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Abstract—This paper proposes a hybrid approach for short-
term energy price prediction. This approach combines a ge-
netic algorithm (GA) that evolves individuals represented by
a set of production rules, these rules are extracted from
chromosomes and generate the genotypes, which are mapped
to phenotypes(Deep Neural Networks). The Artificial Neural
Networks (ANNs) are then trained and then validated, and the
prediction tests are carried out. The genotypes are classified
by the performances of their ANNs in prediction and the GA
selects the best individuals for mutation and crossover operations,
which provide a new population. The previous steps are repeated
through n generations. The result is an optimized neural network
architecture for energy price prediction. The results show good
ability to predict spikes and satisfactory accuracy according to
error measures, delivering an accurate prediction. Finally, the
results are compared with traditional techniques.

Keywords—NeuroEvolution; Genetic Algorithm; Neural Net-
works, Time series forecasting

I. INTRODUCTION

During the 1990s, the Brazilian electricity regulatory model
began to be restructured to promote competition in generation
and trading activities and to the construction of efficient
regulation in transmission and distribution activities, as well as
to attract investment in the sector. The energy market reform
has brought greater risks associated with energy procurement.
The ”how much” and ”when” to buy on the spot market are
crucial decisions for power companies. Because such decisions
depend on the price of electricity, a misguided investment
strategy today could cost millions of dollars in the future.

Predicting the price of electricity is an important issue for all
market participants to decide on the most appropriate bidding
strategies and to establish bilateral contracts that maximize
their profits and minimize their risks. Energy prices typically
exhibit seasonality, high volatility and spikes. In addition,
the price of energy is influenced by many factors such as
uncertainty of energy demand, climate, hydrology and fuel
prices. The prediction of future values of the price of electricity
and its peaks is of great importance for the decision making
process and the elaboration of energy trading strategies [8].

Recently hybrid forecast methods with promising results
have also proposed in the literature [8]. In this context, this

paper test the possibilities of a hybrid system called Artifi-
cial Development and Evolution of Deep Neural Networks
(ADEANN-Deep) for shor-term energy price prediction using
explanatory variables. Our approach is inspired by two natural
biological mechanisms: genetic encoding and the evolution of
genetic coding [11].

The ADEANN-Deep integrates two components. The first
is a generative representation that represents genotypes (a set
of production rules of a L- System) by a compact IES. The
IES also conducts and controls the process of mapping the
genotypes to the phenotypes (complex neural network mor-
phologies). To mimic the DNA encoding scheme and enable
scalability, our IES leverages the phenotype representation to
a smaller genotype. The second component is a genetic algo-
rithm (GA), a simplified representation of natural evolution.
In local search problems based on GAs, a bit string is called a
chromosome (the genotype). Each bit on the chromosome is a
gene, and a gene set represents the parameters of a function to
be optimized. Each string is assigned a fitness that indicates the
quality of its encoded solution (the phenotype). The general
structure of ADEANN-Deep is shown in Fig.1. The hybrid
system is described in detail in section V.

In relation to the previous version of ADEANN [11],
this research presents the following improvements: system
migration to Python language justified by its applicability and
portability in the artificial intelligence area, which enabled
integration with prominent frameworks used in the current
market for data processing, like Pandas, and data science, like
Keras and Tensorflow. This new version of the hybrid system
(ADEANN-Deep) using Keras/Tensorflow has expanded the
possibility of the system to use various deep and recurrent
Neural Network architectures.

This paper is organized as follows. Section II discusses
related work. Section III presents the features of the Brazilian
electricity market. In Section IV we describe a new approach
to formalize the problem of ADANNs (artificial development
and evolution of ANNs) as a local search based on rational
agents. Section V introduces a biologically inspired method
for automatic design of ANNs. Section VI presents Material



and Methods. Lastly, simulation results and conclusions are
presented in Sections VII and VIII, respectively.

II. RELATED WORK

The paper [1] used an evolutionary algorithm-based search
engine and Backus Naur form notation to find symbolic
expressions describing its application in the control function
synthesis problem. They used feed-forward neural network as
an approximation of the control function, which depends on
the object state variables. A two-stage algorithm is presented:
grammatical evolution optimizes neural network structure and
genetic algorithm tunes weights. We performed the computa-
tional using the simple kinematic model of a two-wheel driving
mobile robot.

The paper [2], have proposed a quantum-inspired stacked
auto-encoder-based deep neural network (Q-DNN) learning
algorithm. The proposed Q-DNN uses stacked auto-encoder to
form a deep neural network. This quantum computing concept
has been used to optimize the learning parameters of the
algorithm. The proposed Q-DNN achieves promising results
in terms of classification accuracy, sensitivity, and specificity
in comparison with other approaches.

The paper [3], proposes a new hybrid approach for short-
term energy price prediction. The approach combines auto-
regressive integrated moving average (ARIMA) and neural
network (NN) models in a cascaded structure and uses ex-
planatory variables. A two step procedure is applied. In the
first step, the selected explanatory variables are predicted. In
the second one, the energy prices are forecasted by using the
explanatory variables prediction.

III. BRAZILIAN ELECTRICITY MARKET

The Brazilian energy market operates with two trading
environments, one regulated and the other free. The former
involves a pool of purchasing agents buying power from
selling agents (generators, independent power producers or
self-producers) in public auctions under set prices, while in the
latter market buyers and sellers are free to establish bilateral
contracts and negociate prices and conditions. The difference
between the quantity of energy contracted and that effectively
consumed or produced by the agents is accounted in the short-
term market based on the spot price called PLD (settlement
price for the differences) [3]. PLD is calculated weekly and
is based on the system marginal cost of operation obtained
from an optimization process to dispatch generators. The PLD
is established by the Brazilian Electricity Regulatory Agency
(ANEEL) and is evaluated to each submarket associated with
the country regions: North, Northeast, Center-west/Southeast,
and South.

Brazil uses a cost-based market instead of a bid-based
market, and adopts a tight pool model with a centralized and
least cost dispatch organized by National System Operator
(ONS). This scheme is adopted due the country peculiarities,
which has an installed capacity of 121 GW where 65.96 %

Fig. 1. The general structure of ADEANN-Deep.

corresponds to hydro generation. The hydro system is com-
posed of several reservoirs capable of multi-year regulation
located at the same river with differents owners [3].

IV. OUTLINE OF THE APPROACH

Our approach involves the formulation of an artificial neural
network design as an optimization problem (ANNDP), that is:
given a set of L observations on the behavior of a particular
process, Ψ={(xdl, ydl)}, l = 1...L , where xdl represents a
numeric vector defined in Rn and ydl is a numeric vector
defined in Rm, the goal is to find an ANN’s topology, ycl

= ANN(w*, xdl), which minimizes the mean square error
between ydl and ycl, this is, between the desired values in
the observations set and the computed values in the neurons’
outputs situated in the ANN’s output layer.

An ANNs topology can be described as a finite set of
neurons, that is, nodes of an oriented graph Nodes ={n1, n2,
..nk}, and a finite set H ⊆ N x N of connections between
neurons, which means directed edges in graphs notation. An
input layer is a set of input units, that is, a subset of n nodes
whereas an output layer is a set of output units, namely a
subset of m nodes. In feed-forward ANNs(FANNs), the kth

layer (k > 1) is the set of all nodes ni ε Nodes . These



types of nodes have an edge path of length k - 1 between
some input unit and u. In fully connected recurrent ANNs
(RANNs), all units have connections to all non-input units.

Function SEARCH−ANN(SearchParam, TransitionModel,
FitnessFunction) return an ANN topology

1:inputs:SearchParam, TransitionModel, FitnessFunction
2:vars:Pop, t, PopPerformances;
3:k← 0
4:ANNsPopk←Generate-ANNs(SearchParam)
5:ANNsPerformance← Evaluate-ANNs(ANNsPopk,
FitnessFunction)
6:loop do
7:if StopConditionTest(k, ANNsPerformance, SearchParam)
8:then return solution(Best-ANN(ANNsPopk,
ANNsPerformance)
9:ANNsPop(k+1)←(ANNsPop(k+1), ANNsPerformance,
TransitionModel, SearchParam)
10:ANNsPerformance←Evaluate-ANNs(ANNsPop(k+1),
FitnessFunction)
11:k ←k+1
12:end

We approach the solution of ANNDP based on the methodol-
ogy of Russell and Norvig [12] called problem-solving-agent,
whose agent is named ADEANN (Artificial Development and
Evolution of ANNs), which encapsulates a special scheme
of solutions representation as well as a local search strategy
based on genetic algorithms to solve the problem. Regarding
the representation scheme, the approach adopts a generative
representation, which means that, instead of an encoded ANN
topology, each chromosome stores a set of production rules
of a Lindenmayer system, which, in turn, generates ANN’s
topologies regarding the solution process, the SEARCH-ANN
function outlined below illustrates the structure of the program
in the ADEANN agent.

The SEARCH-ANN function starts the local search process
aiming at achieving an artificial neural network topology
ycl=ANN{(w∗, xdl)}, which minimizes the mean square error
between ydl and ycl, for l = 1...L in the ANNDPs for-
mulation. This function employs information on the search
parameters (SearchParam input term) as well as a transition
model (TransitionModel input term) to describe how to modify
current populations of ANNs and generate a new population, in
addition to an evaluation function (FitnessFunction input term)
to measure the value of each ANN in a current population.

Firstly, in the beginning of the process, Generate-ANNs
function generates an initial population of ANNs, in which
each ANN is represented by a set of production rules of a
Lindenmayer system codified in a chromosome. This function
considers the information in the SearchParam input term on

Rule Identifier Rule
1,2 S→. (axiom) (2) .→(f...f)n
3 (3.1) f→[f (3.2) f→fFf (3.3) f→fF (3.4) f→n

3,4,5 (3.5) f→f (3.6) f→fB (4) [→[Ff] (5) f→f*
TABLE I

THE PRODUCTION RULES OF THE PARAMETRIC L-SYSTEM WITH
MEMORY

the desired number of ANNs in the populations as well as
on the desired length for the chromosomes in the popula-
tion. Evaluate-ANNs function stores in ANNsPerformace the
computed performance value of each ANN topology in the
current population based on the mean square error computed
in the output layer of the ANN-SEARCH-ANN function,
which employs an iteration counter (k) and a condition named
StopConditionTest boolean function to decide when to stop the
local search process and return a solution to a problem. The
description of the stop condition is based on a proposition
relating the information on the current iteration counter k
and the information available in the SearchParam input term.
This means that the max number of loops in its repetition
scheme is central to the local search strategy in the approach,
as well as an ideal performance value such that for an ANN
to be considered a solution. Modify-ANN function is executed
repeatedly seeking to transform a current population of ANNs
in a new population of ANNs. In our approach, this function
encapsulates the evolutionary principles of pairs selection and
crossing over pairs and individual mutation. Central to the
approach, compact indirect encoding scheme (IES) conducts
and controls the process of mapping a set of production rules
of a Lindenmayer system codified in a chromosome to an
associated ANN topology.

V. BIOLOGICALLY INSPIRED NEA
The optimization process of ADEANN-Deep proceeds

through several stages. The GA starts with a population of
individuals randomly initialized with 0s and 1s Fig. 1 a.
Second , the bits of each individual of the population are
subjected to transcription Fig. 1 b and translation Fig. 1 c,
following valid production rules. Both processes are performed
by the function Rule-Extraction-with-GA, presented in Section
V.B. After finding the appropriate production rules (Table I),
the rewriting system generates the genotypes Fig. 1 d. All of
the genotypes are mapped to phenotypes (ANN architectures)
Fig. 1 e. The ANNs are then trained Fig. 1 f and validated,
and tests are carried out. The classification accuracy of each
ANN is measured from its fitness Fig. 1 g. The genotypes are
classified by the performances of their ANNs Fig. 1 h. The GA
selects the best individuals Fig.1 i)for mutation and crossover
operations Fig. 1 j, which provide the new population Fig.
1 k. The previous steps are repeated through n generations.
The following subsections describe the three subsystems of
ADEANN-Deep.

A. L-system based artificial embryogenesis model

To mimic the mechanism of grown structures, including
neurons, we adopt a parametric L-system with memory. It



Fig. 2. A simple example of the construction process of a branch of an
iterated ANN using the rules of the L-system is illustrated in Table I.

comprises a set of rules created from an alphabet. This
system can be described as a grammar G = {Σ,Π, α},
where the alphabet consists of the elements of the set Σ =
{., f, F, n, [, ], ∗, B}, and the production rules (Π) described
in Table I. The axiom α = . is the starting point of the
developmental process, where f denotes a neuron and F is
a connection between neurons, [ and ] indicate storage and
recovery, respectively, of the current state of the development,
* denotes that the string is recovered from storage, and B is the
connection of a neuron with a block of neurons. The second
rule .→(f...f)n, means replace the start point by the neurons
of the input layer. Rule 3.1 (f→[f) means to store the position
of the current neuron, so as to start a new ramification from
it. Rule 3.2 (f→fFf) means establish a connection between
two neurons. Rule 3.3 (f→fF) means establishing a connection
from a specific neuron. Rule 3.4 (f→n) means replace a provi-
sional neuron with a permanent neuron. Rule 3.5 (f→f) means
to maintain a specific neuron during development. Rule 3.6
(f→fB) means connect a neuron to a block of neurons. Rule
4 ([→[Ff]) means start the development of a new ramification
from a specific neuron and recover the previous state. Rule
5(f→f*) means recover a previous ramification stored for use.

As a simple example, suppose that starting with the axiom
(α = .) twice , and applying the second production rule .→ f
to the axiom twice, the resulting string is ff. Applying the third
rule (3.1) f → [f to string ff yields a new string, [f[f]. After
one, two, three and applications of the fourth rule [→ [Ff ] on
string [f[f, the string becomes [Ff]Ff]f[Ff]Ff]f. Applying the
rule (3.3) f →fFf eight time to the previous string, the result-
ing string is [FfFfFf]FfFfFf]f [FfFfFf]FfFfFf]f . After Apply-
ing the (3.6) f →fB to the previous string the resulting string
is [FfBFfBFfB]FfBFfBFfB]f [FfBFfBFfB]FfBFfBFfB]f. Fi-
nally applying the rule (3.4) f →n to the previous
string the resulting string is [FfnFfnFfn]FfnFfnFfn]f [Ff-
BFfBFfB]FfBFfBFfB]f. This phenotype represents the RNA
structure shown in Fig. 2.

B. Rule extraction by genetic algorithms

The neurons generated in the previous subsection are devel-
oped after the following process. To formulate a biologically
realistic GA, we let the genes of the chromosomes (sequences
of hypothetical DNA) encode a recipe (the production rules
of the L-system described in subsection V.A and illustrated in

00 (U) 01 (C) 10 (G) 11 (A)
00 (U) f (UUU) F (UCU) n (UAU) . (UGU) 00 (U)
00 (U) n (UUC) . (UCC) f (UAC) F (UGC) 01 (C)
00 (U) F (UUA) f (UCA) B (UAA) f (UGA) 10 (A)
00 (U) [ (UUG) n (UCG) [ (UAG) * (UGG) 11 (G)
01 (C) f (CUU) ] (CCU ) n (CAU) * (CGU) 00 (U)
01 (C) * (CUC) F (CCC) f (CAC) F (CGC) 01 (C)
01 (C) ] (CUA) f (CCA) * (CAA) [ (CGA) 10 (A)
01 (C) f (CUG) * (CCG) B (CAG) ] (CGG) 11 (G)
10 (A) * (AUU) ] (ACU) n (AAU) f (AGU) 00 (U)
10 (A) f (AUC)) B (ACC) f (AAC) B (AGC) 01 (C)
10 (A) F (AUA) [ (ACA) B (AAA) n (AGA) 10 (A)
10 (A) * (AUG) f (ACG) * (AAG) ] (AGG) 11 (G)
11 (G) ] (GUU) [ (GCU) F (GAU) n (GGU) 00 (U)
11 (G) n (GUC) B (GCC) [ (GAC) . (GGC) 01 (C)
11 (G) f (GUA) ] (CGA) B (GAA) F (GGA) 10 (A)
11 (G) B (GUG) f (GCG) * (GAG) [ (GGG) 11 (G)

TABLE II
THE GENETIC CODE FROM THE PERSPECTIVE OF MRNA, TRANSLATED AS

IN FIG. 3(B). IN THE SAME TABLE, THE DNA’S METAPHOR

Table I). The recursive rules in Table I drive the developmental
stages of the neurons (Fig. 2).

In biological genetic processing Fig. 3(b), DNA is tran-
scribed into ribonucleic acid (RNA), and the RNA is translated
into proteins. The proteins are derived from linear sequences
of amino acids encoded by codons (groups of three nucleotides
selected among U, G, A, and G of the genetic code (Table II).
In Fig. 3(b), the protein is formed by a sequence of amino
acids starting with methionine (Met) and ending with proline
(Pro). Such protein synthesis triggers all stages of the neuronal
development (phenotypic effects), as shown in Fig. 3(b). The
elements of the alphabet Σ = {., f, F, n, [, ], ∗, B, } of the
L-system, described in subsection V.A and displayed in bold
font in Table II, are a metaphor of the genetic code. Each
two-bit sequence represents one nucleotide; for example, the
set (00, 01, 10, 11) symbolizes (U, C, A, G) in the original
genetic code. Accordingly, six bits represent three nucleotides;
that is, (000000, 011111) symbolizes (UUU, CGG). In the
algorithm (Function-Rule-Extraction-with-GA) shown in the
next page, the funtion COMPLEMENT(B,S,I,G) mimic the
DNA transcription process into RNA, as shown in Fig. 3(b).

All integer strings obrained after te execution of
CONSTRUCT-S(B,S,I,G) are stored in the array ”S”. The
function FIND-SUBSTRING(S,I,G) translates the integer
string to valid production rules of the L-System (Table I). The
function FIND-SUBSTRING(S,I,G), also mimics the transla-
tion process of RNA into protein. Fig.3(a) illustrates, an exam-
ple of rule extraction for a single individual of the population.
In this figure, the transcription string yields the integer string
B.f[Ff.nB]Bf. We seek the shortest string containing all valid
rules; in this case, .f[Ff *nB].

C. Neural Network

Neural Networks have beeen successfully aplied to a variety
of complex problmes due to its ability to learn non-linear
relationships between input and output patterns, which would
be difficult to model conventional methods [3]. In this re-
search, ADEANN-Deep enables automatic design of different



Fig. 3. (b) DNA transcription into RNA and translation of RNA into protein. (a) In the analogous artificial process, a binary string is transcribed into an
integer string and the string is translated into the production rules of the L-system.

recurrent and deep neural network architectures that yields the
best generalization accuracy for each submarket.

VI. MATERIAL AND METHODS

A. Explanatory Variable Selection in Prediction Models

In prediction models, the explanatory variable can explain
or cause differences in a response variable. After the identifica-
tion of the explanatory variables, an explanatory variable selec-
tion method is applied to find the optimal set of input variables
required to describe the behavior of the energy price, which
should contain a minimum degree of redundancy. The aim is to
test how two or more variables act togheter to affect the output
variable and determine whether they improve the prediction
of the desired value. The PLDs prediction has rhe following
referenced variables: stored energy in reservoirs (%MLT),
inflow energy in reservoirs (%MLT), total hydro generation
(MWmed), total thermal generation (MWmed), system power
load (MWmed). Below, we detail the variables chosen in the
work of [3] for each submarket, : North:Stored energy, Inflow
energy and Load, Northeast:Stored energy, Inflow energy ,
Thermal generation and Load. Center-Wets/Southeast:Stored
energy, Hydro generation, Thermal generation and Load,
South:Stored Enregy, Hydro generation, Thermal generation
and load. We applied the same type of selection used in the
each submarket variables.

B. Dataset Description

The dataset used in this research contains the electricity
prices data taken from Brazilian Electrical Energy Commer-
cialization Chamber website [5] presented on a weekly basis,
in addition to the explanatory variables data taken from Brazi-
lain National System Operator website [6]. In the simulations
we applied the dataset constructed by [3] (period from 2002 to
2009) to each submarket:North, Northeast, South and Center-
West/Southeast.

C. Used Metrics

The hybrid system proposed in this system is applied to
the Brazilian electricity market. Some metrics commonly used
to evaluate proce forecasting accuracy are employed in this
paper ; root mean squared error (RMSE) , mean absolute error
(MAE) . These quantities are calculate by:

MAE =
1

N
ΣN

i=1|pitrue− piforecast| (1)

RMSE =

√
1

N
ΣN

i=1

(
pitrue− piforecast

)2
(2)

MAPE =
1

N
ΣN

i=1

|pitrue− piforecast|
1
N ΣN

i=1pitrue
x100% (3)

Where N is the number of samples, pitrue is the actual
price and piforecast is the forecasted price.

D. Statistics

We repeated each experiment five times. The independence
of the events was assured since the runs were independent and
had randomly generated initial seeds. Furthermore, to evaluate
the significance of the results obtained from ADEANN and
the other NEAs, we carried out t-tests with a confidence
level of 95% (i.e., a p-value under 0.05). To statistically
compare the performances of two NEAs for the classification
problems, we considered the three following criteria: RMSE
as the primary criterion, MAPE as the second one, and MAE
as the third one. Similarly to [13], without the occurrence
of any significant statistical differences between the RMSE,
MAPE, and MAE values of two NEAs on a given dataset, it
was considered that both algorithms performed equally well.
In this case, both algorithms receive 1 point. In contrast, if
two algorithms obtain significantly different RMSE or MAPE
or MAE scores, the better performing algorithm receive
two points and the other zero points. Consequently, H0 and
accept the alternative hypothesis H1. In deciding whether two
performances differ, we test the significance of the difference



between u1 and u2 (p < 0.05). The overall performance of
each NEA is then calculated by summing all points achieved
in the pairwise comparisons.

Function-Rule-Extraction-with-GA

1:Inputs:
2: B:=[IxG] //I is the number of individuals in the population
3:S:=[IxG] //G is the number of desired genes
4:COMPLEMENT(B,S,I,G);
5:for k:=0 to I-1
6: CONSTRUCT-S(B,S,I,G);
7:for k:=0 to I-1
8: FIND-SUBSTRING(B,S,I,G);

9:void CONSTRUCT-S(B,S,I,G);
10: vars: start←0;end←5;cont←0;String s←””;
11: while (start <= (G-1))
12: for (j:=start; j<= end; j++)
13: s←s+(char)B[k,j];
14: S[k,cont]←TABLE-CONVERT(s);
15: s←” ”;cont←cont+1;
16: start←start+6;
17: end←end+6;

18:int FIND-SUBSTRING(B,S,I,G);
19: vars:
20: char main-string[G/6], sub-string[G/6];
21: int find-char, exist, num-chars, i, j;
22: sub-string[]←”.f[Ff*nB]”;
23: for (j:=0; j< ((G/6)-1); j++)
24: main-string[j]←S[i,j];
25: num-chars←strlen(sub-string);
26: while(main-string[i]! = end− of − string)
27: if (main-string[i]==sub-string[j])
28: i++;j++;find-char←1;
29: if (j==num-chars)
30: j←0;exist←1;
31: else
32: if (find-char==1)
33: j←0;find-char←0;
34: else i++
35: if(exist) return 1;
36: else return 0
37:end.

E. Data Preparation

Many problems are involved in the analysis of rare patterns
of ocurrences. As an example, Figure 7 shows the histogram
of the PLD series for the North region. It shows that some
patterns occur more often than others. In addition, most of the
time the price remains at low values, under R$100.00 and the

Variable Minimun Mean Maximum Std.Deviation
Stored energy 20.71 65.30 87.64 16.7
Inflow energy 47.86 103.87 182.00 24.38

Hydro generation 8854.14 17.635.02 23.378.14 3253.84
Thermal generation 192.86 1112.57 3258.86 615.93

Load 19.295.57 28.048.88 34.668.00 3148.61
PLD 4.0 74.65 684.00 117.53

TABLE III
SUMMARY STATISTICS OF THE VARIABLES FROM
CENTER-WEST/SOUTHEAST REGION. FONT: [3]

Fig. 4. Energy price observed and predicted with the hybrid model to
Northeast Region (Light PLD) - UnBalanced Data

energy price rarely reaches values above R$300.00. However,
neural networks are sensitive to imbalanced data sets since it
causes difficulties in the learning process and can deteriorate
the model performance. Then the data balancing was applied in
this paper during data preparation process. Figures 8 shows the
histogram of the PLD series, before and after data balancing,
for the North region.

VII. SIMULATION RESULTS

The methodology proposed in this paper is applied to the
Brazilian electricity market and some criteria commonly used
to evaluate price forecasting accuracy are employed, such as
RMSE, MAE and MAPE.

A. Unbalanced Data

Tables VI and VII illustrate the values of RMSE, MAE, and
MAPE obtained from ADEANN-Deep for the Northeast and

RMSE MAE MAPE
Medim PLD 11.40 8.05 0.21

light PLD 11.07 7.82 0.20
heavy PLD 11.59 8.20 0.21

Average 11.35 8.02 0.21
TABLE IV

ENERGY PRICE ERROR MEASURES OBTAINED WITH THE PROPOSED
HYBRID SYSTEM 36-WEEKS AHEAD - SOUTH REGION (UNBALANCED

DATA)

RMSE MAE MAPE
Medim PLD 9.35 6.61 0.22

light PLD 9.27 6.55 0.20
heavy PLD 10.48 7.41 0.22

Average 9.70 6.86 0.22
TABLE V

ENERGY PRICE ERROR MEASURES OBTAINED WITH THE PROPOSED
HYBRID SYSTEM 36-WEEKS AHEAD - NORTH REGION (UNBALANCED

DATA)



RMSE MAE MAPE
Medim PLD 9.03 6.38 0.19

light PLD 10.21 7.22 0.21
heavy PLD 9.01 6.37 0.18

Average 9.412 6.66 0.19
TABLE VI

ENERGY PRICE ERROR MEASURES OBTAINED WITH THE PROPOSED
HYBRID SYSTEM 36-WEEKS AHEAD - NORTHEAST REGION -

(UNBALANCED DATA)

RMSE MAE MAPE
Medim PLD 15.47 10.948 0.20

light PLD 15.47 10.94 0.20
heavy PLD 17.15 12.13 0.22

Average 16.122 7.69 0.20
TABLE VII

ENERGY PRICE ERROR MEASURES OBTAINED WITH THE PROPOSED
HYBRID SYSTEM 36-WEEKS AHEAD - SOUTHEAST REGION -

(UNBALANCED DATA)

Southeast regions. Figures 4 and 5 show the short-term price
observed and predicted with the proposed hybrid system 36-
weeks ahead. For the Southeast region, the RMSE and MAE
obtained from ADEANN-Deep 16.12 R$/Mwh and 7.69 R$/
Mwh were higher than those obtained from the Hybrid System
9 R$/Mwh and 3 R$/Mwh [3]. However, the value of MAPE
0.20 R$/Mwh reached using ADEANN-Deep was below that
obtained from the Hybrid System [3], which generated a
MAPE value equal to 5 R$/ Mwh. For the Northeast region,
the RMSE and MAE achieved using ADEANN-Deep 9.41
R$/Mwh and 6.66 R$/ Mwh were higher than those from
the Hybrid System 9 R$/Mwh and 3 R$/Mwh [3]. However,
the value of MAPE 0.19 R$/Mwh generated from ADEANN-
Deep was below that from the Hybrid System [3], which
reached a MAPE value equal to 4.5 R$/ Mwh. Tables IV and
V describe the average values of RMSE, MAE and MAPE
values obtained from ADEANN-Deep for the North and South
Regions, respectively. Figure 6 shows the short-term price
observed and predicted with the proposed hybrid system 36-
weeks ahead to North region. For the South region, the RMSE
and MAE generated from ADEANN-Deep 11.35 R$/Mwh and
8.02 R$/ Mwh were above those from the Hybrid System 9
R$/Mwh and 3 R$/Mwh [3]. However, the value of MAPE
0.21 R$/Mwh reached using ADEANN-Deep was lower than
that achieved using the Hybrid System [3], which generated

Fig. 5. Energy price observed and predicted with the hybrid model to
Southeast Region (heavy PLD) - UnBalanced Data

a MAPE value equal to 5 R$/ Mwh. For the North region,
the RMSE and MAE obtained from ADEANN-Deep 9.70
R$/Mwh and 6.86 R$/ Mwh were higher than those from the
Hybrid System 7.5 R$/Mwh and 2.5 R$/Mwh [3]. However,
the value of MAPE 0.20 R$/Mwh generated using ADEANN-
Deep was below that obtained from the Hybrid System [3],
which reached a MAPE value equal to 4.8 R$/ Mwh.

B. Balanced Data

The analysis of the results for the South region revealed
a mean square error (RMSE) generated using ADEANN-
Deep of 8.20 R$ Mwh, lower than 9 R$/Mwh, obtained
from the Hybrid model [3]. The MAE and MAPE generated
using ADEANN-Deep were 5.80 R$/ Mwh and 0.19 R$/Mwh,
respectively, while the values obtained from the hybrid method
[3] were 3 R$/ Mwh and 5 R$/ Mwh, respectively. Therefore,
our MAE value was higher than that obtained from the
hybrid system, while our MAPE value was below it. For the
North region, the mean square error (RMSE) generated from
ADEANN-Deep was 5.02 R$/Mwh, lower than 7.5 R$/Mwh,
reached using the hybrid [3]. The MAE and MAPE obtained
using ADEANN-Deep were 3.55 R$/ Mwh and 0.12 R$/
Mwh, respectively, while the values generated using the hybrid
model [3] were 2.5 R$/Mwh and 4.8 R$/Mwh, respectively.
Therefore, our MAE value was higher than that from the
hybrid system and our MAPE value was below it. Tables VIII
and IX describe the values obtained and the average values of
RMSE, MAE and MAPE values generated from ADEANN-
Deep.

The analysis of the results for the Southeast region revealed
a mean square error (RMSE) using the ADEANN-Deep of 9.8
R$ Mwh, higher than 9.4 R$/Mwh, obtained from the Hybrid
model [3]. The MAE and MAPE reached using ADEANN-
Deep were 6.93 R$/ Mwh and 0.14 R$/Mwh, respectively,
while the values from the hybrid method [3] were 5 R$/ Mwh
and 4 R$/ Mwh, respectively. Therefore, our MAE value was
higher than that obtained from the hybrid system and our
MAPE value was below it. For the Northeast region, the mean
square error (RMSE) generated from ADEANN-Deep was 5.1
R$/Mwh, lower than 8 R$/Mwh, obtained from the hybrid
model [3]. The MAE and MAPE generated using ADEANN-
Deep were 4.1 R$/ Mwh and 0.16 R$/ Mwh, respectively,
while the values obtained from the hybrid model [3] were
4 R$/Mwh and 5 R$/Mwh, respectively. Therefore, our MAE
value was higher than that reached using the hybrid system and
our MAPE value was below it. It is noteworthy that all other
models are forecasting 12 weeks ahead, however, ADEANN-
Deep is forecasting 36 weeks ahead.

VIII. CONCLUSIONS

In this paper a hybrid approach is proposed for a short-
term energy price prediction. The model considers multi-
step ahead price prediction (36 weeks-ahed) and is applied
to the Brazilian electricity market. The results obtained are
compared with the study of [3] and others methods in section
VII. The results obtained from ADEANN-Deep applied to



Fig. 6. Energy price observed and predicted with ADEANN-DEPP for the
North region (Light PLD) - Unbalanced Data.

Fig. 7. Histrogram of the PLD series to North Region.

the Brazilian market presented a sufficiently good accuracy
level compared to other methods described in section VII.
Data balancing and the use of explanatory variables were
essential for having improved the results generated using
ADEANN-Deep, according to the results presented in section
VII.B. Statistical test (textitt-test) with confidence level of 95%
shows that in 58.33% of the cases ADEANN-Deep provides
better results than the hybrid system [3]. In addition, the new
version of the hybrid system (ADEANN-Deep), using Keras,
enhances the possibilities of using multiple deep recurring

RMSE MAE MAPE
Medim PLD 7.52 5.31 0.18

light PLD 8.52 6.02 0.20
heavy PLD 8.57 6.06 0.19

Average 8.20 5.80 0.19
TABLE VIII

ENERGY PRICE ERROR MEASURES OBTAINDE WITH THE PROPOSED
HYBRID SYSTEM 36-WEEKS AHEAD - SOUTH REGION - BALANCED DATA

RMSE MAE MAPE
Medim PLD 4.22 2.98 0.11

light PLD 5.20 3.68 0.13
heavy PLD 5.64 3.99 0.14

Average 5.02 3.55 0.12
TABLE IX

ENERGY PRICE ERROR MEASURES OBTAINED WITH THE PROPOSED
HYBRID SYSTEM 36-WEEKS AHEAD - NORTH REGION - BALANCED DATA

Fig. 8. Histrogram of the PLD series to North Region (after data balancing).

Neural Network architectures.
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