluctuations in the case of recorded measures during a specific
interval of time [2].

Throughout the years many authors have proposed linear
regression model for interval valued data. One of the first
works is the one by Billard and Diday [3], where they propose
a model that considers only the midpoints of the intervals to es-
timate the regression coefficients. Lima Neto and De Carvalho
[4] proposed a method, named Centre and Range Method

(CRM), that improves the previous work by considering two
independent linear regression problems, where the first models
the midpoint and the second models the ranges. In [5], the
same authors presented a new version of their method, named
Constrained CRM (CCRM), where they use a constrained
linear regression to ensure the coherence of the results, i.e.,
predicted upper bound values shall be higher than predicted
lower bounds. The design of sparse Linear models was the
object of the work by Giordani [2]. The author proposed a
variant of the LASSO algorithm for interval valued data.

By analyzing the aforementioned works, one could notice
that the coherence constraint used in both [5] and [2] may
impose unnecessary constraints to the final linear models.
In [5], the authors assure that the predicted range is always
positive by constraining the regression weights to be positive.
This rule may lead to sub-optimal results since it does not
allow the optimization procedure to find a relation between
inputs and outputs given by a negative coefficient, even if it
occurs in the data generator. In a different setting, the authors
in [2] impose a constraint that makes the range predictions
to be positive on the training set, thus not assuring that the
predictions on the test set will always be positive. Another
drawback of those previous works is that none of the adapted
linear regression models provide a way to find the regression
coefficients iteratively.

In this work, we aim to tackle both mentioned problems by
proposing two linear regression approaches for interval data
based on log-transformations of the available data. Roughly
speaking, we use the center and range setting and transform the
range data using a logarithm function. After that, we compute
the coefficients using the OLS (Ordinary Least Squares) or
LMS (Least Mean Squares) algorithms. Our method also
includes a pre-processing step of standardizing the range data.
By standardizing the data before the log-transformation, we
may assure that the transformed data is in a quasi-linear
region of the logarithm function. This procedure is used
to minimize the effect of the nonlinear transformation on
the weight estimation procedure. The effectiveness of both
proposed methods is verified by comparison to CCRM in
several real and synthetic datasets.

The remainder of the paper is organized as follows. Section
2 presents some basic concepts on linear regression models for
interval data. In Section 3, we present the proposed algorithms



and its performance is analyzed in Section 4. Final conclusions
and future works are discussed in Section 5.

II. BACKGROUND

A. Basic Concepts of Interval Data

As described in [6], interval data is a class of symbolic
data that can be used in order to summarize large datasets.
Furthermore, there are many situations in the modern world
where the value of a specific variable can be only represented
as an interval, such as blood pressure measurement or income
information, which is often considered in terms of intervals
of the minimum wage. Thus, as emphasized by [7], the avail-
ability of this kind of data and the recent growth of machine
learning as an important form of data analysis have brought the
necessity to extend standard modeling techniques for interval-
valued data, an approach sometimes called Symbolic Data
Analysis. The importance of this type of data has created
another research field that studies and formulates all arithmetic
operations on interval variables, as can be seen in [8].

It is relevant to highlight that, following [9], all interval
variables used in this work are comprised of closed intervals.
We denote an interval variable X = [xL, xU ] as a set of real
numbers given by:

X = [xL, xU ] = {x ∈ R : xL ≤ x ≤ xU}.

We adopt capital letters to represent an interval variable. Its
endpoints or bounds xL and xU are represented by lower case
letters, since they are scalar numbers.

We can also define the range and center of an interval:
• The range or width of an interval X is given by:

xR =
1

2
(xU − xL).

• The center or midpoint of X is given by:

xC =
1

2
(xL + xU ).

Given the above definitions, we can also represent an interval
by using its center and range values:

X = [xC − xR, xC + xR].

B. Linear Regression for Interval Data

Regression analysis is a technique that can be used to predict
the values of a dependent or output quantitative variable as
a function of the values of independent or input quantitative
variables [10]. The goal of a linear regression task is to figure
out a model that fits the data. Thus, it is necessary to estimate
a vector of parameters ŵ using the output data vector y and
the input matrix X. The parameter estimation step can be
seen as an optimization problem. In our case, we consider
standard least squares and gradient descent methods to solve
such optimization.We refer the reader to the work in [11], one
of the first linear regression methods presented for interval
valued-data.

1) The center method: One first approach to estimate ŵ
consists in considering only the center of the intervals. We
name this method CM (Center Method). Given an input matrix
Xmn containing m samples with n features each one, and
an output vector ym, the CM estimates the parameters as
described below according was written in [5]:

ŵ = (XT
C XC)

−1 XT
C yC

So, given a new vector example X1n, where X1j = [xnL, x
n
U ],

j ∈ (1, · · · , n), the value Y = [yL, yU ] will be predicted by
Ŷ = [ŷL, ŷU ] as follows:

ŶL = X1n
L ŵ and ŶU = X1n

U ŵ.

As we can see, this method does not ensure that YL ≤ YU .
If that is not guaranteed, an important rule of interval data will
be broken and the result can not be considered a valid interval
anymore.

2) The constrained center and range method (CCRM): The
method called CCRM, proposed in [5], considers inequality
constraints in the vector of parameters in order to mathemat-
ically ensure that the values of Ŷ i

L, where i ∈ (1, 2, . . . ,m),
will be always less than or equal to the values of Ŷ i

U .
The core idea consists in applying constraints only over

the parameters ŵR, which ensures that the estimated values
ŷiR will always be greater than or equal to zero, which also
implies that ŷiL will always be less than or equal to ŷiU .

Let us consider yC and yR as output variables and xj
C and

xj
R, (j = 1, 2, . . . , n), as input variables related according to

the relationship below:

yiC = w0
C + w1

Cx
i1
C + · · ·+ wn

Cx
1n
C + εiC ,

yiR = w0
R + w1

Rx
i1
R + · · ·+ wn

Rx
1n
R + εiR,

with constraints wj
R ≥ 0, j = 0, . . . , n.

Thus, the CCRM uses the Least Squares algorithm to
predict the ŵC and the Lawson and Hanson algorithm [12]
adapted to predict the parameters ŵR.

Following the main idea of CCRM, we have developed two
new approaches to handle interval-valued data. The first one
is named the Log-transformed OLS for Interval Data (LOID).
The second one is the Log-transformed LMS for Interval Data
(LLID). Both adapt the data to ensure that yR ≥ 0 and yL ≤
yU , using, respectively, Least Squares and Gradient Descent
as optimization methods. In the next section both algorithms
will be detailed.

III. PROPOSED METHODS

A. Log-transformed OLS for interval data (LOID)

Given Xmn and ym as input matrix and output vector,
respectively, where Xij = [xijL , x

ij
U ], Yi = [yiL, y

i
U ], i =

(1, 2, · · · ,m), and j = (1, 2, . . . , n). Let us consider Xmn
C

and Xmn
R as the centers and ranges of X, respectively. Let

also ym
C be the centers of ym and ym

R its ranges. In matrix
notation, the proposed LOID method can be written as



ŷC = XC ŵC + εC ,

ŷR = XR ŵR + εR,
(1)

where, ŵC = (ŵ0
C , ŵ

1
C , . . . , ŵ

n
C), ŵR = (ŵ0

R, ŵ
1
R, . . . , ŵ

n
R),

εC = (ε1C , . . . , ε
n
C), and εR = (ε1R, . . . , ε

n
R).

Thus, the sum of squares of errors is given by

εLOID =

m∑
i=1

(εiC)
2 +

m∑
i=1

(εiR)
2

=

m∑
i=1

(yiC − ŵ0
C − ŵ1

Cx
i1
C − · · · − ŵn

Cx
in
C )2

+

m∑
i=1

(yiR − ŵ0
R − ŵ1

Rx
i1
R − · · · − ŵn

Rx
in
R )2.

(2)

The parameters ŵC in the first expression of Eq. (1) are
given found via standard least squares:

ŵC = (XT
C XC)

−1 XT
C yC , (3)

where we emphasize that the parameters ŵ are not con-
strained.

The second expression in Eq. (1) must be fitted following
the constraint yR ≥ 0. Thus, we ensure the predicted values
for yR is greater than or equal to zero, using a logarithmic
transformation in the training targets yR, which are used to fit
the parameters ŵR. The logarithmic transformation gives us
the possibility to get values from any component of ŵR ≤ 0,
an useful feature if we have a dataset that was generated
by a function with such behavior, however, applying this
tranformantion, we are adding a non-linearity over the data,
although there is a way to minimize it, just using a simple
standardization in both X and y, we divided all elements by
its maximum value, respectively. Algorithm 1 summarizes the
training step of the proposed LOID approach.

Algorithm 1 Training step of LOID
Require: X, y {training data set}

1: X← X

max(X)
{apply the standardization in X}

2: y← y

max(y)
{apply the standardization in y}

3: m,n← dim(X) {get the dimension of input matrix}
4: ytrain ← logy {apply the log-transformation in outputs

samples}
5: Xtrain ← [1m1 X]m(n+1) {add the bias}
6: ŵ← (XT

trainXtrain)
−1XT

trainytrain

Given a new example z1,n, where Zj = [zjL, z
j
U ], j =

(1, · · · , n) we can predict ŷ according the steps summarized
in Algorithm 2. It is import to highlight that, as can be seen
in lines 3 and 4, first, we predict an output transformed by
the logarithm function applied in Alg. 1, but, since our goal
is to estimate the outcome from an input without the such
transformation, we must apply the inverse function of the
logarithm, that is, the exponential function.

Algorithm 2 Testing step of LOID
Require: X {test data set}

1: m,n← dim(X) {get the dimension of input matrix}
2: Xtrain ← [1m1 X]m(n+1) {add the bias}
3: ŷaux ← Xtest ŵ

T {predict the output transformed}
4: ŷ← exp (ŷaux) {predict the output}

B. Log-transformed LMS for interval data (LLID)

In this section we present an extension to interval-valued
data for the highly popular least-mean-squares (LMS) algo-
rithm, which was developed by [13] to enable iterative learning
with linear models.

Let Xmn and ym be an input matrix and an output vector,
respectively, where each Xij is represented by an interval
feature Xij = [xijL , x

ij
U ], i = (1, · · · ,m), and j = (1, · · · , n).

Let also Yi be an interval representing each correspondent
output Yi = [yiL, y

i
U ]. Let us consider Xmn

C and Xmn
R the

centers and ranges from X, respectively. We also have ym
C as

the centers of ym and ym
R as its ranges.

Assuming the existence of a continuous mapping f : X →
Y between the input and the output space, our goal is to
estimate f from the available data. We consider the function
f to be linear, i.e:

ŷi = f(xi) = xiw. (4)

Thus, following to the presentation of the LOID method in
the latter section, our proposed extension for the LMS, named
LLID, aims to fit two different functions, one based on wC

and other based on wR. The latter must consider the constraint
ŷR ≥ 0. Thus, we can rewrite the Eq. (4) twice as follows:

ŷiC = f(xi
C) = xi

C ŵC ,

ŷiR = f(xi
R) = xi

R ŵR.
(5)

We can compute the output error in the i-th sample:

εiC = yiC − ŷiC ,
εiR = log(yiR)− ŷiR.

(6)

Substituting Eq. (5) into these expressions yields

εiC = yiC − xi
CŵC ,

εiR = yiR − xi
RŵR.

Consider cost functions J(ŵC) = 1
2

∑m
i=1 ε

i
C and

J(ŵR) = 1
2

∑m
i=1 ε

i
R, which are both continuously differ-

entiable functions of some unknown weights (parameters)
vectors ŵC and ŵR. The function J(ŵ) maps the elements of
ŵ into real numbers. We want to find an optimal solution ŵ∗,
i.e., ŵ∗

C and ŵ∗
R, that satisfies the condition J(ŵ∗) ≤ J(ŵ).

The solution can be obtained by solving the optimization
problem below:

minimize
wC

J(ŵC),

minimize
wR

J(ŵR).
(7)



Algorithm 3 Training step of LLID
Require: X, y, epochs, α {training dataset, number of epochs

and learning rate}
1: X← X

max(X)
{apply the standardization in X}

2: y← y

max(y)
{apply the standardization in y}

3: m,n← dim(X) {get the dimension of input matrix}
4: Xtrain ← [1m1 X]m x (n+1)

5: ytrain ← logy {apply the log-transformation in outputs
samples}

6: ŵ1(n+1) ← [ytrain 01 x n]
7: for e ∈ range(epochs) do
8: indices← permutation(m)
9: for i ∈ indices do

10: ŷ← xi
train ŵT

11: ε← yi
train − ŷ

12: ŵ← ŵ + α ε xi
train

13: end for
14: end for

Following a stochastic gradient optimization approach, it is
easy to show that in general the weights can be updated as
follows [14], [15]:

ŵ0 = 0

εi = yi − ŵi−1xi,

ŵi = ŵi−1 + α εi xi,

where ε is computed using the expressions in Eq. (6) and α
is the learning rate.

Algorithm 3 summarizes the above operations. Note that the
sixth line explains how we initialize the first component of ŵ,
the bias, with the mean value of ytrain = log(y).

Similar to the LOID algorithm detailed in the latter section,
after the training step we may proceed to the test step
following Alg. 4, which must consider the application of the
exponential function in the model predictions.

Algorithm 4 Testing step of LLID
Require: X, y {test data set}

1: m,n← dim(X) {get the dimension of input matrix}
2: Xtrain ← [1m1 X]m x (n+1) {add the bias}
3: ŷaux ← Xtest ŵ

T {predict the output transformed}
4: ŷ← exp (ŷaux) {predict the output}

Having described our two approaches, in the next section we
will explain and discuss the experimental results performed in
several tests scenarios using both real and synthetic datasets.

IV. EXPERIMENTAL RESULTS

First, the usefulness of the linear methods proposed in this
paper will be evaluated via experiments with synthetic interval-
valued datasets with different linear configurations. Initially,
we evaluate the performance of the optimization algorithms

(CCRM, LLID, LLOID) to identify which algorithm presents
the best accuracy for the parameter estimation.

After that, the prediction performance of these methods
will be compared in terms of the root-mean-square error of
the center (RMSEC), range (RMSER), and summed lower
and upper (RMSELU ) values for each interval. We follow
an experimental Monte Carlo scheme with 50 repetitions. The
RMSE functions are computed as:

RMSEC =

√∑m
i=i(y

i
C − ŷiC)
m

,

RMSER =

√∑m
i=i(y

i
R − ŷiR)
m

,

RMSELU =

√∑m
i=i(y

i
L − ŷiL)
m

+

√∑m
i=i(y

i
U − ŷiU )
m

,

(8)

where m is the number of observations on the test step.
We have chosen to use the above metrics to quantify the

errors in each separated model, one to predict the yR and
another to predict yC . Thus, by analyzing the RMSER and
RMSEC values we can compute the accuracy of the evaluated
methods in each test scenario. On the other hand, we are
also interested in the overall interval error achieved by each
technique. So, we also compute the RMSELU that quantifies
the error by computing the sum of the lower and upper bounds’
errors.

Finally, all the models will also be evaluated using real
interval-valued datasets. Their performances will be compared
considering a Leave One-Out (LOO) validation scheme. LOO
was used because the chosen real datasets are smaller than the
synthetic ones. In average, we have around 30 observations in
each set.

A. Synthetic Datasets

The synthetic datasets were generated using 2 strategies.
The first one considers the configuration presented in [5],
as will be soon described. Furthermore, we have created 2
addtional synthetic datasets. In all cases, we separated 67% of
the generated data for the training step and 33% for the test
step.

1) Synthetic Datasets used in [5]: As presented in Tab.
I, we chose two distinct configurations proposed in [5]. The
configuration called C has the center and range independents,
while the D datasets consider a dependence between midpoint
and range. Both configurations, denoted by Cp and Dp, were
generated with dimension p equal to 1 and 3, respectively.

The construction of the C standard datasets and the cor-
responding interval data sets is carried out in the following
steps:

1) Generate XC , XR , and yC according to the Tab. I;
2) Compute the random variable yC :

yC = (XC)
T w + ε,

where (XC)
T = (1, X1

C) and w ∼ U [c, d] in R2, or
(XC)

T = (1, X1
C , X

2
C , X

3
C) and w ∼ U [c, d] in R4

and ε ∼ U [e, f ].



TABLE I
CONFIGURATIONS OF SYNTHETIC DATASETS PROPOSED BY [5].

C1 xjC ∼ U [20, 40] xjR ∼ U [20, 40] yjR ∼ U [20, 40] ε ∼ U [−20, 20]

C3 xjC ∼ U [20, 40] xjR ∼ U [1, 5] yjR ∼ U [1, 5] ε ∼ U [−20, 20]

D1 xjC ∼ U [20, 40] ε ∼ U [−20, 20] ε∗ ∼ U [1, 5]

D3 xjC ∼ U [20, 40] ε ∼ U [−5, 5] ε∗ ∼ U [1, 5]

TABLE II
DESCRIPTION OF REAL DATASETS

Number of Observations Number of Features
Cardiologic 59 2
Car 33 2
Mushroom 23 2
Soccer 20 2
Nasa 13 2

where U is a uniform distribution.
The generation of the D standard datasets is described

below:

1) Generate XC according to the Tab. I;
2) Compute the random variable yC : yC = (XC)

T w+ ε,
where (XC)

T = (1, X1
C) and w ∼ U [c, d]) in R2, or

(XC)
T = (1, X1

C , X
2
C , X

3
C) and w ∼ U [c, d] in R4

and ε ∼ U [e, f ];
3) Compute the random variable yR: yR = yC w

∗ + ε∗,
where the variables Xj

R (j = 1, · · · , n) are related to
variables Xj

C according to Xj
R = Xj

C w
∗ + ε∗, where

w∗ ∼ U [g, h] and ε∗ ∼ U [i, j].

2) Proposed Synthetic Datasets: The CCRM method con-
trains the predicted parameters ŵR to be greater than or
equal to zero. In this paper, we have generated 2 datasets,
1-dimensional (A1) and 3-dimensional (A3), where the true
parameters wR are less than zero. Below, we detail the
functions that generated these datasets.

The dataset A1 was generated following those steps:

1) Compute XC = (1, U [20, 40]), XR = (1, U [0, 1]);
2) Compute yC = XC ∗ (2, 5)T and yR = XR(5, −3)T ;
3) Compute the variance of SC

y = yC and SR
y = yR;

4) Recompute yC = yC +
√
0.01SC

y ε and yR = yR +√
0.01SR

y ε, where ε ∼ N (0, I);
5) For values yiR < 0, replace them with yiR = 0.

The dataset A3 was generated as follows:

1) Compute XC = (1, U [20, 40]), XR = (1, U [1, 10]);
2) Compute yC = XC(2, 2, 5, 6)T and yR =

XR(62, −2, −3, −1)T ;
3) Compute the variance of SC

y = yC and SR
y = yR;

4) Recompute yC = yC +
√
0.01SC

y ε and yR = yR +√
0.01SR

y ε, where ε ∼ N (0, I);
5) For values yiR < 0, replace them with yiR = 0.

B. Real-world Datasets
We conducted experiments with five real-world datasets that

can be found in [16]. A brief description of each dataset is
presented in Tab. II.

C. Discussion
The results of the synthetic datasets are presented in Tab.

III. As can be noticed, the proposed variants of LMS and OLS
achieved the good results in the synthetic datasets proposed in
CCRM’s paper even the CCRM have gotten best result, our
proposed method is really close, on the other hand, in the
datasets proposed by this paper, A1 and A3, which have the
weights of the generation function less than zero, LLID and
LOID achived the best results, while CCRM did not get good
results, because its model is constrains the weights doing the
ŵ ≈ 0, which increases the error substantially.

The results obtained with real-world datasets are summa-
rized in Tab. IV. In general, except for the Nasa dataset,
where the LOID result was worse in comparison with the other
methods, for all the datasets, the proposed methods were closer
or better than CCRM. Overall, the best results were achieved
by LLID.

V. CONCLUSION

In this paper, we proposed two linear regression models
for interval-valued data. The methods, named Log-transformed
OLS for interval data (LOID) and Log-transformed LMS for
interval data (LLID), comprise a standardization step of the
input and output data followed by a log-tansformation of the
output data. After that, OLS or LMS methods can be used to
estimate the model coefficients.

Our proposals have two advantages over its most popular
counterparts: i) both LOID and LLID do not require any con-
straint on the optimization and ii) LLID is the first sequential
linear regression method for interval valued. That fact makes
LLID suitable for big data applications.

Based on an extensive the set of experiments, we could
verify that LOID and LLID outperformed CCRM is various
situations. Hence, we believe that both proposals can be
viewed as valid alternative to tackle the linear regression of
interval data problem.
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TABLE III
COMPARISON BETWEEN LOID, LLID AND CCRM IN SYNTHETICS DATASETS USING RMSE AS THE METRIC OF ERROR COMPUTATION.

A1 C1 D1 A3 C3 D3

LOID
RMSEC 3.12 ± 1.87e−1 1.19e1± 3.77e−1 2.80± 9.80e−2 5.02 ± 3.62e−1 1.19e1± 4.05e−1 2.90± 9.80e−2
RMSER 1.23e−1 ± 9.00e−3 1.23± 4.20e−2 1.24e1± 7.76e−1 2.52 ± 5.81e−1 1.18e1± 4.20e−2 1.48e1± 7.33e−1
RMSELU 6.24 ± 3.75e−1 2.40e1± 7.50e−1 2.50e1± 1.15 1.12e1 ± 8.46e−1 2.39e1± 8.05e−1 2.98e1± 1.45

LLID
RMSEC 3.12 ± 1.87e−1 1.19e1± 3.77e−1 2.80± 9.80e−2 5.02 ± 3.62e−1 1.19e1± 4.05e−1 2.90± 9.80e−2
RMSER 1.23e−1 ± 9.00e−3 1.23± 4.20e−2 1.24e1± 7.76e−1 2.52 ± 5.81e−1 1.18e1± 4.20e−2 1.48e1± 7.34e−1
RMSELU 6.24 ± 3.75e−1 2.40e1± 7.50e−1 2.50e1± 1.15 1.12e1 ± 8.46e−1 2.39e1± 8.05e−1 2.98e1± 1.45

CCRM
RMSEC 3.12± 1.87e−1 1.19e1 ± 3.77e−1 2.80 ± 9.80e−2 5.02± 3.62e−1 1.19e1± 4.05e−1 2.90 ± 9.80e−2

RMSER 8.57e−1± 4.00e−2 1.20 ± 3.9e−2 1.17e1 ± 4.68e−1 9.21± 5.91e−1 1.15e1± 3.70e−2 1.32e1 ± 6.40e−1

RMSELU 6.46± 3.63e−1 2.40e1 ± 7.50e−1 2.34e1 ± 9.37e−1 2.09e1± 1.03 2.39e1± 8.05e−1 2.66e1 ± 1.26

TABLE IV
COMPARISON BETWEEN LOID, LLID AND CCRM IN REALS DATASETS USING RMSE AS THE METRIC OF ERROR COMPUTATION.

Cardiologic Car Mushroom Soccer Nasa

LOID
RMSEC 8.96± 6.92 2.32e4± 1.60e4 1.62± 1.27 1.84± 1.49 4.92e2± 4.52e2

RMSER 5.68± 4.90 1.51e4± 2.38e4 1.05± 7.68e−1 1.10± 7.74e−1 5.44e2± 7.43e2

RMSELU 2.12e1± 1.31e1 5.89e4± 4.45e4 3.83± 2.30 3.95± 2.86 1.26e3± 1.40e3

LLID
RMSEC 8.86 ± 6.80 2.20e4 ± 1.80e4 1.65± 1.07 1.89± 1.59 3.79e2 ± 3.58e2

RMSER 5.70 ± 4.90 1.48e4 ± 2.34e4 1.06± 8.39e−1 1.22± 9.43e−1 3.56e2 ± 4.79e2

RMSELU 2.10e1 ± 1.3e1 5.69e4 ± 4.68e4 3.78± 2.06 4.29± 3.01 9.14e2 ± 8.73e2

CCRM
RMSEC 8.96± 6.92 2.32e4± 1.60e4 1.62 ± 1.27 1.84 ± 1.49 4.92e2± 4.53e2

RMSER 5.69± 4.68 1.98e4± 2.17e4 9.27e−1 ± 6.79e−1 1.07 ± 8.19e−1 3.97e2± 3.64e2

RMSELU 2.12e1± 1.29e1 6.14e4± 4.21e4 3.52 ± 2.40 3.93 ± 2.87 9.84e2± 9.06e2

respectively) and Foundation of Scientific and Technological
Development in Ceará for the financial support.
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