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Abstract—For the past decade, microarray technology has been
used to provide medical scientists a deeper understanding of
diverse molecular phenomena. One of its most prominent appli-
cations is the identification of class membership of tissue samples
based on their genetic profiles. For this task, Machine Learning
algorithms have been commonly employed. In this paper, we
present a meta-learning approach that recommends a suitable
ensemble method for gene expression classification. Due to the
nature of data considered, providing accurate recommendation is
not trivial. Despite of that, our approach managed to outperform
a baseline method, making room for new research directions.

Index Terms—Gene expression data, Meta-learning, Ensemble

I. INTRODUCTION

Cancer diagnosis is traditionally made through analyzing
tumors characteristics, like appearance and origin site. New
opportunities for a better understanding of treated tissues was
brought up by gene expression profiling tools like microarrays
[39]. Microarrays are methods based on hybridization that
allow a global view of cells and their gene expression levels
[33], thus allowing the measurement of the proteins being
produced. This technology has helped researchers to achieve
better results on understanding healthy and unhealthy states.
Since microarray data are not intuitive to analyze, a common
approach is to employ Machine Learning (ML) techniques to
describe and predict them [30]. This usage is specifically inter-
esting due to ML algorithms’ abilities to extract patterns from
data, which helps researches in further tissue classification.

Aiming to improve the overall prediction accuracy of Ma-
chine Learning algorithms, ensembles of classifiers have been
widely considered. Ensemble learning is a technique that
blends a set of base classifiers and combines their outputs in
order to obtain the classification for new examples. Ensembles
are often more accurate than their individual base classifiers
[17], yielding this approach to be increasingly adopted on clas-
sification problems. These methods have shown advantages
that are particularly interesting on biological classification
problems, like mitigating the small sample size problem and
good handling of high data dimensionality [41]. By incorporat-
ing diverse classifiers (classifiers that make different mistakes),
ensembles tend to use the training data more efficiently, reduc-
ing the overfitting potential. Several researches, like [2], [13],

[14], [18], [20], [27], [40], among others, have successfully
applied ensemble methods to classify gene expression data.

Given the variety of methods and applications, choosing a
Machine Learning algorithm is not an easy task. A simple
way to choose a classification model is to just consider the
users familiarity with the model instead of analyzing data
structure and characteristics. This selection criteria is likely
to lead to results that are not optimal, compromising the
whole experimental setup. Another way is the trial-and-error
approach, which is highly time-consuming, computationally
costly and may still not lead to satisfactory results. Thus, a
recommendation system that can provide good model sugges-
tions is highly desirable. An useful approach for that is meta-
learning [6].

Meta-learning aims to learn about the performance of
learning algorithms in order to enhance future applications.
Given an unknown set of data, a meta-learning method extracts
characteristics from data and predicts the performance of a set
of classification algorithms without running them over the set.
Thus, this technique can be used to support algorithm selection
for new classification problems. In fact, meta-learning has been
applied for algorithm recommendation in many problems (see,
[26] and references within).

In this work, our goal is to build a meta-learning approach
that recommends an adequate ensemble method to classify
gene expression data. Similar approaches were studied for
problems from distinct domains [11], [12], [32], where the
performance of ML algorithms is expected to exhibit a good
amount of variation. When dealing with problems from a
single domain, both performance of the ensembles and data
characteristics tend to be more homogeneous, challenging the
use of meta-learning.

This paper is organized as follows. In Section 2, an overview
of popular ensemble methods and some applications to gene
expression data is provided. In Section 3, the general archi-
tecture of the meta-learning method employed is explained.
Section 4 presents the experimental results obtained. Finally,
Section 5 draws the conclusions of this work.

II. ENSEMBLE LEARNING FOR GENE EXPRESSION DATA

In computational biology, a variety of ensemble methods
have been used to perform gene expression analyses, mass



spectrometry-based proteomics, gene-gene interaction identi-
fication and prediction of regulatory elements from DNA and
protein sequences [41]. Despite recent developments in the
area (see, for instance, [21]), Bagging, Boosting and Random
Forest remains the most popular methods when dealing with
gene expression data and will be reviewed next.

A. Bagging

Bagging (Bootstrap Aggregating) [7] is an ensemble method
that generates multiple different instances of the same clas-
sification algorithm by training them with distinct training
sets. These sets are generated by resampling the original
dataset through a bootstrap technique. Each algorithm is then
trained with a different resampled training set, improving
the distinction among the base predictors [31]. When a new
example arrives, the outputs of all base models are combined
(usually by majority voting) and the final prediction of the
ensemble is calculated.

One of Bagging advantages is that it improves its gen-
eralization capability by decreasing model’s variance [41].
As seen in [40], this characteristic makes it an interesting
way to deal with biological datasets, which may present high
variance due to small sampling and biological variability.
Besides that, Bagging is also used as a tool to improve other
algorithms with good results. In [20], Bagging is used to
enhance clustering procedures, achieving substantial improve-
ments on DNA microarrays. Also regarding to gene expression
classification, [14] brings up a combination of two popular
ensemble methods, using Bagging as a module of Boosting to
create a novel algorithm.

B. Boosting

Like Bagging algorithm, Boosting [23] is an ensemble
method that resamples the training dataset in order to build
distinct classifiers, but in a different way. Boosting works by
reweighing every sample of the dataset that trains the base
predictors. At first, all the examples in the original dataset
receive equal weights and are used to train the first classifier.
After that, the algorithm reweighs the dataset, increasing the
weight of misclassified samples and reducing the weight of the
ones that were correctly predicted [31]. Then, the reweighed
set is used to train the second base classifier, and the process
goes on repeatedly until all the base classifiers are trained.
When facing new examples, the final decision is made through
weighted voting, where more accurate classifiers are given
greater weights than less accurate classifiers.

Although the classical Boosting algorithm introduced by
Freund and Schapire, AdaBoost [22], has shown to not suit
very well for raw microarray data [28] due to it’s vulnerability
to noise, there are variants of this method that can perform
well in gene expression classification. In [15] we find a
variant of the LogitBoost [24] algorithm that shows consistent
improvements on classifying gene expression data by reducing
ensemble’s sensitivity to noise. This variant is further adopted
in [14], where the author combines both Bagging and Boosting
to improve prediction accuracy on microarray data. Following

the idea of data noise reduction, [2] filters the dataset reducing
the number of irrelevant features. More recently, a variant
of boosting named XGBoosting [10] has been successfully
applied to gene expression data [27], [18], [13], yielding
interesting results on this area.

C. Random Forest

Random Forest [8] is a technique that ensembles a set of
decision trees built upon random features and bootstraped
datasets. For each base tree, training phase is done through one
bootstrapped set of data. While being built, the set of candidate
features on each split point is randomly generated from the
whole variable set. This randomization approach, for both
examples and features, provides a model with low bias and
low variance [16]. Random Forests have good generalization
potential and are also consistent when it comes to avoiding
overfitting [42].

In gene expression domain, [16] lists some characteristics of
Random Forests that suggest a good suitability for classifying
this kind of data. Good predictive performance over noisy data,
ruling out the necessity of feature pre-selection, makes this
approach suitable for datasets with a high number of features,
which is particularly interesting for microarray data. Besides
that, random forests are efficient to learn from datasets where
the number of features is much bigger than the number of
examples. Hence, this method has been widely applied to
classify gene expression data, with consistently good results.

Investigating gut microbiome of different races, [9] achieved
better results for Random Forests when compared to other
classical algorithms like kNN and SVM. Introducing BIRF
(Balanced Iterative Random Forest) algorithm, [3] takes ad-
vantage of Random Forest’s good generalization potential and
yields better results for gene selection when compared to SVM
variants and Naive Bayes classifiers, specially for unbalanced
data. In the task of predicting human MicroRNA target genes,
[29] presents the Random Forest based framework RFMirTar-
get, which outperformed kNN, Naive Bayes, SVM, J48 and
General Linear Model.

III. META-LEARNING

In the context of this work, we define meta-learning as
the application of a learning algorithm to model the relation
between the characteristics of learning problems and the
performance of a set of algorithms [6]. Specifically, we intend
to develop a method that selects a suitable classifier for a given
gene expression dataset without the need to actually run any
of the available algorithms. The general framework of such
meta-learning approach is depicted in Figure 1.

The process begins with the acquisition of an appropriate
set of problems that are representative of those for which
the subsequent recommendation will be made. Then, two
steps are applied to each element in the Data Repository: the
extraction of data characteristics, according to some predefined
measures, and the evaluation of a set of algorithms. Ideally,
the characterization of the problems must be predictive of the



Fig. 1. Meta-learning general framework [6]

behavior of the algorithms. By associating these two infor-
mation for each problem, we obtain a meta-example, formed
by input meta-attributes and target meta-class, respectively.
The set of available meta-examples is called the meta-data. In
order to induce the mapping between the input meta-attributes
and the target meta-class, an ML algorithm, referred to as a
meta-learner, is applied. Through it, one can use the meta-
knowledge obtained from the learning process to provide the
recommendation of algorithms in the context of meta-learning.

In this work, data characterization is done by the Landmark-
ing approach [34]. As far as we know, it has not yet been
employed to characterize gene expression data. Basically, it
consists of using the performance of simple algorithms (the
so called landmarkers) to describe a problem and correlat-
ing this information with the performance of more complex
learning algorithms. The rationale for this data characterization
approach is the assumption that problems that perform simi-
larly on the ladmarkers space will behave similarly on more
advanced classification methods. Of course, it is mandatory
that landmarkers are computationally efficient, specially when
considering microarray data. Here, we considered 6 land-
markers proposed in [4]: Naive Bayes, Linear Discriminant,
One Nearest Neighbor, Decision Node, Randomly Chosen
Node and Worst Node. Thus, the input meta-features of each
microarray problem consists of the performances of such
landmarkers, as measured by an efficient 5 fold stratified cross
validation process.

The target meta-class represents the performance of the ML
algorithms on the dataset. Plenty of performance metrics can
be used to evaluate supervised algorithms, such as accuracy,
Area Under a Curve (AUC), F-score, mean square error, etc.
For most case, accuracy remains as the standard metric to
use. But in the gene expression domain, AUC could be a
more suitable option [38], mainly due to its ability deal with
unbalanced class distribution and different misclassification
costs. Thus, in this work, we will employ AUC as performance
metric. The target meta-class of each microarray problem
is the ensemble method whose performance is the best, as
measured by the AUC values embedded into a stratified cross
validation scheme with 10 folds. Now, we are facing here a
meta-classification problem.

IV. EXPERIMENTS

The main goal of the experiments conducted here is to
assess the performance of our meta-learning approach to rec-
ommend ensemble methods for gene expression classification
data. For such, the framework presented in Section III was
employed. Next, we present the experimental setup used and
the results obtained.

A. Experimental setup

The problems used to generate the meta-data came from 49
publicly available microarray datasets. They are all related to
cancer diagnostics. Mainly, the task is either discriminating
between normal and tumor cases or among different types of
tumor. As usual for the gene expression domain, there is a
disproportional rate between data dimensionality and number
of examples, which makes classification more difficult. A full
description of the datasets can be retrieved elsewhere [37].

For base level learning, a representative of each ensemble
approach previously commented was chosen. For Bagging,
the ensemble components are based on C5.0 decision trees
[25], which extends the seminal work of [35]. Following
the suggestion of [19], 50 trees were bagged. For Boosting,
XGBoosting algorithm [10] was considered. It is an imple-
mentation of gradient boosting that focus on computational
efficiency and predictive accuracy. Here, we considered a
maximum of 50 trees [19]. Finally, Random Forests have also
been employed. Over the years, they have delivered state-
of-the-art performance in gene expression analysis [42]. For
simplicity, all algorithms have used the default parameters
provided by the employed R packages (C50, xgboost and
randomForests, respectively).

For meta-learning, we have selected 4 algorithms, from
distinct classification families [5]: Support Vector Machines
(SVM), k Nearest Neighbours (kNN), Decision Trees (DT)
and Naive Bayes (NB). Since they have very different biases,
we expected to have a fairly comprehensive picture of the
behavior of our approach. We note that such algorithms have
already been used as meta-learners before, with varying degree
of success [1]. They were implemented by the following R
packages, respectively: e1071 (with kernel=’linear’),
class (with textttk=1), C50 (with winnow=TRUE) and
caret.

After a meta-model is created using a given meta-learner
applied to the meta-data, it is necessary to produce evidence
to the user that meta-learning is able to generate accurate
predictions. The approach used here is to use Leave-one-out
Cross Validation (LOOCV), which iteratively, for each meta-
example, computes the accuracy of the prediction using a
meta-model obtained on all the remaining meta-examples [6].

B. Experimental results

In order to better evaluate the results presented here, Figure
2 exhibits the distribution of the best performing ensemble
approaches over the 49 datasets. It indicates the frequency



each algorithm serves as target meta-class for a given meta-
example. Note that Bagging and Random Forest present sim-
ilar frequency, while Boosting is less frequent. Such distribu-
tion represents a somehow unbalanced multiclass setup.
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Fig. 2. Distribution of best performing ensemble approaches over the 49
datasets

Table I summarizes the classification performance of the
proposed meta-learning approach. It provides mean and stan-
dard deviation of accuracies for 4 meta-learners using the
LOOCV process. In order to determine whether the perfor-
mance of a particular recommended ensemble can be regarded
as high or not, we also exhibits the performance of a baseline
method, called Default. It simply predicts the most frequent
class every time. With an accuracy of 0.61, SVM presents
the best performance. In fact, it is the only approach that
convincingly outperformed the Default method. Naive Bayes
and kNN exhibited poor results, while Decision Tree is
just average. Redundancy and/or lack of relevant information
in Landmarking characterization may have impacted greatly
Naive Bayes and kNN. SVM and Decision tree seems more
robust, specially the former. This is expected, since they have
internal mechanisms for weighting/selection of features during
learning phase. Note that the high standard deviation of all
meta-learners are due to the LOOCV procedure.

SVM NB kNN DT Default
0.61/0.49 0.44/0.50 0.48/0.50 0.51/0.50 0.48/0.50

TABLE I
PERFORMANCE OF 4 META-LEARNERS AND DEFAULT METHOD. MEAN

AND STANDARD DEVIATION OF ACCURACIES ARE PROVIDED.

In order to further investigate the performance of our
approach, we will focus on SVM algorithm from now on.
Table II presents its confusion matrix. One can see that
SVM is able to discriminate relatively well between classes
Bagging and Random Forest. In fact, if we recast our meta-
classification problem into a binary one, with only those 2
meta-classes, SVM would be able to separate Bagging and

Random Forest meta-examples with a mean accuracy of 0.69,
while Default method would present a mean accuracy of
0.61. Now, considering the minority class Boosting, Table II
clearly shows that SVM never predicts it. Is may indicate
that data characterization was not informative enough to allow
finer distinction among the ensemble methods or the Boosting
algorithm used here presented an anomalous behavior.

Predicted

Bagging Random Forest Boosting

A
ct

ua
l Bagging 10 6 0

Random Forest 4 20 0

Boosting 2 7 0
TABLE II

CONFUSION MATRIX FOR THE SVM ALGORITHM.

Such results show how tricky predicting ensemble methods
for gene expression data classification can be. In domains
like this, where few data samples are available, classification
algorithms tend to present comparable results [36], masking
the true differences in the predictive accuracy of some algo-
rithms. Figure 3 shows that this issue may be affecting, to a
certain degree, the results obtained. It shows the boxplots of
the distribution of AUC values for Bagging, Random Forest
and Boosting on the 49 datasets used here. As can been seen,
Bagging and Random Forest present similar boxplots, suggest-
ing they perform similarly. Boosting seems to perform worse
than its contenders for the problems at hand. Nevertheless, it
can be expected that, as more patient data become available,
classification problems will reveal a more complex structure
and the differences in performance of the algorithms will
increase, making meta-learning on gene expression domain
easier.
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Fig. 3. Distribution of AUC values for the 3 ensemble methods on 49 datasets.

So far, we have presented results regarding the performance
of the proposed meta-learning approach. However, the quality



of a given recommendation does not contain any information
about the performance of the ensemble method on a new
gene expression dataset. In order to shed some light on the
matter, Figure 4 exhibits, for each of the 49 datasets, the
AUC values that would be expected in 3 situations: the best
ensemble method is used, the recommendation provided by the
SVM meta-learner is used and the default ensemble method
is used. To improve readability, the datasets are sorted using
the performance of the best ensemble method. As can be seen,
SVM predictions yields base level performances close to the
best methods, with minor deviations. On the other hand, when
default ensemble method is employed, errors tend to be much
more severe in some cases. These results indicate our meta-
learning approach yield good base level performance.
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Fig. 4. AUC values for base learning on 49 datasets in three recommendation
scenarios.

V. CONCLUSION

In this paper, we presented a meta-learning approach to rec-
ommend ensemble methods for gene expression classification.
In such scenario, two main difficulties may raise: first, due
to small sample size, performances of ML algorithms over
a microarray dataset tend to be more similar and second,
since problems come from the same domain, data are more
homogeneous, which can impair characterization methods to
generate discriminating meta-feaures.

Despite of that, the experiments conducted here support the
application of meta-learning for the task. Considering a setup
with 49 publicly available microarray datasets and 3 popular
ensemble methods, our approach was able to outperform
the baseline method when SVM was used as meta-learner.
Analyzing the results, one can see that there is room for im-
provements. Specifically, a refinement on data characterization
and performance assessment is welcome and will be addressed
in a future work. Besides that, we plan to deal with feature
selection and parameter optimization issues, in both base level
learning and in meta-learning.
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