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Abstract—Epidemiological time series forecasting plays an
important role in health public system, since it allows managers
to develop strategic planning to avoid possible epidemics. In this
aspect, a hybrid approach is developed to forecast confirmed cases
of megingitis in the Para, Parana and Santa Catarina states,
Brazil. In this case, ensemble empirical mode decomposition
(EEMD) is applied to decompose the original signal, quantile
random forests (QRF) is adopted to forecast each component
obtained in decomposition stage and multi-objective optimization
(MOO) is used to reconstruct the final forecasting. To assess the
performance of adopted methodology, comparisons are conducted
with approach that considers to reconstruct the signal by simple
sum (EEMD-QRF) and QRF without decomposition. In this
context criteria such as mean squared error, symmetric mean
absolute percentage error and coefficient of determination as well
as statistical tests are adopted. As results, EEMD-QRF-MOO
reached lower errors and better coefficient of determination in
most of the cases. Indeed, the EEMD-QRF-MOO and EEMD-
QRF squared errors are statistical equals, and lower than QRF
squared errors. With these results it is conclude that using
decomposition technique combined with machine learning models
and optimization approach can be adopted to enhance the model
performance, whose results may be used to perform accurate
forecasting.

Keywords—Decomposition, ensemble, time series, meningitis,
multi-objective optimization.

I. INTRODUCTION

Meningitis is an inflammation that has several classifications
with specific causes and symptoms, and unfortunately it is
still a major public health problem, causing irreversible health
damage with high mortality rates [1]. Prevention, early diag-
nosis and initiation of treatment are fundamental to the good
prognosis of the disease. In addition, in the field of diseases
which are public health problems some studies have already
been conducted for regression and classification tasks using
machine learning approaches [2]–[5].

Time series forecasting, a subfield of regression area, aims
to using past data to forecast future values with purpose

of, for example, making a strategic planning to improve the
knowledge in the domain that are inserted and developed
public policies. Developing an efficient model is desirable and
techniques such as ensemble and decomposition can be used
for this purpose. These strategies can be employed to deal
with nonlinearity, nonstationarity and cyclicity inherent to time
series.

With relation of methodologies adopted to enhance models
performance, ensemble approach can be used for this purpose
and is applicable for regression [6] and classification [7] tasks.
The main aspect of this approach lies on training several
base (weak) models and combine its predictions to build an
efficient model [8]. It is supposed that this improvement occurs
because each base model learns different characteristics of the
data and add these information in the final results. Indeed,
this methodology has proven effective in forecasting tasks in
different knowledge domains [9]–[11].

An additional approach, usually adopted to improve the
models performance, is the ensemble empirical mode decom-
position (EEMD). Employing decomposition the original sig-
nal is separated into components and extract relevant informa-
tion from them. Decomposition based on EEMD methodology
consists of sifting an ensemble of white noise-added signal and
treats the mean as the final true result. Components obtained
are namely intrinsic mode functions (IMF) and residual [12].
In this case, each IMF is treated as an input set and are trained
separated using some algorithm. After this, it is necessary
reconstruct the original signal. Besides, the EEMD approach
has proven effective in forecasting task [13]–[15].

Considering the aforementioned, the aim of this paper is to
employ an approach that combine ensemble (quantile random
forests - QRF) and decomposition (EEMD) to forecast one
month ahead the meningitis confirmed cases number in the
Para (PA), Parana (PR) and Santa Catarina (SC) states, Brazil.
The QRF approach is adopted, once it showed good results



in applications from different areas [16]–[18]. The QRF is an
extension of random forest model, which keeps all information
contained in the leaves with objective to estimate conditional
probabilities. Due to the dynamic behavior of this disease, the
short-term forecasting is adopted. In the most of the cases, a
simple sum is adopted to reconstruct the original signal. This
approach considers same weight for all components, which pe-
nalizes those that explain more the data variability by attribute
the same importance for all components. Faced with this, in
this paper multi-objective optimization (MOO) is adopted to
reconstruct the original signal, with purpose to choose different
weights to each component. The MOO approach enable to deal
with bias-variance trade-off and improve the models’ accuracy
and stability simultaneously [19].

The contributions of this paper are twofold. The first refers
to the fact that there are limited discussions regarding how to
reconstruct the original signal using different approaches as
presented by [20], [21] and [22]. In this case, an investigation
of effectiveness of MOO to aggregate the results of EEMD
components is conducted. In this context this paper is seeking
to add discussions in this field. The second fold lies on the
development of a hybrid forecast model, to forecast the values
for a disease that over the years can affect the population
and the results may be used to conduct public polices and
preventive campaigns.

The remainder of this paper is structured as follows: Section
II-A presents the data sets adopted in this paper. Section II-B
describes the methods employed in this paper. Section III
presents the data modeling steps. Section IV shows the results
and discussions. Finally, Section V concludes this paper and
presents the proposals of future research.

II. MATERIAL AND METHODS

In this section, the data as well as the adopted methods used
in this paper are presented.

A. Material

The data used in this paper refers to monthly records
of meningitis confirmed cases number, recorded in disease
information system. The information for PA, PR and SC states,
Brazil, are chosen because the disease behavior is different and
it enable to evaluate the proposed approach in some scenarios.
Table I presents the statistical indicators.

TABLE I
STATISTICAL MEASURES FOR THE MENINGITIS NOTIFIED CASES NUMBER

FOR ALL STATES.

State Description n Minimum Mean Maximum Standard Deviation
All data 144 14 37.54 74 10.66

Para Training 132 14 37.02 74 10.51
Test 12 25 43.33 62 11.01
All data 144 63 141.63 561 71.46

Parana Training 132 63 142.15 561 73.95
Test 12 97 135.92 222 35.06

Santa All data 144 35 70.68 235 26.78
Catarina Training 132 35 70.39 235 27.56

Test 12 49 73.92 97 16.30

For three adopted series, information between years 2007
and 2018 are available on Department of Informatics of
the Unified Health System (Departamento de Informática do

Sistema Único de Saúde, DATASUS, in Portuguese) database
[23], which are used in this paper. In this case, the first eleven
years are used for model training, while the last year is used
for performance testing.

PA PR SC

2008 2010 2012 2014 2016 2018 2008 2010 2012 2014 2016 2018 2008 2010 2012 2014 2016 2018

50

100

150

200

100

200

300

400

500

20

40

60

Year

N
u

m
b

e
r 

o
f 

N
o

ti
fi

c
a
ti

o
n

s

(a) Observed series.
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(b) Notifications number for each state over twelve years.
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(c) Autocorrelations (ACF) for PA (A), PR (B) and SC (C) states

Fig. 1. Graphical analysis for adopted time series.

Figures 1a and 1b illustrate the data sets behavior, in which
for PR state, there is a greater number of notifications than
other states. The Augmented Dickey-Fuller test shows that the
three series are non-stationary (DF = -5.35 - -3.41, p-value >
0.05). With objective of evaluate the presence of seasonality
in the data, Kruskal-Wallis test is performed. In this case, for
PA and SC series, there is no evidence of seasonality (χ2

11 =
13.32 - 15.50, p-value > 0.05), while for the series related
with PR state, there is evidence of seasonality (χ2

11 = 33.07,
p-value < 0.05) [24]. Additionally, Figure 1c suggests that up
to first four observations are correlated, and can be used as
inputs for the data modeling.



B. Methods

1) Ensemble Empirical Mode Decomposition : The EEMD
technique was proposed by [12] and is an extension of Empir-
ical Mode Decomposition (EMD) algorithm. This approach
consists of sifting an ensemble of white noise-added signal
(data) and treats the mean as the final true result. In this
sense, it is performed the decomposition of time series signal
with objective to extract the coexisting oscillatory functions,
named IMF and residual component, from original data. After
this, the ensemble average of corresponding IMF is treated
as the final decomposed time series. Further details, [20] can
be consulted. It was proposed to overcome the drawback
of the so-called ”mode mixing” problem (MMP), which is
considered an advantage of this approach. The MMP it is
known as the fact that each single IMF consists of signals
with dramatically disparate scales or a signal of the same scale
appears in different IMF components [25]. Faced with this, two
disadvantages can be stated, such as: (i) Extra noise exists in
the reconstructed signal and (ii) it needs more computational
resources [26].

2) Quantile Random Forests : The quantile random forests
(QRF) [27] approach is an extension of random forests (RF)
ensemble model [28]. It provides information about the full
conditional distribution of the response variable, not only
about the conditional mean. In this approach, the use of
conditional quantil is to enhance the RF performance, which
makes this a consistent approach [27]. The main assumption
about QRF lies on that weighted observations can be used
for estimating the conditional mean [16]. Additionally, while
the RF approach keeps in the results information as regards
the notifications number average of the leaves, the QRF keeps
all notifications contained in the leaves with objective of to
estimate

P̂ (Ct+h ≤ C|pt) = F̂ (C|pt), (1)

in which the left side of equality represents the conditional
probability of notifications number in relation to predictors,
being Ct+h the notifications in a h horizon and pt the
predictors’ number, (t = 1, . . . , N ). The right side refers to
the conditional distribution function (CDF) of notifications
number average regarding to predictors. Considering that QRF
uses the quantiles in the predictions process, the α-quantil
of CDF is stated as the probability that the number of
notifications is less than Qα given pt is equals to α, whose
estimate of α is stated as follows,

Q̂α(pt) = inf
{
C : F̂ (C|pt) ≥ α

}
, (2)

in which Q̂α(pt) is the α-quantil estimate with respet to
predictor t [27].

3) Multi-objective optimization : On some problems, it is
necessary to minimize (or maximize) multiple objectives in
order to achieve a preferable solution. Indeed, if there are two
or more objectives, a methodology that can be used for this
purpose is the MOO [29]. The MOO is performed basically

on three folds: First, it is necessary to define the multi-
objective problem (MOP); Second, some algorithm is used
to optimize the objectives; Third, it is essential to choose the
most appropriate result for the formulated problem, appointed
as multicriteria decision making (MCDM) [30]. According to
[29], in the first step, the MOP is defined, which decision
variables, constraints and objectives are stated. With objective
to obtain an accurate and stable model, the bias-variance
framework may be adopted as objectives [31]. Hence, it is
expected that the final model presents results with lower error
and variance. After the aforementioned step, in the MOO step,
an optimization algorithm is applied with objective to find the
Pareto Front approximation (PF). This set is composed of non-
dominated solutions, which are solutions for which there is
no other permissible solution that simultaneously improves all
the objective functions without sacrificing at least one other
objective function. In this aspect, each set of decision variables
associated to each element of PF makes up the Pareto Set (PS)
[29]. Lastly, in the MCDM step, it is found a preferable set
of decision variables that permits to deal with the trade-off
between the objectives.

III. METHODOLOGY

The steps of adopted methodology are similar the procedure
of [32] and summarized as follow,

1) Performing EEMD to data set and obtain 4 IMFs and
residual (R) component;

2) For each component, the autocorrelation analyzes
showed, in most of the cases, that up to four lags are
suitable to use as predictors. Without loss of generality,
for all components and states studied, this configuration
is used.

3) Applying center-scale (subtracts the mean and divide by
standard deviation of variable) preprocessing;

4) Training each IMF and R components using QRF using
leave-one-out cross validation with time slice window,
according to follow structure

y(t,k) = f
{
y(t−1,k), y(t−2,k), y(t−3,k), y(t−4,k)

}
+ ε,

(3)
in which f is a function related to adopted model for
training process, y(t,k) is the forecast value for k-th com-
ponent obtained in decomposition stage (k = 1, . . . , 5)
at time t, y(t−d,k) are the previous notified cases lagged
in d = 1, . . . , 4 and ε is the random error, which follows
a normal distribution with zero mean and variance σ2.

5) Reconstructing the original signal, based on training
predictions, using MOO process, as follows:

a) In the MOP, the cost function is stated as follows:

ŷt =
k=4∑
i=1

θiÎMFQRFk
+ θ5R̂QRF5

, (4)

in which ŷt is the predicted value at time t,
ÎMFQRFk

and R̂QRF5 are the predictions of each
component and θi is the weight to be estimated,



in which θi ∼ Unif [−2, 2]. The objectives are
defined as follow,

J1(ŷ) =

Bias−Error︷ ︸︸ ︷
[E(ŷ)− y]2 and J2(ŷ) =

V ariance−Stability︷ ︸︸ ︷
E[ŷ − E(ŷ)]2 ,

where

E(ŷ) =
1

n

n∑
i=1

ŷi and y =
1

n

n∑
i=1

yi, (5)

in which ŷi and yi are i-th predicted and observed
values.

b) In the sequence the Non-Dominated Sorting Ge-
netic Algorithm II (NSGA-II) [33] is applied and
the Pareto Front approximation (PF) is obtained.
The crossover rate is set to 0.9 because it permits
new structures to be introduced into the population
at a faster rate, whereas mutation rate is set to 0.1
because it prevents a given position from becoming
stagnant in a set of values for the parameters to be
optimized;

c) With purpose to find the best set of weights, the
technique to order preference by similarity (TOP-
SIS) [34] is employed, in which the weights for
bias (error) and variance objectives are 10% and
90%, respectively;

6) Forecasting the meningitis confirmed cases number, ac-
cording to

ŷt =

k=4∑
i=1

θ̂k ÎMFQRFk
+ θ̂5R̂QRF5

, (6)

in which θ̂k are the estimated weights.
7) Computing the performance measures such as coeffi-

cient of determination (R2), root mean square error
(RMSE) and symmetric mean absolute percentage error
(sMAPE), which are stated as follow,

R2 = 1−

n∑
i=1

[yi − ŷi]2

n∑
i=1

[yi − yi]2
, (7)

sMAPE = 100×
n∑
i=1

∣∣∣∣ ŷi − yi
(|yi|+ |ŷi|/2)

∣∣∣∣ , (8)

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2, (9)

in which n represents the number of observations of
the training and test sets, yi is the i-th observed value
and ŷi is the ith predicted value by the adopted model.

Friedman test can be applied to evaluate the squared
errors (SE). This approach is able to show if there is
difference between the average ranks for more than two
samples [35]. It can be employed to answer if on a set
of k algorithms (greater than two), do at least two of
the methods present different results.
Second to [35], if the null hypothesis is rejected, it
is necessary to apply a post-hoc test to find which
groups have different results. Hence, the Nemenyi test
can be applied. In this approach a threshold is obtained
according to (10)

CD =
q∞,k,α√

2

√
k(k + 1)

6
, (10)

in which CD is the critical difference for which allows
to infer that the results (errors) are statistically equals or
not for the compared groups, q∞,k,α are the quantiles
based on the studentized range statistic, k is the groups
number and n is the observations number. If the critical
differences rank sums |Ri − Rj | are greater than CD,
there is difference between results from groups i and j
[36]–[38].

In addition, Figure 2 presents the framework of the proposed
hybrid forecasting approach.

The	structure	of	decomposed
	model	

and	forecasting	results

Step	1
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			Training	each	time	series	
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Multi-Objective	Problem
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Optimization

An	algorithm	is
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Fig. 2. Framework of the proposed hybrid forecasting approach.



The results presented in Section IV are generated using the
processor Intel(R) Core(TM) i5-4200U central processing unit
of 1.6Hz in Windows 10 operating system. The R software
[39] is adopted to perform the modeling.

IV. RESULTS

For adopted series, Figure 3 represents the decomposed
series for each state. Faced with this, four IMFs and one
residual component are obtained.
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(a) Decomposed series for PA state.
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(b) Decomposed series for PR state.
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(c) Decomposed series for SC state.

Fig. 3. Decomposed time Series for each State.

Table II presents the number of randomly selected predictors
(mtry) for each component/model and time series. On most of
the cases all predictors, or lags, are used in QRF training.

TABLE II
CONTROL HYPERPARAMETERS (mtry) EMPLOYED IN EACH MODEL.

Component/Model PA PR SC
IMF1 2 4 3
IMF2 4 4 4
IMF3 4 2 3
IMF4 4 2 4

Residual 4 3 4
QRF 4 4 2

Figure 4 illustrates the PF for each MOO conducted, as
well as the selected solution (red triangle) and non-selected
solution (black circle) by TOPSIS approach.
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Fig. 4. PF for each EEMD-QRF-MOO for PA (left), PR (middle) and SC
(right).

According Figure 4, there is trade-off for bias-variance,
what justifies the use of the MOO process. For PR and SC
greater variation and error are observed, with less intensity
for PA state.

Table III presents the weights set obtained by TOPSIS
technique after performing MOO.

TABLE III
WEIGHTS ADOPTED FOR EACH IMF AND RESIDUAL IN THE SIGNAL

RECONSTRUCTION.

State θ1 θ2 θ3 θ4 θ5
PA 1.1020 1.0409 1.0151 1.0126 1.0146
PR 1.0904 1.0214 1.0143 0.9798 0.9938
SC 1.0691 1.0162 0.9118 1.1994 0.9892

Considering the Table III results, for PR and PA the first
component received greater importance, while for SC state,
the component four had more importance. This suggest that
adopting same weight for all components can lead to less
accurate result. Theses weights are determined on the basis
of the NSGA-II algorithm, with objective to acquire better
weight coefficients of those several single models.

The models’ performance measures to forecast one month
ahead the meningitis notified cases number for each state are
shown in Table IV. Best results are stated in bold.



TABLE IV
PERFORMANCE MEASURES ADOPTED IN THE MODELS EVALUATION.

Training set
State Measure EEMD-QRF EEMD-QRF-MOO QRF

RMSE 1.3550 1.0825 3.6596
PA R2 0.9882 0.9893 0.8919

sMAPE 2.57% 2.08% 4.19%
RMSE 4.0243 3.6518 7.6555

PR R2 0.9867 0.9901 0.8552
sMAPE 1.93% 2.03% 2.47%
RMSE 4.9434 4.4362 7.0872

SC R2 0.9148 0.9317 0.8552
sMAPE 6.50% 5.51% 4.04%

Test set
RMSE 6.0690 6.0346 12.7777

PA R2 0.6693 0.6751 0.0369
sMAPE 11.73% 11.57% 23.54%
RMSE 17.5855 17.3518 31.8764

PR R2 0.7323 0.7378 0.1869
sMAPE 8.24% 7.97% 15.28%
RMSE 8.1240 9.6220 15.4407

SC R2 0.8472 0.8628 0.1355
sMAPE 9.82% 12.03% 19.73%

Considering the results pointed out in Table IV, the EEMD-
QRF-MOO approach outperform other two approaches for
both training set and test set (on two data sets). Expressive
improvement is observed when results of EEMD-QRF-MOO
and QRF are compared. By analyzing the performance of
EEMD-QRF-MOO and EEMD-QRF, the results are similar,
but best for first modeling. Evaluating the results in test set,
with regard the meningitis notified cases number for PA and
PR states, the approach that combine signal decomposition
and optimization approaches reached an improvement for
RMSE and sMAPE ranged between 0.57% - 52.77%, 1.29% -
50.82% for PA, 1.33% - 45.57%, 3.25% and 47.79 for PR.
Regarding the explained variability (R2), the EEMD-QRF-
MOO model achieved better results than the other approaches.
These improvements are ranged between 0.86% - 94.54%,
0.75% - 74.66% and 2.23% and 84.15% for PA, PR and SC
states, respectively.

Additionally, results for SE standard deviation are presented
in Table V. This measure is used to assess the models stability.
These results show the stability of each model when predic-
tions out-of-sample are evaluated. For all cases, the proposed
approach shows better results than the other two approaches.

TABLE V
STANDARD DEVIATION FOR MODELS SE FOR TEST SET.

State EEMD-QRF EEMD-QRF-MOO QRF
PA 1.0500 0.9902 6.0696
PR 2.1544 2.1542 7.2229
SC 1.6042 1.4264 4.3714

Figure 5a illustrates the observed versus predicted values
for meningitis notified cases number obtained by EEMD-QRF,
EEMD-QRF-MOO and QRF.

With regard of results obtained when EEMD associated or
not with MOO techniques are employed, the forecasting are
close of observed values for PA and PR states. Alongside,
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(c) Observed and Predictions for SC state

Fig. 5. Observed versus predicted values for the meningitis notified cases in
each state.

lower variations are observed. In contrast, greater error can
be observed for forecasting values in SC state. However,
even so these results are better than use only QRF approach.
This suggest that employ signal decomposition allows to
obtain forecast values similar with observed values than not
using this approach. Additionally, adopting MOO for signal
reconstruction enables to enhance the models performanceby
dealing with the trade-off between the objectives defined in the
MOP [40]. In other words, by the use of MOO approach, it
is improved the models accuracy and stability by minimizing
the forecast errors as well as variability of the errors. In this
way, with the use of decomposition combined with MOO was
possible deal of the nonstationarity of the data, and in the PR
case, with the seasonality.

According to Friedman test, considering months that pre-
dictions are different, there is statistically difference between



the SE for three adopted approaches. (χ2
2 = 12.51 - 14.97, p-

value < 0.05). Figure 6 illustrates the comparisons between
three approaches. In this representation, those algorithms that
are not joined by a line can be regarded as different. The CD
to consider the errors statistically different are 1.1088, 1.1722
and 1.1722 for PA, PR and SC states with 2 degree of freedom.

1 2 3

CD

QRF

EEMD−QRF

EEMD−QRF−MOO

(a) CD diagram for PA state.
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Fig. 6. Visualization of post-hoc test for SE of three approaches for PA, PR
and SC states.

With regard to illustrated by Figure 6, indeed, the QRF ap-
proach presents statistically higher error than two approaches
based on decomposition for all states (Difference = 1.11 - 1.72,
p-value < 0.05). For PA and PR states, the EEMD-QRF-MOO
shows lower error than EEMD-QRF, but there is no statistical
difference (Difference = -0.33 - 0.61, p-value > 0.05). Even
though no statistical difference is observed between the errors
of the EEMD-QRF-MOO and EEMD-QRF approaches, this
does not imply that the results obtained with the use of the
former for PR and PA states and the latter for SC are the same.
Given this, it appears that however small the differences exist
and should be considered [41].

Considering the aforementioned results, the effectiveness of
combined approach lies on two folds. First, the accuracy and
stability of EEMD-QRF-MOO are reached due to the use of
MOO, once this approach is designed to achieve the objectives
of high accuracy and stability simultaneously [42]. Second, by
EEMD use it is feasible to separate the internal characteristics

of the original signal, which permit to improve the model’s
accuracy.

V. CONCLUSION

This paper proposed an ensemble based on decomposition
EEMD, QRF and MOO (EEMD-QRF-MOO). The proposed
framework was developed with objective to forecast one month
ahead the meningitis notified cases number for PA, PR and
SC States. This approach was compared with EEMD-QRF
and QRF. The main difference of EEMD-QRF and EEMD-
QRF-MOO is that in second approach the original signal is
reconstructed using the MOO perspective. This allows to deal
with bias-variance trade-off. The models were compared using
the RMSE, sMAPE and R2 criteria, as well as with statistical
tests. According to the obtained results, it is concluded that:

1) Employing signal decomposition improve the final re-
sults for training and test sets regarding not apply
decomposition;

2) The combination of signal decomposition, training each
component with ensemble approach and reconstruct the
signal using optimization enable to enhance the models
performance for adopted time series;

3) Results from two signal reconstruction approaches are
statistically equal, while the EEMD-QRF-MOO outper-
form EEMD-QRF in absolute values on 2 of 3 cases.

For future works is intend to adopt other decomposition
techniques, training each component by other ensemble and
single approaches, use other forecast horizons, MOO algo-
rithms as well as different MCDM techniques.
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