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Abstract ​— Chagas Disease is a tropical parasitic disease         
endemic to Latin America, and it is caused by ​Trypanosoma cruzi.           
It occurs in two phases. The acute phase takes place shortly after            
infection, and it is characterized by fever, lymphadenopathy, and         
chagoma symptoms. The chronic phase, which happens from a         
few months up to several years after infection, is generally          
asymptomatic, but it may also be associated with megacolon,         
megaesophagus, or cardiomegaly symptoms. Other heart illness       
symptoms may be present as well. In the acute phase, standard           
diagnosis is based on T. cruzi visualization through microscopy         
applied to blood smear slides. In the present work, we apply a            
deep convolutional neural network (namely, a pre-trained Mobile        
NetV2 feature extractor followed by a fine-tuned single-neuron        
top classifier) to the binary classification of image tiles of size 224            
× 224 × 3, which are extracted from acute-phase blood smear           
samples. The data set corresponds to blood smear sample images          
taken from twelve different slides. We achieve 96.4% accuracy         
on a balanced validation subset within the twelve-slide data set.          
The respective precision, sensitivity, and F1-score values are        
95.4%, 97.6%, and 96.5%. In a cross-validation experiment with         
five folds inside the twelve-slide data set, validation accuracy         
varies from 88% to 98%. From image tiles extracted from a           
thirteenth blood smear slide (i.e. tiles outside the train/validation         
sets), we estimate test accuracy equal to 72.0%, which suggests          
that data set size and overtraining issues must be addressed in           
future work.  

Keywords — Chagas disease, ​Trypanosoma ​cruzi​, blood smear        
samples, deep convolutional neural networks. 

 

I. INTRODUÇÃO 

Epidemiological studies show that Chagas disease is       
endemic to Latin America, thus following the geographical        
distribution of the invertebrate hosts - insects from the         
Triatominae subfamily, which are popularly known as “barber        
bugs”. The Parasite ​Trypanosoma cruzi is Chagas disease        
etiological agent. The disease currently affects six million        
people [1], leading to approximately 14,000 annual deaths. It         
is considered by World Health Organization as a tropical         
neglected disease, because it is present among low-income        
populational groups, and it is subject to low research         
investment, medicine production, and control measures.  

The onset of Chagas disease takes place in its acute phase,           
during which the parasites are easily pinpointed in the blood.          
For diagnosis based on microscopy, the blood-sample glass        
slides are dyed with hematological dyes (Wright or Giemsa),         
which renders them color varying from red to purple. Parasite          
size varies from 20 µm length and 1 µm width, for thin shapes,             
to 15 µm length and 4 µm width, for thick shapes [2].            
Diagnosis during the acute phase is important, because it         
makes cure possible as long as treatment is started [3]. At the            
chronic phase, the diagnosis is based on serology, blood         
culture, xenodiagnosis and complementary exams such as       
chest x-ray or electrocardiogram [4], and treatment during the         
chronic phase generally does not lead to cure. 

Previous works about the application of machine learning to ​T.          
cruzi detection are [3], [5] (Gaussian discriminant), and [6]         
(classifier based on k-nearest neighbors). In [3], the authors         
apply Adaboost and support vector machines, and report 100%         
sensitivity and 93.3% specificity (i.e. precision). In contrast        
with these conventional methods, deep convolutional networks       
have revolutionized computer vision in recent years, with an         
emphasis on object recognition [7]. Recent applications of        
deep learning to malaria diagnosis have been reported [8], [9].          
In the present work, we propose the application of a pretrained           
MobileNet V2 [10] to generate features for a fine-tuned         
single-neuron binary classifier for automated ​T. cruzi       
detection in microscopy blood tests. This might help Chagas         
disease diagnosis mainly in non-endemic areas that have        
experienced disease emergence as a consequence of migratory        
flow [4], and might also help blood donor triage when demand           
becomes high, as in the case of blood banks [2]. 

This paper is organized as follows: in Section II, the neural           
network background is briefly described; the datasets and the         
proposed methodology are described in Section III; detailed        
results are presented in Section IV, and the main conclusions          
are presented in Section V, together with topics for future          
research. 
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II. THEORETICAL FOUNDATIONS 

 

The MobileNetV2 feature extractor [10] relies heavily on        
the concepts of depthwise separable convolutions, linear       
bottlenecks, and inverted residual operations, which we briefly        
describe in this section, for completeness. Using the depthwise         
separable convolutions technique, the convolution operations      
are split into smaller and consecutive convolutions, which        
reduces computational cost by a significant factor (slightly        
below 10) at a small accuracy penalty. In MobileNetV1 [11],          
the observation that features typically lie in manifolds that can          
be embedded in low-dimensional spaces has been used to         
reduce the number of dimensions in the convolutional layers.         
By paying close attention to the fact that the rectifying linear           
unit (ReLU) plays an important role in preserving information         
during the embedding, the authors in [10] optimize neural         
network structure by inserting ​linear bottleneck layers at the         
convolutional layers inputs. They also provide evidence       
against the use of non-linear activation functions for the         
bottleneck implementation. Finally, the linear bottleneck      
layers are connected by inverted residual operations which        
have a relatively small number of channels (i.e. a number of           
channels that is smaller than the number of channels of tensors           
that are located between the bottleneck edges). The inverted         
residual operations allow for computational advantages and       
performance similar to those reported for residual networks        
[7], but at lower computation cost: in [10], the authors report           
approximately 1/4 memory cost with respect to MobileNetV1. 

With respect to the MobileNetV2 topology, its authors start         
with a 32-channel 3 × 3 convolutional layer at 224 × 224 × 3              
input resolution, and then apply a relatively large number of          
convolutional layers with bottleneck operators (16 layers,       
some with identical configuration), eventually arriving at a 7 ×          
7 × 320 tensor, which is then mapped into a 7 × 7 × 1280               
tensor by a 1 × 1 convolutional layer. A global average           
pooling operation finally maps the 7 × 7 × 1280 tensor into a             
1280-component vector. The overall number of parameters       
reported in [10] is 3.4 million, for a basic MobileNetV2          
topology, and the implementation we use in the present work,          
mobilenetv2_1.00_224, which is downloaded from [12], has       
2.26 million parameters as reported by the model.summary()        
function. MobileNetV2 yielded remarkable results for image       
classification, object detection, and semantic segmentation.      
Particularly with respect to image classification, the Mobile        
NetV2 improved state-of-the-art performance on the ImageNet       
challenge [13], reporting 72.0% Top 1 accuracy with 3.4         
million parameters, running in 75 ms in a cell phone (Google           
Pixel 1) core using TF-Lite. We use Keras [14], and the           
pretrained model parameters [12], in a computer with an i7          
core and GPU video cards (EVGA GTX 1080 Ti). The 1280-1           
classifier is trained using Adam [15], 1280-dimensional inputs        
computed offline, binary targets, and binary cross-entropy loss        
function. Section IV provides training configuration details. 

III. METHODOLOGY 

 
Blood smear slides provided by the Laboratory of Immuno-         

parasitology and Toxicological Analysis are observed with an        
optical microscope, under 1000× magnification, in immersion       
oil, and the microscope is connected to a camera and a           
computer. Images are most often (as in the case of Figure 6,            
without the tiling, for example) generated in TIFF format at          
2592 × 1944 resolution, originally, and are then converted to          
JPG format for convenience. A few test images, such as the           
one in Figure 7, are generated at 1596 × 1198 resolution,           
because of camera configuration change, which is useful for         
classifier testing at different input image scales. 
 
We start with twelve slides, and therefore throughout the         
paper we refer to the training and validation data sets as           
twelve-slide data set​. From the twelve slides, we capture 1000          
images at the 2592 × 1944 resolution, i.e. approximately 84          
images per slide on average. Among the captured images, 208          
are positive and the overall ​T. cruzi count in those images is            
278. To assemble a balanced dataset for neural network         
training and validation, we first manually annotate, using a         
simple interface that was written for this annotation process,         
the upper-left and lower-right coordinates of all positive        
bounding boxes, i.e. bounding boxes containing the 278 ​T.         
cruzi in the images. For each positive bounding box, a          
negative bounding box with the same dimensions is generated         
at random with uniformly distributed center coordinates.       
Visually, we check whether the negative bounding box        
overlaps with any of the negative bounding boxes. If an          
overlap occurs, the negative bounding box is replaced by a          
manually generated, overlap-free, negative bounding box. This       
procedure leads to 556 rectangular bounding boxes (278        
positive and 278 negative ones). Using an image resize Python          
function, the rectangular boxes are then converted into 556         
square image tiles with size 224 × 224 × 3, which are            
compatible with the MobileNetV2 input size. Approximately       
10% of the square images are removed from this set, so that            
they are not used for neural network training and validation,          
which reduces the data set to 499 square image tiles, 331 of            
which are used for training and 168 for validation. A binary           
text file containing the 499 “P” (positive) and “N” (negative)          
targets for each image tile is also generated. This completes          
the generation of the basic twelve-slide data set that is used for            
classifier design in Section IV. A few positive and negative          
image tile examples are shown in Figure 1. Variations in          
color, contrast, and overall aspect are clearly noticeable,        
although parasite sizes tend not to vary too much. A similar           
annotation procedure is applied to a thirteenth slide, yielding         
214 additional square image tiles: 111 positive ones and 103          
negative ones, as the negative bounding boxes were deleted         
rather than replaced in this case. A binary text file with the            
corresponding target is generated as well. In the present work,          
this additional data set is not used for classifier training or           
validation. Figures 9 and 10 show all 214 images. 



      

     

     

      

     

Figure 1. Positive (P, left) and negative (N, right) ​T. cruzi​ image tiles for 
neural network input. These examples are from the twelve-slide training and 
validation data set. 

TABLE I. ​PRELIMINARY RESULTS WITHOUT DATA AUGMENTATION. CONFUSION MATRIX         
OBTAINED FROM VALIDATION DATA. TP AND TN STAND FOR TRUE-POSITIVE AND TRUE-            
NEGATIVE COUNTS. FP AND FN STAND FOR FALSE-POSITIVE AND FALSE-NEGATIVE COUNTS.  

 
Positive Target Negative Target 

Positive Prediction 76 (TP) 06 (FP) 

Negative Prediction 09 (FN) 77 (TN)
 

 

By processing the image tiles using the feature-extracting        
stages of MobileNetV2 offline, we generate a small train and          
validation data set containing 331 and 168 labeled vectors         
with 1280 dimensions (features). Although classifier training       
may proceed directly from here, training with a small number          
of training vectors usually leads to poor generalization, which         
is verified by Table I in the case of this data set. To solve this               
problem, data augmentation is applied to the training samples,         
as described in Section III. The binary classifier is then trained           
and validation performance is evaluated twice: for the basic         
331/168 training/validation ratio, and for five folds, each with         
399/100 training/validation ratio. The basic classifier is then        
applied, in raster-scan mode using non-overlapping tiles, to        
unannotated test images at 2592 × 1944 (from peripheral and          
thick blood smear slides) and 1596 × 1198 resolution (from a           
thick blood smear slide), and finally to the annotated test          
image tile data set from the thirteenth slide. Figure 2 summa-           
rizes the methodology. 

 

Figure 2. Data augmentation and the MobileNetV2 feature extraction are run           
offline. Feature extraction is pre-computed for the model training, validation          
and test, but raster scan (*) inference does include online MobileNetV2           
feature extraction. To reduce clutter, raster scan input images are not shown. 



IV. RESULTS 
 

A single-neuron classifier with 1280 inputs (features from        
MobileNetV2) is trained from scratch using Keras. The basic         
training process with 8275 training samples (which       
corresponds to 331 effective training samples that were        
augmented by a 25× factor) is illustrated by Figure 3. The           
validation data set contains 168 samples. The training        
configuration is as follows: 20 epochs, minibatch size equal to          
32, dropout set to 0.2, learning rate set to 0.001 (i.e. the Adam             
optimizer is used, with its default learning rate). In the basic           
training process and also in the cross-validation experiments,        
the best validation results are obtained after approximately 10         
epochs. A confusion matrix with validation results is shown in          
Table II and the respective accuracy, precision, sensitivity (i.e.         
recall), and F1-score values are shown in Table III. A few           
classification examples are shown in Figure 4. 

To perform a cross-validation experiment with five folds, we         
first divided the dataset (first fold) into its first 399 samples,           
which were used for training, and its last 100 samples, which           
were used for validation (regardless of their originating image         
fields). In each of the four subsequent folds, the 100 validation           
sample positions were shifted by 100 units towards the first          
sample position in the dataset. In every fold, the same 25×           
data augmentation factor was applied to the 399 samples. 

 

 

 
Figure 3. Training (green) and validation (blue) loss curves. 

 
TABLE II. ​BASIC TRAINING RESULTS. CONFUSION MATRIX OBTAINED FROM VALIDATION          
DATA. TP AND TN STAND FOR TRUE-POSITIVE AND TRUE- NEGATIVE COUNTS. FP AND FN              
STAND FOR FALSE-POSITIVE AND FALSE-NEGATIVE COUNTS. 

 
Positive Target Negative Target 

Positive Prediction 83 (TP) 04 (FP) 

Negative Prediction 02 (FN) 79 (TN)
 

TABLE III. ​BASIS TRAINING RESULTS: PRECISION, SENSITIVITY, AND F1-SCORE VALUES          
ON THE VALIDATION SET. 

 
Accuracy (TP+TN)/168 = (83+79)/168 96.4% 

Precision (P) TP/(TP+FP) = 83/(83+4) 95.4% 

Sensitivity (S) TP/(TP+FN) = 83/(83+2) 97.6% 

F1-score 2PS/(P+S) 96.5%
 

 
 

    FN 

    FP 

     TP 

     TN 

Figure 4. Validation result examples: from the top to the bottom, each row             
contains two samples that yielded false negative results, false positive results,           
true positive results, and true negative results.  

 



TABLE IV. ​CROSS-VALIDATION EXPERIMENT RESULTS (FIVE FOLDS).

P S F1 Accuracy 

Fold 1 48/50 48/49 97.0% 97.0% 

Fold 2 47/52 47/54 88.7% 88.0% 

Fold 3 51/52 51/59 91.9% 91.0% 

Fold 4 43/43 43/45 97.7% 98.0% 

Fold 5 44/50 44/48 89.8% 90.0% 

Average 94.5% 91.7% 93.0% 92.8%
 

 

The cross-validation experiment results are shown in Table        
IV. They indicate that, except for Fold 2 (which, upon visual           
validation loss curve inspection, seems to correspond to a         
“failed training”, as shown in Figure 5. Training was actually          
carried out effectively but, apparently, on a loss function land-          
scape that does not match the correct classification task), the          
figures of merit of a simple classifier based on a single neuron            
and 1280 features from MobileNetV2 are reasonably stable.        
Further verification regarding data inconsistency, to look for        
explanations for the problematic landscape, is under progress.  

Based on the observation regarding result stability, we proceed         
towards the development of a very simple “raster-scan” loop         
that enables application of the basic classifier to test images          
with unlabeled square tiles (i.e. unannotated classifier input        
samples) and allows for visual inspection of the classification         
results. Three examples are shown in Figures 6 (peripheral         
blood smear test), 7, and 8 (thick blood smear test). Figure 6            
indicates very good results (100% accuracy) on test samples         
coming from peripheral blood smear tests, which was        
expected, as the training and validation data set is also          
composed by peripheral blood smear tests, even though        
significant color and contrast variations may be there, as         
discussed in Section III (see, for example, Figure 1).  
 

 
Figure 5. Fold 2 training (green) and validation (blue) loss curves. 

Samples from thick blood smear samples, on the other hand,          
were not present in the training data set. As a consequence, as            
Figure 7 indicates, the basic classifier makes significant        
mistakes (two false-negative results and three false-positive       
results) on a thick blood smear test. According to the          
MobiletNetV2 input specifications, the square image tiles in        
Figures 6, 7, and 8 have size 224 ×224 ×3. It is possible that              
image resolution changes also play a role in the increased          
misclassification rate. To check that, we resize the image in          
Figure 7 to 2590 × 1944 and repeat the raster scan test. The             
results, shown in Figure 8, indicate improvements with respect         
to Figure 7: no more false-positive results, and three false-          
negative results that might be justified by misalignment        
between the parasite and the sliding window. Besides        
extending  the training data  set for diversity (i.e. for including 
 

 

 
Figure 6. Raster scan test example. The tiled image corresponds to a 2590 ×              
1944 field that was manually extracted from a peripheral blood smear slide.  
 

 
Figure 7. Raster scan test example. The tiled image corresponds to a 1596 ×              
1198 field that was manually extracted from a thick blood smear slide.  



 
Figure 8. Raster scan test example. The tiled image corresponds to a 2590 ×              
1944 field that was manually extracted from a thick blood smear slide.  

 

thick blood smear samples), the raster-scan system perfor-        
mance may also be improved by scanning the image fields          
with overlapping windows, and using post-processing positive       
count thresholds, at the cost of the corresponding additional         
computational resources, which is not taken into account in         
the present work. 

Still, with respect to thick blood smear samples, we point out           
that ​Trypanosoma cruzi abounds throughout early infection       
days, and are thus easily found in microscopy exams with a           
single drop of fresh blood, which is the case of Figure 6.            
However, as the parasite count is considerably reduced at         
some point between six and eight weeks after infection, the          
thick blood smear technique becomes more convenient: by        
using a larger blood volume [2], it yields larger sensitivity          
than peripheral blood smear. 

As a final test, we consider all images that are captured from a             
thirteenth blood smear slide. With respect to the train and          
validation twelve-slide data set, the images from this slide         
present significant variations in color, contrast, and overall        
aspect, which can be seen by comparing the square image          
titles in Figures 1 or 4, and Figures 9 or 10. To generate the              
manually annotated square image tiles, we follow the        
procedure that was outlined in Section III (Figure 2). The test           
results are shown in Figures 9 and 10. The test confusion           
matrix, which is shown in Table V, corresponds to 72.0%          
accuracy, 91.8% precision, 50.5% sensitivity, and 65.1%       
F1-score. 

These test results indicate a large number of false negative          
results, for reasons that are not immediately clear from visual          
inspection of the image tiles in Figure 9, except for the aspect            
differences that were previously mentioned. In many of those         
tiles, the parasites are still clearly visible. It is possible that, by            
running  this  test  on  image  tiles  from  an input  image  with 

 
FALSE-POSITIVE RESULTS 

 

 
FALSE-NEGATIVE RESULTS 

 

 
TRUE-POSITIVE RESULTS 

 
Figure 9. Square image tiles from images extracted from the thirteenth slide.            
They were manually annotated, and then used for classifier testing. All false            
positives (5) are shown at the top, all false negatives are shown in the middle               
(55), and all true positives are shown at the bottom (56). 



 
Figure 10. Square image tiles from images extracted from the thirteenth slide.            
They were manually annotated, and then used for classifier testing. This figure            
is a continuation of Figure 9. It shows all true negative results (98). 

 

a different resolution, the results change somewhat. However,        
to ensure low false-negative rates (i.e. high sensitivity), we         
must next consider three points: i) an investigation on the          
features corresponding to the image tiles in the middle part of           
Figure 9, to see  whether  performance  may still be  improved 

 
TABLE V. ​CONFUSION MATRIX OBTAINED FROM THE APPLICATION OF THE BASIC CLASSI-            
FIER TO ALL SQUARE IMAGE TILES FROM THE THIRTEENTH SLIDE, AS SHOWN IN FIGURES 9               
AND 10. 

 
Positive Target Negative Target 

Positive Prediction 56 (TP) 05 (FP) 

Negative Prediction 55 (FN) 98 (TN)
 

with the currently available twelve-slide training and valida-        
tion data set; ii) running additional tests with other new slides;           
iii) including additional samples in the training and validation         
data set, and reformulating the test sets to keep independence          
between train/validation and test samples; iv) test new        
classifier topologies, for example, with one or more fully         
connected hidden layers. 

In terms of execution time, we point out that inference is           
rather fast: raster scans such as the ones shown in Figures 6, 7,             
and 8 take less than five seconds to run on the entire input             
image. Taking into account that Figures 6 and 8 have 88 tiles,            
the time taken by the MobileNetV2 feature extraction and the          
subsequent binary classification is below 57 ms in the         
available computing infrastructure which, as described in       
Section II, is expected to be faster than a mobile phone core. 

 

V. CONCLUSIONS  

 
In this work, we used a MobileNetV2 feature extractor         

that had been previously pre-trained on ImageNet, and a         
fined-tuned fully-connected binary classifier consisting of a       
single neuron, to design an image analysis method for         
acute-phase Chagas disease diagnosis from blood smear       
samples. Accuracy values were 96.4% on the validation set         
and 72.0% on an independent test set. Although precision and          
sensitivity are below those reported in [3] (the image analysis          
methods based on the joint application of boosting and         
support-vector machines have been previously reported to       
yield accuracy values around 99%), up to our knowledge, the          
present paper is the first one to report an application of deep            
neural networks to Chagas disease diagnosis. As we seek to          
improve the performance of the currently proposed classifier,        
in future work, we will look into complexity comparisons with          
the boosting approach. Possible future improvements include:       
reducing false positive rates, statistical performance analysis       
using larger datasets, dataset improvement aiming at better        
neural network design, automated annotation methods, and       
raster-scan improvement based on overlapping tiles. We       
expect the improvements to eventually lead to a useful         
computer-aided tool for Chagas disease diagnosis. 
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