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Abstract—Wind power generation is one of the technologies
of electric production which still in development in Brazil,
however, it already has a great penetration in the national
energy matrix, representing 13.98% of the national energy
consumption in Brazil. Due to the high level of uncertainty and
the chaotic fluctuations in wind speed, predictions of wind energy
with high accuracy is a challenge. In this context a stacking
ensemble (STACK) model is proposed to forecast the wind power
generation of a turbine in a wind farm at Parazinho, RN -
Brazil. The proposed model combines four different algorithms
as base-learners, such as, eXtreme Gradient Boosting (xgBoost),
Support Vector Machine for regression with Linear Kernel (SVR-
Linear), Multi-Layer Perceptron with multiple layers (MLP)
and K-Nearest Neighbors (K-NN), and one algorithm as meta-
learner - Support Vector Machine for regression with Radial
Basis Function Kernel (SVR-RBF). To access the performance
of adopted methodology, the results of STACK are compared
with the results of the base-learners. Four performance measure
criteria, as well as statistical tests are adopted. As results, STACK
reached better results in all performance measures. Indeed,
STACK and SVR-Linear are statistically equals. According to
these results, applying the STACK proposed model indeed im-
proved the forecasting when comparing with the other algorithms
tested individually.

Keywords—Wind energy, forecasting, time series, machine
learning, stacking ensemble.

I. INTRODUCTION

Wind power generation is one of the technologies of electric
production which still in development in Brazil, however, it
already has a great penetration in the national energy matrix,
and it is one of the principal renewable energy sources. In
2018, wind energy represented 13.98% of the national energy
consumption and it supplied 38% of the population of Brazil,
according to 2018 annual report of the Brazilian Wind Energy
Association (ABEEolica) [1].

Due to the high level of uncertainty and the chaotic
fluctuations in wind speed, the wind energy is classified as
intermittent source, such that wind energy is not able to supply
stable demand. Intermittence is mainly driven by continuous
and chaotic fluctuations in wind speeds and the lack of tools
to provide coherent predictions.

Hence, in literature, wind energy forecast has been the study
object in many researches using different techniques [2]–[5].
Because of the chaotic and uncontrollable behavior, predicting
wind energy as accurate as possible is a challenge. Wind
energy forecasting models can be classified by its prediction
time horizon in four categories: very short-term, short-term,
medium-term, and long-term as illustrated by Figure 1. In
general, shorter forecasting time horizon can provide more
detailed and accurate results, but less time left for the deploy-
ment of wind power generation [6].

Fig. 1. Time-scale classification of wind energy forecasting, adapted from
[6]

To enhance the accuracy of the predictions, stacking en-
semble, which comes from ensemble learning, is proposed
in this paper. Ensemble learning uses several weak learners
(base learners) combined through mean rule (for regression
problems) to build a stronger model [7]. Stacking ensemble
is one of the many ways to work with ensemble. Stacking
ensemble do predictions of several base learners to compose
the stacking level 1. These predictions are used as inputs in the
next level for a meta-learner on stacking level 2. In summary,



stacking ensemble combines two level models for an accurate
prediction: one is the base-learners for preliminarily predicting
the posteriori probabilities of samples and the other is a meta-
learner for predicting the final value by combining the base-
learners [8].

Hence, this paper proposes an application of an efficient
stacking ensemble forecasting model that combines different
and heterogeneous algorithms as learners. The stacking en-
semble model combines four algorithms - xgBoost, MLP, K-
NN and SVR-Linear. As meta-learner heading the stacking
ensemble, SVR-RBF were used. The proposed STACK model
has been trained to forecasting the wind power generation one-
step ahead (10 minutes ahead).

The remainder of this paper is structured as follows: Sec-
tion II-A presents the dataset adopted in this paper. Sec-
tion II-B presents a brief description of the models used on
this paper. Section III details the procedures of the research
methodology applied. Section IV presents the results obtained
and discussions. Finally, Section V presents the final consid-
erations and some proposals of future works.

II. MATERIAL & METHODS

A. Material

The collected dataset refers to the observation of the wind
turbine power generation every 10 minutes. This wind power
comes from a turbine in a wind farm located at Parazinho,
RN - Brazil, Figure 2. The dataset period starts in August 01
2017 00:00h, and ends in August 31 2017 23:50h. Therefore,
the number of observations in this case is 4439, as presented
on Figure 3.

Fig. 2. Wind farm location map

The dataset is composed by eigth variables, as follows on
Table I, where Power is the system output, and the others are
the system inputs.

B. Methods

1) Stacking Ensemble: Stacking is originally presented
by [9] as stacked generalization, which has been proposed
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Fig. 3. Observed time series

TABLE I
INPUTS AND OUTPUT OF THE SYSTEM

Type Description Unit Measure
Output Power KW
Input Generator Bearing Temperature Celsius
Input Generator Bearing 2 Temperature Celsius
Input Generator Speed RPM
Input Wind Speed m/s
Input Wind Direction Absolute Degrees
Input Nacelee Direction Degrees
Input Ambient Temperature Celsius

to improve prediction accuracy by integrating a number of
diverse sub-models. Hence, Stacking algorithm is an ensemble
learning technique, in which the predictions of a group of indi-
vidual learners (base learners) are given as inputs to a second-
level learning algorithm (meta-learner) which combines the
model predictions optimally to form a final set of predictions
[2]. In this paper the base-learners are combined by stacking,
in which a meta-learner is served to combine the predictions
of base learners which are called meta-data [8].

2) Support Vector Machines with Radial Basis Function
Kernel: Support Vector Machine (SVM) is a classification
algorithm based on statistical learning theory [10]. The linear
SVM is an efficient algorithm for classification and regression
in linearly structured data [11]. Let xi, i = {1, 2, . . . , n} be n
training samples.

f(x) = wTx+ b (1)

where xi is an n-dimensional input, w is the weight vector
and b the bias

In nonlinearly structured data, the SVM can also be applied
if a kernel k is employed. In this case, a certain number S of
support vectors xi and corresponding coefficients αi ∈ R are
required. Hence, for a kernel SVM, the function

f(x) =

S∑
i=1

αik (xi,x) + b (2)

has to be evaluated for every new instance x.
Furthermore, Radial Basis Function Kernel (RBF kernel) is

a default and recommended kernel function for SVM classifier



[12]. The RBF kernel can be defined as

K (x,x′) = exp

(
−‖x− x′‖2

2σ2

)
(3)

where ‖x− x′‖2 may be recognized as the squared Euclidean
distance between the two feature vectors, and σ is a free
parameter.

3) eXtreme Gradient Boosting: The eXtreme Gradient
Boosting (xgBoost) is an improved version of the gradient
boosting decision tree algorithm that constructs boosted trees
in an efficient and parallel manner [13]. xgBoost is based
on gradient boosting, which generates a strong classifier by
iteratively updating parameters of the former classifier to
decrease the gradient of loss function [14].

The formulation of xgBoost algorithm is defined by [4] as

Fobj(θ) = L(θ) + Ω(θ) (4)

where L(θ) = l (ŷi, yi) and Ω(θ) = γT + 1
2λ‖w‖

2.
Fobj(θ) is the objective function, L(θ) is the loss function

between prediction ŷi and real value yi, Ω(θ) is the regular-
ization term, γ is the learning rate, T is the number of leaves
in the tree, λ is the regularization parameter, and w is the
weights of the leaves.

4) Multi-Layer Perceptron with multiple layers: Multi-
Layer Perceptron (MLP) is the most common and applicable
type of feedforward neural networks [15]. MLP networks
consist of input layer, one or more hidden layers and out-
put layer. Each layer has a number of neurons (processing
units) and each neuron is fully interconnected with weighted
connections to the neuron in the subsequent layer [16]. The
general expression can be defined as follows

y = f2

 N∑
j=1

wjfl

(
n∑
i=1

hijXi + bj

)
+ bo

 (5)

where hij , bj and f1 are the weight matrix, the bias vector
and the activation function of the hidden layer, respectively,
and wj , bo and f2 are the weight vector, the bias scalar and
the activation function of the output layer.

5) K-Nearest Neighbors: K-Nearest Neighbors (K-NN) is
algorithm to solve regression and classification problems
which was proposed by [17].

The K-NN algorithm works by categorizing data via cor-
relating inputs to similar outputs. The number of nearest
neighbors (k) and the distance between data points were
adjusted while developing the K-NN model. [18].

Basically, K-NN works by finding the distance between a
query and all the examples in the dataset, selecting the number
of examples (k) closest to the query, then votes for the most
frequent label (as classification) or calculates the averages of
the labels (regression).

In regression, the K-NN algorithm follows: (i) Compute the
Euclidean or Mahalanobis distance from the query example
to the labeled examples; (ii) Order the labeled examples by
increasing distance; (iii) Find a heuristically optimal number

k of nearest neighbors; and (iv) Calculate an inverse distance
weighted average with the k-nearest multivariate neighbors
[19].

6) Support Vector Machines with Linear Kernel: SVM with
Linear kernel differs from SVM wit RBF kernel, by using the
linear kernel function [20], which can be define as

k(x,y) = xTy. (6)

III. METHODOLOGY

A. Data processing

The dataset has 4439 observations collected since August
01 2017 until August 31 2017, every 10 minutes. By dividing
the dataset into input and outputs of the system, as explained
in Section II, an Auto-Correlation Function (ACF) and Partial
Auto-Correlation Function (PACF) plots were conducted in the
output (Power) to determine how many lags would be chosen
for predictions calculation as seen on Figures 4a and 4b,
respectively. The lag equal 1 was chosen then.
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(a) Auto-correlation function for wind power
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(b) Partial auto-correlation function for wind power

Fig. 4. ACF and PACF plots for lag verification

Furthermore, the new dataset was splitted into two sets
(training and test) to perform the machine learning algorithms,
predictions and performance measures analysis. The training
set corresponds of 70% of the whole dataset (3106 obser-
vations), and test set is the remainder (1332 observations),
according to Table II.

Moreover, Table III presents statistical indicators of the
inputs and the output, such as maximum (max), minimum
(min), mean and standard deviation (std).

In addition, a BoxCox transformation [21] was applied on
the training set to preprocessing the set for the algorithm
training. The BoxCox transformation is defined as



TABLE II
NUMBER OF OBSERVATIONS USED FOR WIND POWER DATA ANALYSIS

Dataset Percentage Number of observations
Observed 100% 4438
Training 70% 3106

Test 30% 1332

y(λ) =

{
yλ−1
λ , if λ 6= 0

log y, if λ = 0
(7)

where λ is a parameter, possibly a vector, defining a particular
transformation.

B. Training, forecasting and evaluation

The training set was performed by each base-learner model
– xgBoost, MLP, K-NN and SVR-Linear – as well the SVM
with RBF kernel (SVR-RBF), which is the meta-learner, using
a 5-fold cross-validation.

The base-learners are used in the first layer of STACK. The
outputs of those base-learners are then used to train the second
layer, the meta-learner. The second layer model (SVR-BRF)
is used to combine the outputs from the first layer, giving
the final predict values of the training. The framework of the
stacking ensemble (STACK) is presented in Figure 5.

Fig. 5. Framework of the proposed forecasting model

The forecasting of the wind power generation is given by
(8), as follows

ŷ = f {yt, xit} (8)

where f is a function related to model adopted in training
process, ŷ is the forecast value for one-step ahead, yt is the
observed output value at time t, xit is a matrix of i inputs at
time t, and i is the number of inputs in the system.

Moreover, the forecasting is performed using the training
results with the test set and the results were evaluated using
relative root mean square error (RRMSE) (9), mean absolute
percentage error (MAPE) (10), coefficient of determination
(R2) (11), and sum of squared errors (SSE) (12) to determine
which is the better model for this problem, according to criteria
on Tables IV [22] and V [3].

RRMSE =

√
1
n

∑n
i=1 (yi − ŷi)2

1
n

∑n
i=1 yi

, (9)

MAPE =
1

n

n∑
i=1

∣∣∣∣yi − ŷiyi

∣∣∣∣ , (10)

R2 = 1−
∑n
i=1 [yi(t)− ŷi(t)]2∑n
i=1 [yi(t)− yi(t)]

2 , (11)

SSE =

n∑
i=1

(ŷi − yi)2 , (12)

where n represents the number of observations of the training
and test sets, yi is the ith value observed for series and ŷi is
the ith value predicted by the adopted model.

Friedman test can be applied to evaluate the squared errors
(SE). This approach is able to show if there is difference
between the average ranks for more than two samples [23]. It
can be applied to answer if on a set of k algorithms (greater
than two) at least two of the methods present different results.
The statistic of test is stated as follows

FD =
12n

k(k + 1)

 k∑
j=1

R2
j −

k(k + 1)2

4

 , (13)

in which FD is distributed according to χ2 with k−1 degrees
of freedom, n observations and k groups, and Rj is the sum
of the ranks for the jth group. Under null hypothesis, there is
no difference between groups SE.

In addition, the Nemenyi test can be applied. In this ap-
proach a threshold is obtained according to (14)

CD =
q∞,k,α√

2

√
k(k + 1)

6
, (14)

where CD is the critical difference for which it is possible
to infer that the results are statistically equals or not for
the compared groups, q∞,k,α are the quantiles based on the
Studentized range statistic, k is the groups number and n
is the observations number. If the critical differences rank
sums |Ri − Rj | are greater than CD, there is difference
between results from groups i and j [24]. Therefore, these
two approaches are applied to compare the SE of applied
algorithms [25], [26].

The results presented in Section IV are generated using
the processor Intel(R) Core(TM) i5-7200U Central Processing
Unit @ 2.50GHz 2.70GHz in Windows 10 64 bits operating
system. The R software [27] is adopted to performing the
modeling.



TABLE III
SUMMARY OF THE STATISTICAL INDICATORS OF THE INPUTS AND OUTPUT OF THE DATASET

Variable Samples Number Statistical indicator
Max Min Mean std

Power All samples 4438 2000.30 217.50 1553.00 338.8628
Training samples 3106 2000.30 272.60 1506.40 342.2418
Test samples 1332 2000.10 217.50 1662.00 304.2551

Generator Bearing Temperature All samples 4438 76.00 46.00 63.46 6.5940
Training samples 3106 76.00 46.00 62.31 6.4972
Test samples 1332 75.00 50.00 66.17 6.0016

All samples 4438 59.00 39.00 49.98 4.5902
Generator Bearing 2 Temperature Training samples 3106 59.00 39.00 49.28 4.5592

Test samples 1332 58.00 41.00 51.63 4.2253

Generator Speed All samples 4438 1345.00 335.00 1282.00 75.0849
Training samples 3106 1345.00 793.00 1277.00 77.2921
Test samples 1332 1345.00 335.00 1294.00 68.2772

Wind Speed All samples 4438 15.40 5.10 9236.00 1.1825
Training samples 3106 15.40 5.10 9169.00 1.2235
Test samples 1332 13.00 6.30 9393.00 1.0649

Wind Direction Absolute All samples 4438 167.20 97.60 134.20 13.1943
Training samples 3106 167.20 97.60 134.00 13.2954
Test samples 1332 166.00 103.80 134.80 12.9402

Nacelle Direction All samples 4438 165.60 98.70 134.10 13.2749
Training samples 3106 164.60 98.70 133.90 13.4646
Test samples 1332 165.60 104.20 134.60 12.8116

Ambient Temperature All samples 4438 32.00 22.00 26.05 2.4878
Training samples 3106 31.00 22.00 25.97 2.4816
Test samples 1332 32.00 23.00 26.22 2.4947

TABLE IV
RRMSE CRITERIA

RRMSE (%) Forecasting power
< 10 Excellent

10 - 20 Good
20 - 30 Reasonable
> 30 Incorrect

TABLE V
MAPE CRITERIA

MAPE (%) Forecasting power
< 10 Excellent

10 - 20 Good
20 - 50 Reasonable
> 50 Incorrect

IV. RESULTS

In training phase, the hyper-parameters presented on Ta-
ble VI was the best tunes for all base-learners and the meta-
learner to obtain better results. The hyper-parameters were
chosen by a Grid-Search.

The models performance measures to forecast one step-
ahead the wind power generation are shown on Table VII.
The best results for training and test set are stated in bold.
In training phase, xgBoost presented a significant difference
on the results compared to the others, it performed excellent
in all performance measures. However, on test phase, STACK

TABLE VI
CONTROL HYPER-PARAMETERS FOR META AND BASE-MODELS

Model Control Hyperparameters
SVR-RBF Kernel Radial
(STACK) Sigma 150

Cost 0.1
xgBoost Boosting Iterations 50

L2 Regularization (λ) 0.1
L1 Regularization (α) 0.001

Learning Rate 0.3
MLP Hidden Units layer1 3
K-NN Neighbors 13

SVR-Linear Kernel Linear
Cost 4

presented better results, which according to Tables IV and V,
it had a good performance on RRMSE and an excellent
performance on MAPE.

Furthermore, Figure 6 illustrates the SSE calculated for each
approach. STACK showed to have the lower SSE between the
models.

Figure 7a shows the complete dataset with the STACK pre-
diction, spliting the dataset into training and test by the vertical
blue line. Once dataset has many observations, it is quite
difficult to analyze as a whole, so for a better visualization
of the STACK forecasting performance, the Figure 7b shows
the samples from 4200 to 4300.

Furthermore, Figure 8 illustrates the observed values of



TABLE VII
PERFORMANCE MEASURES OF THE BASE-MODELS AND STACKING ON

TRAINING AND TEST SETS

Training set
Models RRMSE MAPE R2

STACK 0.0980 0.0818 0.8152
xgBoost 0.0648 0.0527 0.9219

MLP 0.2389 0.2209 -
K-NN 0.1283 0.1062 0.6809

SVR-Linear 0.1310 0.1093 0.6728
Test set

Models RRMSE MAPE R2

STACK 0.1101 0.0934 0.6690
xgBoost 0.1243 0.1072 0.5938

MLP 0.2445 2.4529e+35 0.0008
K-NN 0.1291 0.1160 0.6001

SVR-Linear 0.1112 0.0971 0.6588
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Fig. 7. STACK predictions

the time series versus the predicted values for wind power
generation obtained by STACK results both for training (red
triangles) and test sets (black dots).
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In addition, comparing the results of the performance on
Table VII, it can be seen that xgBoost had a better performance
on training phase. However, in test phase STACk presented the
black dots more centralized with fewer outliers. Both results,
diagram and performance measures, shows that STACK pre-
diction performed better than other models.

According to Friedman test, considering observations
that predictions are different, there is statistically differ-
ence between the squared error (SE) for five adopted ap-
proaches (χ2

4 = 1252.6, p-value < 0.05).
Moreover, the Figure 9 illustrates the comparisons between

five approaches. In this representation, those algorithms that
are not joined by a line can be regarded as different.

2 3 4 5

CD

STACK
SVR−Linear

xgBoost

K−NN
MLP

Fig. 9. Comparison of the CD of the predicted models

According to Figure 9, there is no statistical difference
between STACK and SVR-Linear (CD = 0.16717, degrees of
freedom = 6655, p-value < 0.05). However, STACK presents
statistically lower error than others models.

Therefore, after conducing the experiments, STACK pre-
sented better results when compared with the base-models
analyzed individually. Furthermore, the stacking ensemble
presented better results on all performance measures tested,
showing good and excellent performance on RRMSE and
MAPE, respectively. Also, STACK presented the lower error
in the statistical analysis compared to the others.



V. CONCLUSION

The paper proposed a stacking ensemble of 4 heteroge-
neous base-learner models and 1 meta-learner. The proposed
framework was developed with the objective to forecast the
wind power generation one observation ahead. The stacking
ensemble was composed by xgBoost, MLP, SVR-Linear and
K-NN, as base-learners in the first layer, and using SVR-
RBF as meta-learner in the second layer. The models were
compared using RRMSE, MAPE and R2 criteria, as well as
statistical tests. The results showed that stacking ensemble
had a better performance than the other approaches with
individually analysis in all performance measures criteria.

For future works is intend to adopt different combinations of
models in both layers of the stacking ensemble. Increasing the
number of base-learners and compare them would be a value
contribution. Also, increasing the number of steps ahead to
forecasting.
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