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Abstract—We used machine learning tools to discriminate 

resting-state brain electrical activity measured with 

electroencephalography (EEG) of patients with refractory 

epilepsy (RE) from healthy controls (HC). We propose a cross-

spectral density-based measure as a signal feature to distinguish 

between healthy and epileptic subjects using machine-learning 

algorithms linear discriminant analysis (LDA) and support 

vector machines (SVM). The resting-state EEG of epileptic 

patients were obtained from interictal periods without any 

epileptiform activity. We recorded from 11 epilepsy patients and 

7 healthy age-matched controls. Both algorithms obtained       

100 % accuracy. Our results show that a distinction between the 

two groups is possible with high accuracy when a 190-

dimensional feature vector is used as input. 

Keywords—cross-spectrum density, debiased weighted phase-

lag index, electroencephalography, epilepsy, machine learning 

I. INTRODUCTION 

Epilepsy is characterized as the transient occurrence of 
signs and symptoms due to excessive, hypersynchronous 
neuronal activity in the brain. Epilepsy affects over 70 million 
people worldwide [1], [2] with approximately 80 % of them 
living in low-income and middle-income countries [2]. The 
patients’ quality of life, their households and the public 
healthcare systems have the potential to be negatively affected 
by the disease [3]. Moreover, a large number of patients (about 
75 %) remain untreated [4]. 

Recording brain’s electrical activity with 
electroencephalography (EEG) continues to be one of the 
most important approaches to support a diagnosis of epilepsy, 
which is complex and also based on many symptoms and 
signs. The diagnosis is based on the presence of 
electrophysiological features such as interictal spikes, sharp 
waves, and other abnormal patterns [5]. The interpretation of 
EEG is a pattern-recognition skill usually based on visual 
analysis by trained experts. However, misinterpretation of 
EEG is common and can have negative impacts of patients’ 
outcomes.  Thus, the introduction of automatic computerized 
tools might improve the quality of epilepsy diagnosis and 
benefit many patients, especially in low-income countries. 

Machine learning and pattern recognition algorithms are 
frequently used to find intrinsic patterns in complex data [6]. 
These algorithms allow the automatic discrimination of two or 
more categories without relying on a predetermined equation 
as a model. After a training phase, a machine learning 
algorithm can generalize its performance and assign new 
events to predefined classes. Machine learning is increasingly 
being used in different biomedical applications to access 
relevant information available in complex EEG signals, 
including neural engineering [7] and medical diagnosis [8]. 
The key steps involved in implementing a high-performance 
machine learning classification algorithm includes shaping the 
problem into a suitable framework and identifying appropriate 
features to categorize brain activity associated with the 
different groups of interest [9]. Nonetheless, this is a 
challenging problem in neuroscience because the dynamics of 
brain’s electrical activity is nonlinear and composed of 
numerous classes with non-stationary overlapping 
characteristics [10], [11]. Thus, the input formulations used 
for training the machine learning algorithms have to be 
carefully chosen [12]. 

Network analysis has been used to describe patterns of 
organization in complex systems comprising multiple 
dynamically interacting agents, such as the human brain [13]. 
Graph theory has been successfully applied to characterize 
how interacting neuronal groups distributed in the brain 
underlie human behavior [14], [15]. For instance, neurologic 
diseases have been linked to suboptimal organization of the 
brain default-mode network (DMN) [16]–[21]. One of the 
aims of network neuroscience is to explain the differences in 
brain network organization between healthy individuals and 
patients with distinct neurological disorders [22], [23]. Hence, 
in the present work, we propose a network-based cross-
spectral density-based measure, debiased weighted phase-lag 
index (dWPLI), as an input feature for machine learning 
algorithms. The dWPLI is based on the consistency of the 
phase differences between two signals [24]. 

The main contribution of this paper is to demonstrate the 
feasibility of combining machine learning algorithms and a 
cross-spectral density feature to identify brain activity of RE 
patients using short periods of interictal resting-state EEG 
signals. To the best of our knowledge, no other similar 



approach has been applied to resting state EEG recordings. 
Previously, other two studies used machine-learning 
techniques do discriminate brain activity of healthy and 
epileptic subjects, one used magnetoencephalogram (MEG), a 
procedure which is much costlier than EEG [25], and the other 
used resting-state EEG recordings from children with partial 
epilepsy [26]. The sensitivity and specificity of the latter 
model was nonetheless high (0.96 and 0.95, respectively). The 
content of this study is organized as follows: in Subsection 
II.A the EEG recording and preprocessing are described; the 
feature selection is presented in Subsection II.B; theoretical 
information about the methods used for machine-learning 
classification are provided in Subsection II.C; in Subsection 
II.D, we define the metrics used to evaluate the performance 
of the classifiers; the experimental results are presented in 
Section III and discussed in Section IV. We discuss the 
relevance of our proposed method in Section V. 

II. MATERIAL AND METHODS 

The protocol proposed to classify the brain activity of 
epilepsy patients and healthy subjects is displayed in Fig. 1. 
The major steps of the protocol are described as follows. 

A. Data Acquisition and Preprocessing 

Resting-state EEG were recorded from 11 patients 
diagnosed with epilepsy and 7 healthy control subjects. EEG 
was recorded with a 22-channel system (Neuromap40i, 
Neurotec, Itajubá, Brazil) with a sampling frequency of 256 
Hz and using Fpz as ground. Channels were referenced to the 
linked mastoids. The electrodes’ impedance was kept below 
20 kΩ. This work was approved by our institution’s Ethics 
Committee (2.432.373). 

The recordings were preprocessed with the Matlab 
R2017a (The Mathworks, Inc., Natick, MA, United States) 
toolbox EEGLAB [27]. Artifacts such as swallowing, head 
movement, and electromyogram were manually removed. 
Time windows containing amplitudes bigger than 50 µV were 
also manually removed. Then, we select nine minutes of the 
remaining recording to further preprocess the EEG. Data were 
then high passed at 0.5 Hz to remove slow drift and DC 
offsets. We used independent component analysis (ICA) to 
remove blink and muscle artifacts, as well as other non-
biological artifacts. 

B. Feature Extraction and Selection 

We extracted a cross-spectrum based feature from the 
EEG recordings based on phase differences between pairs of 
EEG electrodes, named debiased weighted phase-lag index 
(dWPLI) [24]. Similar to other phase-lag measures the dWPLI 
is robust against volume conduction artifacts. The other 

advantages of the dWPLI are: 1) its negligibly small sampling 
bias and 2) its improved capacity to detect true differences in 
phase synchronization due to its lower sensitivity to noise as 
compared to the previously suggested phase-lag index (PLI) 
[24]. We estimated the dWPLI between the EEG channels x 
and y using (1) [24]. 
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Where ℑ{𝑆𝑥𝑦
𝑗
} is the imaginary component of the cross-

spectrum between x and y at the time windows j; N is the total 
number of time windows analyzed; and the value dWPLI ∈  
[0,1]. The cross-spectrum is computed multiplying the 
Fourier spectrum of the channel x by the complex conjugate 
of the Fourier spectrum of channel y. We estimated dWPLI 
in Matlab using the FieldTrip toolbox [28]. We defined three 
frequency bands of interest: 𝜃 (4-8 Hz), 𝛼 (8-13 Hz), and 𝛽 
(13-30 Hz) for dWPLI estimation. 

C. Machine Learning Algorithms 

We applied two classifier models to the data. The input to 
the classifiers is a vector with real-valued elements computed 
as in (1). 

1) Linear Discriminant Analysis (LDA): LDA is a 

classification method used to separate two or more classes 

based on a chosen feature [6]. LDA can be implemented in 

four steps: 1) assume a feature vector x whose elements have 

to be assigned to either two possible classes G = {k,l}; 2) let 

fk(x) be the class-conditional density of x in class G = k, and 

let πk be the prior probability of class k; 3) model the two 

classes with multivariate Gaussian densities and assume they 

have a common covariance matrix Σk = Σl = Σ; 4) compare 

the log-ratio (L(x)) of the posterior probabilities of the two 

classes and find the boundary coefficients (β values) that 

allows us to discriminate the classes using (2) [6], as long as 

the constraints in (3) hold. 

 

{
 
 

 
 𝐿(𝑥) = log (

Pr(𝐺 = 𝑘|𝑋 = 𝑥)

Pr(𝐺 = 𝑙|𝑋 = 𝑥)
 )  

𝐿(𝑥) = log (
𝑓𝑘(𝑥)𝜋𝑘
𝑓𝑙(𝑥)𝜋𝑙

) = 𝛽0 + 𝑥
𝑇𝛽 

 

 

(2) 

{
β0 = log

𝜋𝑘
𝜋𝑙
−
1

2
(𝜇𝑘 − 𝜇𝑙)

𝑇∑−1(𝜇𝑘 + 𝜇𝑙)  

𝛽 = (𝜇𝑘 − 𝜇𝑙)
𝑇∑−1

 (3) 



Therefore, in order to estimate the coefficients (β0 and β) 
that define the boundary of the classes, we only need to know 
the mean value (µk and µl) for each class, the variance (Σ) 
calculated across all classes, and the prior probability (πk and 
πl) of each class. We assign x to G = k if the logarithm of the 
two posterior probabilities is greater than zero (i.e., L(x) > 0). 
Otherwise, we assign x to G = l. 

2) Support Vector Machine (SVM): SVM algorithms are 

included in the category of hyperplane classifiers, which 

attempt to separate datasets into different classes by creating 

linear decision boundaries. These boundaries are named 

hyperplanes and the distance between the hyperplane and the 

closest data points is referred to as the margin [8]. It is 

possible to find an optimally separating hyperplane by 

minimizing the distance of misclassified points to the 

decision boundary [8]. Assuming yi = {−1, +1}, if a response 

yi =+1 is misclassified, then xT β + β0 < 0, and the opposite 

happens to a misclassified response with yi = −1. The goal is 

then to minimize in (4). 

 𝐷(𝛽, 𝛽0) = −∑ 𝑦𝑖(𝑥
𝑇𝛽 + 𝛽0)𝑖∈ℳ  () 

Where M indexes the set of misclassified points [6]. A 
hyperplane is defined by the coefficients β and β0 as                 
xT β+β0 = 0. Supposing the training data consists of N pairs 
(x1; y1), (x2; y2), …, (xN; yN), with xi ∈ IR, we can find a 
hyperplane that creates the biggest margin between the 
training points for the two classes using a optimization 
problem given by (5), subject to: xT β + β0 > 1 - ξi, ξi ≥ 0; and  
∑ξi ≤ constant. 

 min(𝛽,𝛽0)‖𝛽‖ , ∀𝑖 () 

D. Algorithm’s Performance 

To evaluate the algorithm’s performance, we chose three 
measures: average accuracy, sensitivity, and specificity. We 
were able to compute those measures based on the number of 
true positives (TP), true negatives (TN), false positives (FP), 
and false negatives (FN). A k-fold cross validation (with k = 
5) was applied in order to calculate the average accuracy. In 
the 5-fold cross validation, the dataset is split into 5 groups. 
Then, one group is used for testing while the other 4 are used 
for training. Accuracy was calculated according to (6). This 
process was applied to each classifier, thus we used 80 % of 
the data set for training, and 20 % for testing. The sensitivity 
and the specificity were calculated using (7) and (8), 

respectively. The results obtained by the simulations are 
quantified as follows. 
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We also used the area under a receiver operating 
characteristic (AUROC) as a measurement of performance 
discrimination. The AUROC measures the ability of the 
classifier to correctly identify those subjects with and without 
the epileptic condition [25]. Values above 0.50 indicate 
discriminatory ability. When the AUROC approaches 1, the 
algorithm is said to have excellent discriminatory power, 
while an area of 0.50 represents the same classification as in a 
random guess. 

III. RESULTS 

A total of 13021 samples were extracted (7585 for RE 
class, 5436 for HC class). Table I provides details about the 
input data. Training and test data sets were randomly chosen 
in the cross-validation process. Each vector sample contained 
190 features. We further varied the number of features by 
selecting different regions of interest to analyze the effects of 
dimensionality reduction on the classification. The regions of 
interest (ROIs) are displayed in Fig. 2 and include all the 
electrodes located within a given ROI. We tested our system 
using an Intel Core i7-4510U Processor (2.6 GHz) with 8 GB 
DDR3-SDRAM (2 × 4) GB. 

TABLE I.  AMOUNT OF DATA USED FOR TRAINING AND TESTING OF 

THE CLASSIFIERS 

Step 
Proportion of 

total set size (%) 
Number of sets 

Training 80 10417 

Testing 20 2604 

Total 100 13021 

 

 

 

 

Fig. 1. Experimental design. First, (A) the EEG data is recorded from participants. Then, (B) the signals are preprocessed to remove artifacts. (C) Power 

spectra are computed, and (D) the pairwise connectivity of the channels is estimated. Finally, (E) linear classifiers differentiate the feature vectors. 

 



Fig. 2. Regions of Interest: frontal (F), parietal (P), temporal (T), and 

occipital (O). 

Grand average dWPLI plots for each group are displayed in 
Fig. 3, as square connectivity matrices of dimensions 20 x 20 
(channel x channel). The frequency bands of interest were 
defined as θ, α, and β. We can see that synchronization is 
higher between channels in the RE group for the three 
frequency bands of interest. Our method was able to 
differentiate the groups using interictal EEG signals. The 
differences for the three bands displayed in Fig. 3 further 
corroborate what is found in the literature, as epilepsy has 
been historically linked to the hypersynchronization of 
neuronal populations [29].

Fig. 3. Grand average dWPLI across subjects per sensor for RE and HC groups in the bands of interest: 𝜃, 𝛼, and 𝛽. dWPLI is defined along the interval 

0-1, where 1 represents perfect phase syncronization.  

𝜽 

𝜶 

𝜷 



TABLE II.  AVERAGE RESULTS OBTAINED BY THE CLASSIFIERS ACCORDING TO THE NUMBER OF FEATURES USED AS INPUT FOR 5-FOLD CROSS-
VALIDATION 

Band Connections 
Number of 

features 

Accuracy (%) Sensitivity (%) Specificity (%) AUROC 

SVM LDA SVM LDA SVM LDA SVM LDA 

θ 

F-T 14 79.92 78.16 75.66 75.24 83.82 80.40 0.89 0.88 

F-T, P-T 24 88.01 87.78 88.53 90.49 86.93 86.13 0.94 0.95 

F-O, P-O 36 87.62 89.13 90.07 86.85 84.92 89.85 0.94 0.95 

F-T, F-P 49 97.23 97.32 97.20 96.50 97.39 97.89 0.99 1 

F-O, P-O. F-T, P-T 60 96.16 97.72 97.90 98.46 94.77 97.59 0.99 1 

all combinations 190 100 100 100 100 100 100 1 1 

α 

F-T 14 87.98 85.07 90.40 87.15 85.50 83.93 0.92 0.91 

F-T, P-T 24 95.53 93.99 96.60 95.90 95.20 93.00 0.99 0.99 

F-O, P-O 36 97.86 97.40 97.80 98.10 97.80 96.70 1 1 

F-T, F-P 49 99.99 99.83 99.90 100 100 99.80 1 1 

F-O, P-O. F-T, P-T 60 99.67 99.80 99.50 100 99.70 99.30 1 1 

all combinations 190 100 100 100 100 100 100 1 1 

β 

F-T 74 76.29 75.61 93.77 89.23 51.39 56.19 0.79 0.79 

F-T, P-T 24 85.66 84.18 91.35 92.57 77.77 72.40 0.93 0.93 

F-O, P-O 36 89.46 88.40 95.05 94.82 81.57 79.41 0.94 0.94 

F-T, F-P 49 91.69 90.47 95.18 94.75 86.69 84.43 0.97 0.96 

F-O, P-O. F-T, P-T 60 97.50 96.03 98.88 98.68 95.61 92.12 1 0.99 

all combinations 190 100 100 100 100 100 100 1 1 

Using only 14 features (frontal and temporal connections) 
extracted from the connectivity matrix as the input feature 
vector, the algorithms performed best in the α band. In these 
case, SVM and LDA algorithms achieved average accuracy of 
87.98 % and 85.07 %, respectively. Correspondingly, we 
found the higher values for sensitivity and specificity in the α 
band. SVM method presented average sensitivity of 90.40 %, 
and average specificity of 85.50 %, meanwhile LDA 
algorithm achieved average sensitivity and average specificity 
of 87.15 % and 83.93 %, respectively. 

From Table II we can see that the average accuracy 
gradually increases while increasing the number of input 
dimensions. Not surprisingly, the maximum accuracy for each 
classifier was achieved using a 190-dimensional feature 
vector as input. In this case, SVM and LDA algorithms 
performed similarly, with 100 % of average accuracy, 
sensitivity, and specificity (see Table II). Similarly, we found 
that AUROCs were higher when input vectors with 190 
features were used. In summary, both SVM and LDA 
algorithms performed better in the α band (see Table II).  

In order to analyze whether the proposed methods can 
reduce the time-consuming identification of epilepsy patients, 
we computed the average execution time of each step (see  
Fig. 1) over 100 simulations. We used classifiers trained with 
190 features as input and we performed 100 simulations for 
each classifier (see Table III). We found the ICA is the 
bottleneck step in our EEG preprocessing pipeline, given its 
time-consuming computation. The average execution time of 
ICA accounts for more than 75 % of the entire pipeline 
execution time. Considering all steps involved, the average 

time required for correct identification of the EEG was up to 
403.82 s (for SVM method). 

TABLE III.  EXECUTION TIMES FOR THE PROCESSING PIPELINE 

Step Execution time (s) 

Load data 23.33 

Compute ICA 304.72 

Band pass filter 2.33 

Power spectra estimate 56.71 

Extract and select features 16.95 

Online 

classification 

LDA 0.07 

SVM 0.08 

Toal time 
LDA 403.81 

SVM 403.82 

IV. DISCUSSION 

Classification of EEG signals using both ternary and 
binary algorithms have been proposed. Ternary methods 
attempt to differentiate non-epileptic from epileptic EEG 
signals. To do so, the signals are defined as belonging to one 
of the three following groups: non-epileptic (normal), 
interictal, and ictal. Meanwhile, binary classifiers attempt to 
differentiate two groups usually as: 1) normal or interictal, 2) 
normal or ictal, and 3) interictal or ictal. A great number of 
methods for classification of EEG signals achieved 100 % 
accuracy for cases 2) and 3) [30]–[35]. The maximum 



accuracy achieved in these works may be due to the fact that 
ictal EEG represents an extreme scenario of 
hypersynchronization of neuronal populations, which 
radically differs from normal and interictal EEG. 

A classification technique using variational mode 
decomposition with an auto-regression based quadratic 
feature extraction and a random forest classifier is proposed in 
[36] achieved accuracy of 97.40 % for ternary (normal vs 
interictal vs ictal) EEG classification.  [30] proposed a data 
dependent method, which consists in a modified wavelet 
transform combined with a multi-scale entropy measure as 
feature for an SVM classifier. The method achieved accuracy 
of 98.6 % for ternary classification (normal vs seizure-free vs 
seizure). However, besides being data-dependent, this 
technique requires the manual tuning of the parameters, which 
is another disadvantage of this approach [30]. The method 
proposed in [32] uses a discrete wavelet transform for feature 
extraction and naïve Bayes and k-nearest neighbors as binary 
(epileptic vs non-epileptic) classifiers. The method’s accuracy 
ranged from 96.40 % to 99.60 % when the data set include 
normal, interictal and ictal EEG signals. A possible pitfall for 
this method is the lack of cross-validation that can lead to 
inflated results [37]. A robust method for both binary 
(epileptic vs non-epileptic and ictal vs interictal) and ternary 
(normal vs interictal vs ictal) EEG classification is proposed 
in [35]. This method is based on deep learning (DL) 
algorithms. DL algorithms are not data dependent and can 
automatically adapt to the internal structure of the data set, 
which enhances their generalization power. They proposed a 
pyramidal 1D convolutional neural network (P-1D-CNN) 
model for detecting epilepsy and reported accuracies ranging 
from 99.10 % to 99.97 % for different data sets. DL 
approaches, however, require large amount of data for 
training. Thus, [35] proposed two augmentation schemes. 
Another disadvantage of the P-1D-CNN method is that it 
requires computers with graphic processing units (GPU). 

The performance measure of our method has been found 
to be comparable with other existing state-of-the-art 
classification approaches found in the literature. Even though 
we have not used ictal EEG signals, we have achieved 100 % 
accuracy for binary classification using simple linear 
classifiers. [25] also combined machine learning algorithms 
with functional connectivity analysis with interictal MEG 
recordings, however, they achieved accuracy of 90 % for 
binary (epileptic vs non-epileptic) classification. [26] used 
EEG to build a prediction model for diagnosis of partial 
epilepsy in children with good performance. Our study 
extends the findings from these previous works, showing that 
a specific measure of EEG connectivity for theta, alpha, and 
beta frequency bands, dWPLI, can be used to improve 
accuracy in diagnosing epilepsy in adults. 

V. CONLUSIONS 

In this study, we applied machine learning techniques to 
discriminate epileptic patients from healthy controls based on 
a cross-spectrum feature extracted from their resting-state 
EEG signals. The input feature for the machine learning 
classifiers was derived from a network-based approach 
relying on spectral phase distributions obtained from pairwise 
comparisons of EEG channels, called dWPLI. As a 
comparative measure, we analyzed the impact of varying the 
number of features used as input on the performance of the 
classifiers. The framework proposed yielded average accuracy 
classification of 100 % using 190-dimensional input vector for 

both SVM and LDA algorithms. In summary, we successfully 
applied a dWPLI measure as an input to machine learning 
algorithms in order to discriminate between EEG signals of 
healthy and epileptic subjects. This result may contribute to 
further establish the power of machine learning algorithms as 
tools to build automated systems able to reliably diagnose 
epilepsy. 
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