
On the use of kernel functions in Minimal
Learning Machines

Daniel Jean R. Vasconcelos, Ananda L. Freire and Amauri H. Souza Junior

Federal Institute of Ceará, Postgraduate Program in Computer Science
Fortaleza, Ceará, Brazil

daniel.jean@ppgcc.ifce.edu.br, anandalf@gmail.com,

amauriholanda@ifce.edu.br

Abstract. The Minimal Learning Machine is a recently proposed super-
vised method in which learning consists of fitting a multiresponse linear
regression model between distances computed from the input and out-
put spaces. This paper approaches the use of Minimal Learning Machines
in combination with positive definite kernel functions. Particularly, we
investigate if computing distances in feature spaces rather than in the
original data space is beneficial for the MLM in the context of regression
and classification tasks. This can be accomplished since the kernel trick
allows us to calculate inner products (and consequently Euclidean dis-
tances) in feature spaces. We compare the standard MLM to its kernel
variants on real-world problems.

1 Introduction

Over the last decade, kernel methods have become part of the state-of-the-art
in machine learning. Basically, kernel methods are used to map data into high-
dimensional feature spaces in which a learning algorithm is used to find linear
patterns [1]. Usually, the feature space is implicit and the learning machine is
formulated only based on inner products between data items in such space, a
fact known as the kernel trick. Although the choice of the kernel depends on the
specific data type and the application domain, some of the most commonly used
kernels are the linear kernel, the polynomial kernel and the Gaussian kernel.

The Minimal Learning Machine (MLM, [2]) is a supervised learning algorithm
based on distances. Recently, the MLM has gained attention due to its simple
and easy implementation, additionally requiring the adjustment of only a single
hyperparameter (the number of reference points). Learning in MLM consists in
building a linear map between input and output distance matrices. In the test
phase, the learned map is used to provide an estimate for the distances from the
reference points outputs to the unknown target output value. Such estimates are
then used to provide the actual output prediction, formulated as an optimization
problem also known as multilateration.

This paper investigates the use of kernel functions in Minimal Learning Ma-
chines. More specifically, we are interested in analyzing the behavior of Minimal

Learning Machines when distances are computed in features spaces, defined im-
plicitly by the kernel functions. This can be accomplished because the Minimal
Learning machine is formulated using only pairwise distances so that they can
be easily computed in feature spaces via the kernel trick.

Our empirical assessment is carried out through a comprehensive evaluation
on 22 datasets, including both classification and regression tasks. Based on the
experiments, we verify that the kernel functions have only a marginal impact on
the performance of the regular MLM algorithm.

The remainder of the paper is organized as follows. Section 2 presents the
formulation of the Minimal Learning Machine. Section 3 describes the use of
MLMs in feature spaces, also providing an interpretation of the standard MLM
as a kernel method. In Section 4, an experimental evaluation is conducted to
show the performance of the MLM and its kernel-based variants. Conclusions
are given in Section 5.

2 Minimal Learning Machine

The Minimal Learning Machine (MLM, [2, 3]) is a supervised method whose
training step consists of fitting a multiresponse linear regression model between
distances computed from the input and output spaces. Output prediction for
new incoming inputs is achieved by estimating distances in the output spaces
using the underlying linear model, followed by a search/optimization procedure
in the space of possible outputs.

Let us define the learning problem as the problem of approximating a smooth
continuous target function f : X → Y from (possibly) corrupted data D =
{(xi,yi = f(xi) + εi)}ni=1, where xi ∈ X and yi ∈ Y, and εi corresponds to an
error term to account for situations where the outputs are not perfectly observed.
We call X and Y the input and output spaces, respectively.

Definition 1 (Minimal Learning Machine, [2]) The Minimal Learning Ma-
chine denotes a class of functions HMLM parametrized by a matrix B ∈ Rm×m,
and m pairs of input-output points {(ri, ti)}mi=1 ⊆ D, called reference points,
such that a member of HMLM is a function h : X → Y given by

h(x) = argmin
y

m∑
j=1

‖y − tj‖2 −

(
m∑
i=1

Bi,j‖x− ri‖

)2
2

, (1)

where ‖y − tj‖ represents the Euclidean distance between y and the j-th output
reference point tj; similarly, ‖x− ri‖ denotes the Euclidean distance between x
and the i-th input reference point ri.

Basically, the MLM assumes that distances computed in the output space can
be approximated by a linear combination of distances taken from fixed located
points (the reference points) in the input space. The Eq. (1) can be used to
illustrate the main idea behind the MLM. The term

∑m
i=1Bi,j‖x− ri‖ consists

of a linear combination of distances taken from reference points ri, and represents
an estimate to the actual distance ‖y−tj‖. The MLM then searches for the best
location of such a point y considering the distances estimates for all the output
reference points.

Before solving the optimization problem described in Eq. (1), we need to
estimate the MLM parameters from training data, also known as the learn-
ing/training phase. The learning algorithm of the Minimal Learning Machine
requires the i) selection of the set reference points {(ri, ti)}; and ii) determina-
tion of the parameters B. With regard to the selection of reference points, in
the original proposal, the MLM selects the reference points randomly from the
available data points for learning, an approach also adopted in this work. The
idea of matching distances in the input and output spaces drives the learning
process of the parameters B̂.

In order to simplify notation, let us define the matrix D ∈ Rn×m as the pair-
wise distance matrix between the input samples {xi}ni=1 and the input reference
points {ri}mi=1, i.e., Dij = ‖xi − rj‖. Similarly, ∆ ∈ Rn×m denotes the pairwise
distance matrix in output space, that is ∆ij = ‖yi − tj‖.

Once the reference points have been selected, the matrix B is estimated
through the minimization of the following objective

J(B) = Tr
[
(∆−DB)T (∆−DB)

]
, (2)

in which the optimal solution is achieved at B̂ = (DTD)−1DT∆. This corre-
sponds to the least-squares solution of a multiresponse linear regression problem
between the distance matrices in the input and output space.

The test step in MLMs consists of predicting the outputs for new input
data, and it refers to solving the minimization problem embedded in Eq. (1),
that can also be interpreted as a multilateration problem [4]. In this regard,
one may use any gradient-based optimization method, such as the Levenberg-
Marquardt algorithm. Alternatively, [5] reports an efficient method to solve the
multilateration problem for one-dimensional outputs.

For classification tasks, where outputs are represented using the 1-of-S en-
coding scheme1, with S denoting the number of classes, [5] shows that, under
the assumption that the classes are balanced, the minimization problem in Eq.
(1) reduces to

h(x) = tm∗ , (3)

where

m∗ = argmin
j=1,...,m

{
m∑
i=1

Bi,j‖x− ri‖

}
. (4)

1 A S-level qualitative variable is represented by a vector of S binary variables or bits,
only one of which is on at a time. Thus, the j-th component of an output vector y
is set to 1 if it belongs to class j and 0 otherwise.

As aforementioned, the term
∑m

i=1Bi,j‖x − ri‖ denotes an estimate for the
distance between the j-th output reference point and the unknown target value
y associated with x. Thus, the output predictions for new incoming data can be
carried out by simply selecting the output of the nearest reference point in the
output space, estimated using the linear model B̂ [5]. The reader is referred to
[2, 5, 3] for a comprehensive discussion about the MLM.

3 Minimal Learning Machines in Feature Spaces

We now turn our attention into the formulation of Minimal Learning Machines
in feature spaces induced by kernel functions. For that, we need to define what
we mean by kernel functions.

Definition 2 (Positive definite kernel) A symmetric function k : X ×X →
R which for all m ∈ N, ci ∈ R, and xi ∈ X , such that

m∑
i=1

m∑
j=1

cicjk(xi,xj) ≥ 0, (5)

is a positive definite kernel.

The application of a positive definite kernel function on a sample from X in-
duces a positive definite Gram matrix Kij = k(xi,xj). Moreover, a well-known
result on kernel methods [6, 7] is that we can construct kernel functions by defin-
ing arbitrary maps φ : X → RX and choosing

k(xi,xj) = φ(xi)
Tφ(xj) (6)

for any xi,xj ∈ X . In other words, kernels can be interpreted as inner products
on feature spaces. This is also known as the kernel trick. Such a trick allows
us to work in the feature space implicitly, i.e., a feature space in which the dot
products can be evaluated directly using a nonlinear function in the input space.

A few examples of kernel functions are: Gaussian (Eq. 7), polynomial (Eq. 8)
and quadratic, which is a special case of polynomial kernel, where its polynomial
degree is set to p = 2. In this work, we assume a1 and a2 to be equal to 1.

k(xi,xj) = exp

(
−||xi − xj ||2

2σ2

)
. (7)

k(xi,xj) = (a1x
T
i xj + a2)p. (8)

The extension of the MLM to work in feature spaces is straightforward. This
is because we can easily write distances as a function of inner products, i.e, for
any arbitrary pair of point xi, xj ∈ X we have that

‖xi − xj‖ =
√

xT
i xi − 2xT

i xj + xT
j xj , (9)

and thus we can make use of the kernel trick to compute distances in feature
spaces by

‖φ(xi)− φ(xj)‖ =
√
φ(xi)Tφ(xi)− 2φ(xi)Tφ(xj) + φ(xj)Tφ(xj), (10)

=
√
k(xi,xi)− 2k(xi,xj) + k(xj ,xj), (11)

where k(·, ·) denotes a positive kernel.
Thus, the functional form of MLMs in feature space induced by the kernel

k(·, ·) is given by

hk(x) = argmin
y

m∑
j=1

‖y − tj‖2 −

(
m∑
i=1

Bi,j(k(x,x)− 2k(x, ri) + k(ri, ri))
1
2

)2
2

.

(12)

The kernel functions also affect the MLM training phase in a very simple
manner. To train MLMs, we replace the input distance matrix D by Φ ∈ Rn×m

such that its (i, j)-entry is

Φi,j =
√
k(xi,xi)− 2k(xi, rj) + k(rj , rj), (13)

and, consequently, the optimal estimate of the parameters can be written as
B̂ = (ΦTΦ)−1Φ∆. The Algorithm 1 summarizes the learning process of the
MLM using kernels.

Algorithm 1 Kernel MLM - training procedure

Input: Training datasets Xn and Yn, and m.
Output: B̂, R and T .

1. Randomly select m reference points, R, from Xn and their corresponding outputs,
T , from Yn;
2. Compute Φ according to Eq. (13): The distance matrix between the elements of
Xn and R;
3. Compute ∆: The distance matrix between Yn and T ;
4. Calculate B̂ = (ΦTΦ)−1ΦT∆.

In this work, we decided to restrict the use of kernel methods to the input
space, thus the geometrical interpretation of the output estimation step is kept,
and only the training phase significantly changes.

3.1 Minimal Learning Machines and conditionally positive kernels

There is a larger class of kernel functions, named conditionally positive definite
(cpd) kernels, which can be defined similar to positive kernels, with the difference
being that Eq. (5) only needs to be satisfied for values of ci such that

∑
i ci = 0.

The importance of conditionally positive kernels in this work comes from the
fact that the function given by the negative of the Euclidean distance is a cpd
kernel, i.e., kernels functions of the form k(xi,xj) = −‖xi − xj‖ are cpd.

In fact, the MLM can be interpreted as a cpd kernel method, even though the
MLM uses proper distances rather than its negative values. We argue that the
MLM algorithm is not affected if all computed distances are replaced by negative
Euclidean distances. To show that, let us first consider the MLM function given
in Eq. (1). As one can easily observe, setting the distances to their negative values
does not change anything because all the terms are squared. Second, the cost
function in Eq. (2) does not change as well, since (−∆ + DB)T (−∆ + DB) =

(∆ − DB)T (∆ − DB). Therefore, the optimal solution for the parameters B̂
remains the same.

Differently from other kernel methods proposed in the literature where kernels
are applied to input and output spaces [8, 9], in the MLM, model complexity is
controlled by the number of reference points rather than a regularization term
(ridge regression). In addition, the preimage problem in kernel methods reduces
to the multilateration problem, but it has a geometric interpretation in the MLM.

4 Experiments

The experiments were performed on classification and regression problems. We
used 14 and 8 datasets, respectively, taken from UCI database [10] and StatLib
[11]. In Tab. 1, the details of each dataset are described, such as problem category,
the number of attributes, classes, and samples for training and test.

The code was implemented in Matlab R2014a and the tests were executed
on a Intel Core i3-4130 processor CPU 3.4GHz with 8GB of RAM. The MLM
and kernel implementations are available in goo.gl/wUvax3.

To assess the performance of MLM with different kernel functions, for both
classification and regression, we executed 30 independent runs, where 80% of
the data were used for training and the remaining 20% for testing. For each run,
some parameters needed to be tuned, e.g., the percentage of reference points m,
the spread of the Gaussian kernel (σ) and the order of the polynomial kernel
(p). Those parameters went through a 10-fold cross-validation in a grid search
to find the most suitable values.

For m, representing the percentage values, a grid from 0.1 to 1 (equivalent to
10% to 100%) with steps of 0.1 was designed. For each number, a linear kernel
MLM was trained and validated by the cross-validation process. The term m is
then chosen based on the best mean result (accuracy or RMSE). Once the per-
centage of reference points is defined, the points themselves are chosen randomly
but kept the same to the other tested MLMs. The parameters σ ∈ [5, 55], with
steps of 5, and p ∈ [3, 10], with steps of 1, are chosen after a similar process,
but now using the Gaussian/Polynomial kernel, respectively, plus the reference
points previously determined. With those parameters defined, we trained and
tested MLMs with linear, Gaussian, quadratic and polynomial kernels.

Table 1: Description of classification (C) and regression (R) datasets.

Data Problem #Attributes #Classes #Train #Test

Balance Scale (BS) C 4 3 500 125
Breast Cancer Diagnostic (BCD) C 30 2 455 114
Diabetes (DIA) C 8 2 614 154
Ecoli (EC) C 7 8 269 67
Hayes-Roth (HR) C 3 3 128 32
Heart Disease (HD) C 13 2 216 54
Iris (IRS) C 4 3 120 30
Leaf Classification (LC) C 14 30 272 68
Liver Disorders (LD) C 6 2 276 69
MONK’s Problem 1 (M1) C 6 2 445 111
MONK’s Problem 2 (M2) C 6 2 481 120
MONK’s Problem 3 (M3) C 6 2 443 111
Connectionist Bench Sonar (SNR) C 60 2 166 42
Wine Quality (WQ) C 13 3 142 36
Auto MPG (MPG) R 7 - 314 78
Body Fat (BF) R 14 - 202 50
Boston Housing Corrected (BH) R 18 - 405 101
Breast Cancer Prognostic (BCP) R 33 - 155 39
Computer Hardware (CPU) R 9 - 167 42
Forest Fires (FF) R 4 - 414 103
Servo (SRV) R 4 - 134 33
Red Wine Quality (RWQ) R 11 - 1279 320

Tab. 2 and 3 provides the mean and standard deviation from the 30 runs for
m, σ, p and accuracy (for classification) or RMSE (for regression). Moreover,
we applied Friedman’s nonparametric hypothesis test [12] with a significance
level of α = 0.05, followed by a Dunn-Sydák’s post hoc test. We compared the
performance of each nonlinear kernels to the linear one. Considering the null
hypothesis to be that the different MLMs performances are all the same, if the
hypothesis test result fails to reject it, we show a 3, otherwise, we show an 7.

For classification problems (Tab. 2) with nonlinear kernels, most of the re-
sults presented an “equivalent” performance to the linear one. As exceptions, the
Gaussian kernel has four out of fourteen sets with nonequivalent results distri-
butions, the quadratic kernel has two, and the polynomial kernel has seven of
them. Nevertheless, within this exception pool, the results show that the linear
kernel provides a slightly better accuracy overall.

For regression problems (Tab. 3), the nonlinear kernels, applied to datasets
MPG and BH, provided nonequivalent results to the linear kernel. In those cases,
also in four others, the linear kernel provided a slightly better average perfor-
mance.

It is important to highlight that the Gaussian kernel has proved itself to be
very sensitive to the choice of its parameter σ. This feature imposes to cover a

Table 2: Results for classification problems using the same reference points.

Datasets m Linear Gaussian Quadratic Polinomial

BS 0.45 ± 0.10
accuracy 0.903 ± 0.024 0.903 ± 0.023 0.897 ± 0.026 0.898 ± 0.025
parameters - 31.167 ± 13.817 - 3.067 ± 0.254

- 3 3 3

BCD 0.52 ± 0.24
accuracy 0.939 ± 0.015 0.932 ± 0.018 0.934 ± 0.019 0.933 ± 0.014
parameters - 49.833 ± 1.729 - 3.200 ± 0.610

- 7 3 7

DIA 0.11 ± 0.03
accuracy 0.750 ± 0.031 0.735 ± 0.036 0.753 ± 0.035 0.740 ± 0.036
parameters - 45.000 ± 5.776 - 3.800 ± 1.186

- 7 3 7

EC 0.33 ± 0.16
accuracy 0.841 ± 0.040 0.844 ± 0.035 0.836 ± 0.036 0.830 ± 0.039
parameters - 26.500 ± 16.049 - 4.767 ± 1.612

- 3 3 3

HR 0.87 ± 0.18
accuracy 0.855 ± 0.064 0.859 ± 0.051 0.858 ± 0.051 0.841 ± 0.069
parameters - 43.167 ± 9.072 - 4.200 ± 2.172

- 3 3 3

HD 0.93 ± 0.10
accuracy 0.696 ± 0.059 0.672 ± 0.046 0.690 ± 0.046 0.703 ± 0.040
parameters - 11.333 ± 10.178 - 3.700 ± 1.418

- 7 3 3

IRS 0.65 ± 0.20
accuracy 0.950 ± 0.040 0.951 ± 0.037 0.952 ± 0.037 0.951 ± 0.038
parameters - 45.833 ± 7.535 - 3.100 ± 0.403

- 3 3 3

LC 0.68 ± 0.21
accuracy 0.659 ± 0.069 0.660 ± 0.067 0.648 ± 0.063 0.643 ± 0.059
parameters - 30.167 ± 15.082 - 3.600 ± 1.037

- 3 7 7

LD 0.99 ± 0.03
accuracy 0.716 ± 0.046 0.706 ± 0.046 0.702 ± 0.046 0.700 ± 0.055
parameters - 6.667 ± 5.522 - 3.000 ± 0.000

- 3 3 3

M1 0.12 ± 0.04
accuracy 0.977 ± 0.027 0.977 ± 0.027 0.974 ± 0.025 0.965 ± 0.026
parameters - 37.000 ± 9.391 - 3.667 ± 1.124

- 3 3 7

M2 1.00 ± 0.00
accuracy 0.824 ± 0.033 0.819 ± 0.035 0.793 ± 0.030 0.774 ± 0.031
parameters - 5.500 ± 0.000 - 3.000 ± 0.000

- 3 7 7

M3 1.00 ± 0.00
accuracy 0.975 ± 0.012 0.978 ± 0.012 0.975 ± 0.012 0.975 ± 0.012
parameters - 32.167 ± 24.507 - 5.100 ± 3.263

- 3 3 3

SNR 0.78 ± 0.16
accuracy 0.868 ± 0.038 0.869 ± 0.040 0.864 ± 0.042 0.857 ± 0.044
parameters - 23.000 ± 15.852 - 5.367 ± 2.205

- 3 3 7

WQ 0.99 ± 0.04
accuracy 0.797 ± 0.072 0.777 ± 0.078 0.781 ± 0.082 0.778 ± 0.080
parameters - 7.333 ± 7.008 - 3.300 ± 0.877

- 7 3 7

large grid when looking for the best parameter value. In contrast, the polynomial
kernel’s order had an average of p = 3 or p = 4 in the majority of the cases.

In other experiments that we executed, we found that normalizing the data
does not improve the accuracy or RMSE for nonlinear kernels, although it in-
creases the number of equivalent results for the Gaussian kernel.

Table 3: Results for regression problems using the same reference points.

Datasets m Linear Gaussian Quadratic Polinomial

MPG 0.89 ± 0.15
RMSE 3.960 ± 0.407 4.296 ± 0.516 4.182 ± 0.527 4.248 ± 0.554
parameters - 50.000 ± 1.526 - 3.133 ± 0.434

- 7 7 7

BF 0.51 ± 0.21
RMSE 5.165 ± 0.418 5.215 ± 0.474 5.272 ± 0.474 5.327 ± 0.441
parameters - 45.333 ± 6.363 - 3.067 ± 0.254

- 3 3 7

BH 1.00 ± 0.00
RMSE 0.016 ± 0.002 0.047 ± 0.004 0.018 ± 0.002 0.019 ± 0.002
parameters - 50.500 ± 0.000 - 3.000 ± 0.000

- 7 7 7

BCP 0.98 ± 0.05
RMSE 16.159 ± 2.488 25.304 ± 3.060 17.749 ± 3.113 19.974 ± 3.201
parameters - 50.500 ± 0.000 - 3.000 ± 0.000

- 7 3 7

CPU 0.70 ± 0.25
RMSE 57.885 ± 33.521 152.252 ± 70.371 51.857 ± 29.467 51.855 ± 27.611
parameters - 49.000 ± 3.511 - 3.933 ± 1.202

- 7 3 3

FF 0.32 ± 0.25
RMSE 57.097 ± 33.692 54.039 ± 34.500 57.897 ± 33.034 55.974 ± 33.922
parameters - 19.000 ± 21.015 - 5.067 ± 1.893

- 3 3 3

SRV 0.96 ± 0.08
RMSE 0.676 ± 0.268 0.677 ± 0.269 0.686 ± 0.276 0.680 ± 0.295
parameters - 41.333 ± 15.707 - 3.100 ± 0.305

- 3 3 3

RWQ 1.00 ± 0.02
RMSE 0.702 ± 0.024 0.704 ± 0.024 0.709 ± 0.025 0.714 ± 0.026
parameters - 49.500 ± 4.026 - 3.033 ± 0.183

- 3 3 7

One may argue that the choice of m value in Tab. 2 and 3 benefits the linear
kernel results, since it is used to define this value. So, to discard such possibility
and also verify if nonlinear kernels thrive with smaller percentages, we performed
another set of tests, where m is fixed in 10% or 20%. The reference points, in
this case, are chosen randomly for each tested MLM.

The results are presented in Fig. 1 and 2. The datasets used here were solely
chosen because of the similar range of their results, which improves their visu-
alizations.

From Fig. 1a and 2a, we observe a decrease of performance with all kernels,
due to insufficient references points. Besides that, in average, the results are still
similar to the ones presented in Tab. 2 and 3 for both m values. Only for Ecoli
dataset and m = 20%, the Gaussian kernel provided a slight improvement.

5 Conclusions

This paper presented an extensive comparison between linear, Gaussian, quadratic
and polynomial kernels applied to the MLM with 22 datasets of classification and
regression problems. From the first results in Tab. 2 and 3, one can notice that,
in most of the cases, the average performance between them is similar which is
also confirmed by the Friedman’s statistical test. The next set of tests evaluated

(a) m = 10% (b) m = 20%

Fig. 1: MLM with different kernels and fixed m value for classification problems.

(a) m = 10% (b) m = 20%

Fig. 2: MLM with different kernels and fixed m value for regression problems.

their performance when the percentage of reference points is fixed and small. We
then verified that a very small percentage of points diminishes the performance
but maintain similar average results among the networks.

From those results, we can argue that the regular MLM (linear kernel) has
the best trade-off features since it provides good results and does not have any
other hyperparameter to be found. In contrast, the Gaussian kernel makes the
MLM performance very sensitive to the choice of σ and did not provide better
results than the other tested kernels. Thus, based on the results for the datasets
considered here, computing distances in feature spaces does not improve over
the regular MLM. The fact that the MLM is already a cpd kernel method may
provide an explanation for that.

Acknowledgments

The authors acknowledge the support of CAPES.

References

1. J. Shawe-Taylor and N. Cristianini. Kernel Methods for Pattern Analysis. Cam-
bridge University Press, New York, NY, USA, 2004.

2. A. H. Souza Junior, F. Corona, G. A. Barreto, Y. Miche, and A. Lendasse. Minimal
learning machine: A novel supervised distance-based approach for regression and
classification. Neurocomputing, 164:34–44, 2015.

3. A.H. Souza Junior, F. Corona, Y. Miché, A. Lendasse, G. Barreto, and O. Simula.
Minimal learning machine: A new distance-based method for supervised learning.
In Proceedings of the 12th International Work Conference on Artificial Neural Net-
works (IWANN’2013), volume 7902, pages 408–416, 2013.

4. E. Niewiadomska-Szynkiewicz and M. Marks. Optimization schemes for wireless
sensor network localization. International Journal of Applied Mathematics and
Computer Science, 19:291–302, 2009.

5. Diego P. P. Mesquita, João P. P. Gomes, and Amauri H. Souza Junior. Ensemble
of efficient minimal learning machines for classification and regression. Neural
Processing Letters, 2017.

6. Thomas Hofmann, Bernhard Schölkopf, and Alexander J. Smola. Kernel methods
in machine learning. Annals of Statistics, 36(3):1171–1220, 2008.

7. Bernhard Schölkopf. The kernel trick for distances. In T. K. Leen, T. G. Dietterich,
and V. Tresp, editors, Advances in Neural Information Processing Systems 13,
pages 301–307. MIT Press, 2001.

8. Jason Weston, Olivier Chapelle, André Elisseeff, Bernhard Schölkopf, and Vladimir
Vapnik. Kernel Dependency Estimation. In Suzanna Becker, Sebastian Thrun,
Klaus Obermayer, Suzanna Becker, Sebastian Thrun, and Klaus Obermayer, edi-
tors, NIPS, pages 873–880. MIT Press, 2002.

9. Corinna Cortes, Mehryar Mohri, and Jason Weston. A general regression technique
for learning transductions. In Proceedings of the 22Nd International Conference
on Machine Learning, ICML ’05, pages 153–160, 2005.

10. M. Lichman. Uci machine learning repository. Irvine, CA: University of California,
School of Information and Computer Science, 2013.

11. M Meyer and P. Vlachos. Statlib: Data, software and news from the statistics
community, 1989.

12. J. Denšar. Statistical comparisons of classifiers over multiple data sets. The Journal
of Machine Learning Research, 7:1–30, 2006.

