
Integrating mobile robot navigation control, visual object detection and
manipulation using ROS and V-REP

Felipe Pierre Conter1, João Alberto Fabro1 and André Schneider de Oliveira2

Abstract— The integration of robotic manipulators and mo-
bile robots is a challenging task involving control of both
the mobile base and the manipulator in an coordinated way.
In order to study this coordination, in this paper a robotics
simulation environment is used. Combining ROS (Robot Op-
erating System) and a realistic robotics simulator, V-REP
(Virtual Experimentation Platform), a KUKA youBot robot
was used to integrate mobile navigation and object manipu-
lation. The omni-directional mobile base is controlled using a
fuzzy position controller, the detection of an object of interest
over a table is performed using a simulated camera (with
a blob detection algorithm), and then the manipulator arm
is controlled for object grasping. The use of the simulator
allows for a first step in the development of a complete
ROS solution to manipulation/pick-and-place, and its use in
industrial/commercial/residential environments.

I. INTRODUCTION

Robotics projects can be hard to develop in the real
world without prior testing and simulation. There are several
simulation environments available, and each with its own
characteristics. V-REP (Virtual Robotics Experimentation
Platform) [1] is an example, providing a variety of examples
and predefined robot models that can be used for 3D simu-
lation and study without the need to build the real scenery
with real robots. This kind of tool is essential to help in the
development of various approaches within research groups
that don’t have access to real test environments, providing a
way for testing different robots without having to physically
acquire them.

Object manipulation is a common task in different
robotics applications, such as those presented by the
RoboCup@Home league [2]. It involves object detection,
position estimation, grasp planning and execution, and differ-
ent techniques can be used in each of these steps, including
computer vision and artificial intelligence. Previous research
indicates that participating teams use different approaches
and solutions for this problems [3]. Some of them are not
easy to learn and put into practice. This multidisciplinary
challenge can become highly complex and intimidating for
new researchers in robotics. Therefore, approaches with
lower complexity can encourage the entering of new re-
searchers in the field.

1J. A. Fabro is a professor with the Graduate Program on Applied
Computing - PPGCA, at the Informatics Department - DAINF - at
UTFPR - Federal University of Technology, Parana, Brazil - Campus
Curitiba. F. P. Conter is a master student within this Graduate Program.
fabro@utfpr.edu.br, felipeconter.cc@gmail.com

2A. S. de Oliveira is a professor with CPGEI - Graduate Program of
Electrical Engineering and Industrial Informatics, UTFPR, Brazil - Campus
Curitiba. andreoliveira@utfpr.edu.br

Recently, an approach based on the direct manipulation
of objects by a mobile robot with a coupled manipulator
arm [4] was presented. The main problem related was the
precise estimation of the object position, that was solved
by placing a QR-Code marker on the object. This solution
has several disadvantages: it is necessary to place markers
on every object to be manipulated, and the marker must be
visible from the robot’s point of view. In order to try to avoid
such problems, this project proposes an alternative approach:
using a camera positioned directly over the end-effector of
the manipulator arm, and using an arm that can approach
the object directly from above. With the camera directed
“down”, it would be possible to recognize the object by its
shape/color, thus avoiding the necessity for object markers.

By using ROS (Robot Operating System) [5], an open-
source, meta-operating system for robotics, it would become
possible to increase code reuse when using the same simu-
lated approach with a real robot. ROS provides services for
integration and interoperability of processing nodes, as well
as tools and libraries for coding. It offers a communication
infrastructure that standardizes the exchange of commands
and data between different components. The connection
between ROS nodes and V-REP is possible because V-REP
has a plugin that enables subscription and publishing to ROS
topics.

Inside V-REP, several robot models are available for use
in its simulation environment. The one selected for this
work is a robot with an open platform and an integrated
manipulation arm, already available in V-REP: youBot [6]
[7]. This is a robot manufactured by automation company
KUKA, designed for use in education and research. The
main objective of this work is to apply fuzzy control for
the navigation of the simulated youBot, approaching a table
where there is an object of interest to be manipulated (in this
case, a white cube with 5cm of edge size). The robot searches
for the object’s exact position using the camera coupled to
the tip of the manipulator (positioned directly above the end-
effector), using blob detection algorithms for image process-
ing. Since the height of both the table and object is known,
by finding the center of the object from above, it becomes
possible to pick it up with the manipulator arm. Experiments
are presented regarding every aspect of this situation: fuzzy
control for robot navigation allowing approach to the table,
inverse and direct kinematics to control the manipulator arm,
image processing to estimate the position of the object, and
the actual manipulation (picking it up and moving it to the
robot’s base).

The remaining of this paper is organized as follows:



Section II presents the methodology, section III details the
experiments (regarding the fuzzy control of the robot’s base
towards the table for manipulation, object detection and the
manipulator control in order to pick the object over the
table). Section IV presents an evaluation of the results of
the simulated experiments, and Section V presents some
conclusions and suggestions of future work.

II. METHODOLOGY

The scene in V-REP includes a 5x5 meters floor, with
a youBot robot that was modified by adding a laserscan
Hokuyo URG-04LX-UG01 sensor [8] and V-REP vision
sensor (camera) called “Blob detection camera” (available in
the model browser, inside components, sensors). The Hokuyo
sensor was placed on the front side of the youBot base,
providing information that can be used for the navigation.
The camera was placed on the tip of the arm, just before the
grippers, as can be seen on Figure 1. The “Blob detection
camera” is a container component, including the camera and
a image processing filter that constantly search for areas
based on a given threshold. In the proposed approach, the
object with a predefined color and known shape is positioned
in the pick-up area, and the blob-detector filter allows for the
precise localization of this object in the manipulation area.

The problem set in V-REP is the following: youBot has
to move to a predefined location, next to a table, with a
predefined orientation (positioned towards the table). The
table has a white cube in top of it. Once arriving to its
destination, the robot has to position its camera on top
of the table and detect the cube, using the blob detection
camera filters to segment the object. Once the cube position
is known, the last step is to grasp it with the arm and move
it to a flat space located on top of the robot’s base.

Robot movement and positioning is managed by a ROS
node responsible for the robot control, written in C++
running outside V-REP. It makes use of the FLIE fuzzy
library [10] for fuzzy control, based on the proposal of [9].
In V-REP, the youBot robot model has a script written in Lua
language, that is responsible for the logic directly associated

Fig. 1. Blob detection camera position on youBot arm

with the robot’s low level calculations. It was adapted to
communicate with ROS.

III. EXPERIMENTS

The problem has been divided into 4 steps: fuzzy con-
trol for youBot navigation, arm positioning control, camera
positioning for object detection and object manipulation.

A. Fuzzy Control youBot Mobile Base

The first part of the experiment consists in making the
robot move to the desired position (in front of the table),
with the desired orientation (rotated, so it’s facing the table).
The movement control was reduced to two variables: angular
velocity and linear velocity. Although the robot is capable
of omni-directional movement, only one dimension of linear
motion (forward/backward) was used. In this way, the code
is less coupled to this robot in particular and can be easily
adapted to non-omnidirectional robots.

The V-REP youBot model has a script that handles its
movement and positioning. The robot has 4 wheels, and
the script supports 3 types of velocities: forward/backward
velocity (x), left/right velocity for sideways movement (y)
and clockwise/counter-clockwise rotation velocity (z). The x,
y and z velocities are then combined in a single value that is
distributed to each wheel (∆). The front left wheel velocity is
obtained by (1). Equations (2), (3) and (4) represent the rear
left wheel, rear right wheel and front right wheel velocities,
respectively. Since we want the code to be compatible with
non-omnidirectional robots, the only velocities ROS controls
are the angular and linear velocities. For this reason, the
left/right velocity (y) is always set to zero.

∆frontleft = −x− y − z (1)

∆rearleft = −x+ y − z (2)

∆rearright = −x− y + z (3)

∆frontright = −x+ y + z (4)

V-REP publishes the robot reference point odometry in
a ROS topic (/odom). That topic is read by the ROS node
responsible for the robot control. Knowing the desired posi-
tion (a predefined goal in front of the table), the angular and
linear errors are calculated. The linear error is the distance
between the robot reference point and the goal, and the
angular error is the difference between the robot orientation
angle and the desired orientation, which is pointing towards
the goal. To generate the angular and linear velocities, two
fuzzy controllers, of the Mamdani type, were created:

• The first, responsible for the linear velocity (a.k.a. linear
velocity fuzzy controller), receives as input the linear
and angular errors, and outputs the linear velocity,
between 0 and 1.

• The second (a.k.a. angular velocity fuzzy controller)
receives the linear and angular errors as input and
delivers the angular velocity, varying from -1 to 1.

The linear error has 3 fuzzy classes: arrived, near, far
and the representing fuzzy sets can be seen in Figure 2.



Fig. 2. Fuzzy sets for linear error. From left to right: class “arrived” is a
triangle (0.0, 0.0, 0.1), class “near” is a triangle (0.0, 0.5, 1.5), and class
“far” is a trapezoid (0.9, 6.0, 7.1, 7.1).

Fig. 3. Fuzzy sets for angular error. From left to right: class “high-negative”
is a triangle (-3.15, -3.15, -1.0), class “low-negative” is a triangle (-1.5, -
0.75, -0.05), class “straight” is a triangle (-0.2, 0.0, 0.2), class “low-positive”
is a triangle (0.05, 0.75, 1.5), and class “high-positive” is a triangle (1.0,
3.15, 3.15).

The angular error has 5 fuzzy classes: high-negative, low-
negative, straight, low-positive, high-positive and the repre-
senting fuzzy sets can be seen in Figure 3.

These fuzzy sets are used by the fuzzy controllers when
calculating their output values in the defuzzification step,
which follow the “centroid” calculation method. The fuzzy
sets for the linear and angular velocity outputs can be seen
in Figures 4 and 5, respectively. The rules considered for the
linear velocity are presented in Table I, while the rules for
the angular velocity are presented in Table II.

The output of both fuzzy controllers is combined into a
single data type and written to a ROS topic (/cmd vel). That
topic is read by the V-REP script and the velocities are scaled
and applied. V-REP scales these signals and the range goes
from -1.0 to 1.0, to the broader range of −240 × π/180
to 240 × π/180, to be applied individually in each wheel
according to the rules defined in equations (1-4). This cycle
goes on until the robot has reached its destination (linear
error is smaller than 0.05). For this project, it is assumed that
the odometry errors of the robot are negligible, and this is
not the case for most real robots, but since the localization
of the robot is not critical, any robot with some kind of
SLAM (Simultaneous Localization and Mapping) navigation
algorithm should be able to position the robot correctly in
relation to the manipulation area (the table).

Once the goal is reached, the robot’s orientation is adjusted
in relation to the table. The fuzzy control for angular velocity

TABLE I
LINEAR VELOCITY FUZZY CONTROLLER RULES

Angular Error Linear Error Linear velocity
high-negative OR high-positive far OR near low
low-negative OR low-positive far OR near medium

straight far OR near high
* arrived low

Fig. 4. Fuzzy sets for linear velocity output. From left to right: class “low”
is a triangle (0.0, 0.0, 0.2), class “medium” is a triangle (0.0, 0.1, 1.0), and
class “high” is a triangle (0.9, 1.0, 1.0).

Fig. 5. Fuzzy sets for angular velocity output. From left to right: class
“strong-left” is a triangle (-1.0, -1.0, -0.5), class “left” is a triangle (-1.0,
-0.4, 0.0), class “straight” is a triangle (-0.3, 0.0, 0.3), class “right” is a
triangle (0.0, 0.4, 1.0), and class “strong-right” is a triangle (0.5, 1.0, 1.0).

is once again activated, with the desired orientation re-
defined, keeping the linear velocity in 0. A small modifica-
tion is made in this point, to ensure a faster convergence: the
output is always lower than -0.1 or higher than 0.1, avoiding
low acceleration levels. The cycle goes on until the robot has
reached the desired orientation (angular error is smaller than
0.05).

B. Arm Positioning Control

The V-REP script that handles youBot movement also
controls the joints of the arm. There are 5 joints and a gripper
in the arm, and the joint values vary in their ranges [7].
The script supports forward kinematics (FK), where the 5
joint values have to be provided, but also supports inverted
kinematics (IK), where the position of the arm’s tip can be
defined in 3 dimensions (x, y and z axis), and the algorithm
calculates the joint values to try to reach that destination.
ROS code will control the arm writing in 10 topics (the full
topic list can be seen in Table III):

• One topic (is fk mode), with message type
std msgs/Int32, defines the arm control mode: 0
means deactivated, 1 means FK and 2 means IK.

• Five topics (joint 1 up to joint 5), with message type
std msgs/Float32, define the values to be applied in FK
mode, one for each joint.

• Three topics (ik desired x, ik desired y, ik desired z),
with message type std msgs/Float32, define the values

TABLE II
ANGULAR VELOCITY FUZZY CONTROLLER RULES

Angular error Angular velocity
high-negative strong-left
low-negative left

straight straight
low-positive right
high-positive strong-right



TABLE III
ROS TOPIC LIST

Topic name ROS message type
/cmd vel geometry msgs/Twist
/cube x std msgs/Float32
/cube y std msgs/Float32

/ik desired x std msgs/Float32
/ik desired y std msgs/Float32
/ik desired z std msgs/Float32

/is gripper closed std msgs/Int32
/is fk mode std msgs/Int32

/joint 1 std msgs/Float32
/joint 2 std msgs/Float32
/joint 3 std msgs/Float32
/joint 4 std msgs/Float32
/joint 5 std msgs/Float32
/odom geometry msgs/PoseStamped
/tip x std msgs/Float32
/tip y std msgs/Float32
/tip z std msgs/Float32

to be applied in IK mode, one for each axis.
• One topic (is gripper closed), with message type

std msgs/Int32, defines the gripper state: 0 means open
and 1 means closed. The gripper is used to grasp the
object.

When V-REP script reads anything different than 0 from
the arm control mode topic, it starts the arm control. If it
reads 1, it starts FK control, reads the 5 values from the
joint value topics and applies them. If it reads 2, it starts IK
control, reads the 3 axis values from the respective topics
and passes them to the IK algorithm. Therefore ROS code
can control not only the position of youBot base, but also
the position of its arm.

C. Camera Positioning For Object Detection

The goal of the first phase of the arm movement is to
point the camera “down”, towards the cube, so that the
filters defined in the blob detection camera can successfully
detect the cube. In the simulations, it was difficult to position
the arm in the desired position and orientation using IK
mode, since the algorithm is prepared to receive only the
desired position of the arm’s tip (x, y and z axis), not
taking orientation in consideration. With this limitation, and
considering that the table height is known, the FK mode
was chosen. That way, the joint values for the 5 joints are
individually applied, and the joints can be moved as desired.
A good position for the joints was found through empirical
tests, putting the arm’s tip over the table, with the tip itself
and the camera facing downwards, as seen in Figure 6.

The blob detection is implemented as a filter in V-REP, and
it takes two parameters: threshold and minimum size of blobs
(the filter will ignore blobs smaller than the size informed).
The filter was tested with different threshold levels, and
finally set to 0.8, detecting the white cube as soon as it
completely enters the camera image frame. A V-REP API
function (simReadVisionSensor) can be accessed in
Lua, returning a variety of information about the detected

Fig. 6. Arm position and blob detection. The window shows the camera
view, with the object correctly segmented, as can be seen by the highlighted
edges.

blobs, including the blob count, the blob sizes, orientations
and positions. With this function, it is possible to retrieve the
object position within the image. An example of the detected
blob can be seen in Figure 6.

D. Object Manipulation

After detecting the cube’s position in the image, the goal
is to pick it up and put it in the robot’s base. The V-REP
simulator publishes the cube’s position in a topic, while ROS
provides the information to the other topics related to arm
positioning. After receiving the cube’s position, a ROS node
calculates and sets the position to be applied in IK mode. V-
REP, checking that the arm control topic has been set to ’2’,
activates IK mode and moves the arm to the desired position.
The ROS code then orders the gripper to close and grab the
cube.

The next step is to move the arm to a position where
the cube can be released in the robot’s base. This is a fixed
position, relative to the arm. Setting the joint values in FK
mode, the arm can be moved to the desired position, and
then the gripper is opened, delivering the object to the robot’s
base, as seen in Figure 7.

Fig. 7. Arm delivering the cube to the robot’s base



IV. RESULTS

Integrating ROS and V-REP for controlling position and
movement of the youBot robot involved the application of
a variety of concepts, including fuzzy logic controllers and
image processing for object detection. The arm control also
introduces the concepts of forward kinematics and inverted
kinematics, and ROS code controlled the robot, providing
the coordinates to the V-REP simulation script.

One execution was made with the robot starting at position
(x,y)=(-1.5,-1.5), with 180◦ rotation away from the table
(facing directly the opposite direction). The fuzzy controllers
output and the errors progression over time from this ex-
ecution can be seen in Figure 8. It is clear that, at first,
the angular velocity is high, and diminishes slowly up to
the moment when the angular error approaches 0, while the
linear velocity rises progressively as the angular error lowers.
When the goal is reached, linear velocity goes down to 0,
and the only thing left is to fix the robot’s rotation.

The blob detection filter, implemented inside V-REP, was
able to successfully detect and segment an object, the white
cube, allowing successful manipulation in 100% out of
10 execution attempts, with the robot starting at different
initial positions. Since the experiments were executed on a
simulation environment, there is not much difference in the
environmentally dependant variables from one execution to
the other (which is not the case in real world applications).
Once the robot reaches the table and rotates, there is little
variety from this point onward between different executions.

Another attempt was made replacing the cube with the
model of a cup (a predefined V-REP model). In this case, the
blob detection filter struggled to define the cup as a whole,
and instead, identified a variety of blobs over the cup.

As for the fuzzy controllers for robot navigation, the
results were satisfying, taking the robot to the correct lo-
cation in 100% of the execution attempts. The simulation
environment made the task easier, providing the odometry for
the robot. In real world scenarios, odometry can accumulate
error over time, because of slipping wheels or irregular floor.

Fig. 8. Linear error, angular error, linear velocity fuzzy output and angular
velocity fuzzy output progression over time.

V. CONCLUSIONS

To what concerns robotics simulation, ROS code and
concepts can be easily tested in a V-REP environment. There
are several predefined models and if you can’t find one that
suits your needs, you can define your own. Fuzzy controllers
proved to be efficient for controlling the robot’s position and
movement. The blob detection from V-REP is a simple way
to detect and segment smooth and clear objects, but complex
scenarios and objects demand a more sophisticated approach
(with deep learning or approaches like using OpenCV [11]
being good candidates). The presented approach avoids the
need for a QR-Code marker on the object, as proposed by
Santos [4], opening new possibilities for object detection and
solving real manipulation problems in future work.

Since the focus was to build a simple environment that
encourages learning for new researchers in the field, and ROS
has a rich variety of solutions available, each component
can be adapted or replaced by different approaches, with
different libraries. Future work could address navigation
challenges that could be put into place, like obstacles,
collision-avoidance and SLAM. The search for the object
position without knowing it in advance could involve more
sophisticated computer vision techniques. Different objects
and object recognition approaches could be put into place.
The final challenge would be to put a robot to act in the
real world, identifying and manipulating different kinds of
objects.

The complete source code of this project is available
at the following github repository: https://github.com/laser-
utfpr/vrep youbot.git.

REFERENCES

[1] Rohmer, E.; Singh, S. P. N.; Freese, M.; “V-REP: a Versatile and
Scalable Robot Simulation Framework”, in IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems, 2013.

[2] “RoboCup@Home”. https://www.robocupathome.org. Accessed July
2019.

[3] Matamoros M.; Seib V.; Paulus D. “Trends, Challenges and Adopted
Strategies in RoboCup@Home”, in 2019 IEEE International Confer-
ence on Autonomous Robot Systems and Competitions (ICARSC).
https://ieeexplore.ieee.org/document/8733622. Accessed July 2019.

[4] Santos, A. G. D.; Santos, D. H.; Palar, P. S.; Oliveira, A. S.; Fabro, J.
A. “Métodos de Controle de Movimento de Veı́culo-Manipuladores:
Acoplado e Nâo-Acoplado”, in Proceedings of the II Brazilian Hu-
manoid Robot Workshop (BRAHUR) and III Brazilian Workshop on
Service Robotics (BRASERO), pp. 96-101, 2019.

[5] “ROS.org — Powering the world’s robots”. http://www.ros.org. Ac-
cessed June 2019.

[6] “KUKA youBot. Mobile manipulator for research and education”.
https://bit.ly/2r1uyql. Accessed June 2019.

[7] “KUKA youBot. Research & Application Development in Mobile
Robotics”. https://bit.ly/2HR9ZF0. Accessed June 2019.

[8] “Scanning Rangefinder Distance Data Output/URG-04LX-UG01
— HOKUYO AUTOMATIC CO., LTD.”. https://www.hokuyo-
aut.jp/search/single.php?serial=166. Accessed June 2019.

[9] Koslosky, E.; Oliveira, A. S.; Wehrmeister, M.; Fabro, J. A. “Design-
ing Fuzzy Logic Controllers for ROS-Based Multirotors”, in Robot
Operating System (ROS), The Complete Reference (Volume 2), Part
of Studies in Computational Intelligence Series, vol. 707, p. 41-82,
DOI: 10.1007978-3-319-54927-9 2, 2017.

[10] “FLIE - Fuzzy Logic Inference Engine”.
https://github.com/joaofabro/FLIE/. Accessed June 2019.

[11] “OpenCV”. https://opencv.org/. Accessed June 2019.


