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Abstract. Food intake, bodyweight and appetite are controlled by a “web of hor-

mones.” Recently, from this web of hormones, several hormones have been re-

vealed and investigated with different degrees of success: a key one is ghrelin. 

Accordingly, ghrelin is an orexigenic (i.e., appetite stimulant) hormone; in fact, 

the only one of its kind, a peripheral hormone that can influence, centrally, one’s 

propensity to start a meal. On this work, we shall present a problem in parameter 

estimation using evolutionary algorithms in conjunction with local search, what 

we have called herein hybrid algorithms (global search + local search); addition-

ally, we apply artificial neural networks (feedforward neural network) for sup-

porting the numerical simulations (what we have named “fake data”). Moreover, 

we present a mathematical model for ghrelin partially published elsewhere by the 

same authors; in addition, we have confronted the model mathematically with in 

vivo data via parameter estimation and got promising results for the novel math-

ematical formulation for ghrelin dynamics. Thus, our aim is showing that our 

algorithms can be imperative for fitting the current and future versions of the 

model. Notwithstanding the parameter estimation was unable to model precisely 

the experimental data, most likely due to physiological details still unclear in the 

medical literature, it generated an optimized curve relatively close to the experi-

mental data, leaving promising results for future investigations.  

Keywords: Ghrelin, Parameter Estimation, Evolutionary Computing. Artificial 

Neural Networks; Food Intake and Appetite Control.  

1 Introduction  

Food intake, bodyweight and appetite are controlled by a “web of hormones” [1]. Those 

hormones may play similar/equal role, or quite diverse ones, but in the overall their 

actions emerge towards a common physiological role to make possible the precise con-

trol of bodyweight (energy homeostasis) that can be seen in most living systems (e.g., 

humans). Accordingly, the workings of this web of hormones culminate in food in-

take/appetite control (i.e., energy input). How the human body accomplishes body-

weight and food intake control precisely is still an ongoing research (the details of the 

physiological process), notwithstanding it has been done substantial progress in the last 



decades by unveiling key hormones such as ghrelin, leptin, and insulin; three key play-

ers on food intake and energy homeostasis control. 

Ghrelin is an orexigenic (i.e., appetite stimulant) hormone [3-5]; in fact, the only one 

of its kind, a peripheral hormone that can influence centrally one’s propensity to start a 

meal [3]; its effect seems to be mediated by a group of neurons in the brain (arcuate 

nucleus) [6]. This group of neurons is the same aimed by leptin and insulin, mediated 

for releasing neuropeptide y1. Ghrelin was found to be influenced by or/and influence 

key hormones, e.g. leptin and insulin, which may operate in different timescales. Ad-

ditionally, ghrelin is a short-time scale hormone – it operates in hours, it is said to in-

crease about 1-2 hours before each meal, and to fall off about 1 hours after a meal has 

been terminated [3] –. The fall-off of ghrelin concentrations in bloodstream as a conse-

quence of meals is a function of some factors such as macronutrients present in the 

foodstuff (e.g., carbohydrates) [7]. Our main aim is showing that our algorithms, based 

on hybrid algorithms instead of plain search, can be imperative for fitting the current 

and future versions of the model (future versions of the model might get much more 

complicate due to hormone/factor interconnectivity [1]) to experimental data, and we 

get it by the numerical results (Fig. 2). As we shall see, our optimization problem, eq. 

8, is a residual error function that should be minimized, employed for measuring how 

well or badly is our model performing when compared to experimental data, called 

parameter estimation/system identification [2]. Our hypothesis is that our model, see 

for more [1,4] discussions, can be used to experimental data, collected by independent 

group, in vivo data, from human. And we succeed at a first stage, as can be seen in the 

simulation section.  

On this work, we shall present a problem in parameter estimation using evolutionary 

algorithms alongside local search, what we have called hybrid algorithms (global search 

+ local search, Fig. 3); furthermore, we apply artificial neural networks for supporting 

the numerical simulations. The work is based on Pires (2017) [1] and Pires at al (2017) 

[4].  

1.1 Organization of the work 

In the next section, Mathematical Formulation, we present the model per se, the math-

ematical formulation in detail. In the following section, Parameter Estimation, we take 

the model presented previously and confront it with experimental data (in vivo vs. in 

silico). In the section following, Discussions, we add something more to the model, 

such as future works. Finally, we close the paper with a brief section, Final Remarks. 

We provide the reader with a concise set of references following the Final Remarks.   

2 Mathematical Formulation 

 

                                                           
1  Neuropeptide y is a quite powerful neuropeptide in food intake positive control 



 

On this section, we shall present and discuss on a ghrelin model/dynamics based on 

insights already discussed somewhere else by the same authors [1-4], with gastric emp-

tying rate feedback (the gastric emptying rate was added to the model in an attempt to 

respond to some literatures (e.g., [16]) pinning down this imperative physiological de-

tail); then, we shift to parameter estimation (which is an independent section). 

2.1 Equations 

The first equation is for the stomach, eq.1. The equation is a classical “input-output” 

(deterministic) differential equation, which can be encountered in most books in ordi-

nary differential equations. Accordingly, eq.1 aims at modeling the dynamics of input-

output that occurs in the stomach as a consequence of foodstuff intake (based on mass 

conservation). The equation is composed of an input term, i.e. foodstuff from mouth to 

stomach, and a second term from stomach to small intestine (called chyme). Notwith-

standing the small intestine is composed of three-anatomical segments (duodenum, je-

junum, and ileum), we shall not model them in detail; details may be needed in future 

models omitted herein since several literatures found that the control of ghrelin produc-

tion seems to be physically located between the duodenum and jejunum (the middle 

and last section of the small intestine).    

 

 

(1) 

 

We have, as a direct consequence of eq.1, the following equations: i) eq.2 is for food 

intake (F(t)); ii) eq.3 is for modeling gastric emptying feedback (f1(D(t)S(t))). Eq.2 is a 

simple degree/step function, it takes a constant value within an interval of time (i.e., 

lunch time, represented by τ in the equation), and zero otherwise (outside the interval 

of time t + τ). Of course, this function is not completely physiologically plausible be-

cause one eats in a more complex manner; this constant value can be seen as an average 

for the whole interval. Eq.3 is a function for controlling the output of the stomach (py-

lorus) based on excitation of the small intestine (represented by the letter D).  

 

 

(2) 

 

(3) 

 

In the upcoming tables (Table 1 and Table 2), we have organized the states variables 

and parameters of the model.  
 

 

 

 



Table 1. State variables 

State Variable Meaning in the model Group 

S(t) 
Stomach, amount of foodstuff in the stomach in 

kcal Gastrointestinal 

tract 
D(t) 

Small intestine, amount of food in the small intes-

tine in kcal 

G(t) Ghrelin, amount of ghrelin in bloodstream, in pg/ml  

 

Table 2. State variables 

 
Parameter Meaning in the model Type Group 

r Rate of food intake, kcal/min FF 

M
ea

l 

tb Time when one initiates a breakfast, h FL 

tl Time when one initiates lunch, h FL 

td Time when one initiates dinner, h FL 

τl Duration of lunch, min ES 

τd Duration of dinner, min ES 

τb Duration of breakfast, min ES 

kSD 
Flux of matter (chyme) from stomach to 

small intestine, transference rate, h-1 
FF 

G
as

tr
o

in
te

st
in

al
 

tr
ac

t 

δ 
Gastric emptying feedback, controlled by 

the small intestine, kcal-1 
ES 

kDX 

Foodstuff, now processed by the stomach 

and small intestine, is eliminated on this 

rate, h-1 

FF 

kHX 
Ghrelin elimination rate from bloodstream, 

first-order elimination rate, h-1 
FF 

γ 

Scaling parameter how the small intestine in-

fluences the production of ghrelin negatively, 

suppression, kcal-1 

ES 

 

Legend. FF – Fixed values, set by the modeler, without any strong reason; FL – fixed from 

literature, that is, from publication; ES – estimated, using parameter estimation.  

 

One important (modeling) detail about eq.3 is that it does not model the true physi-

ological phenomenon (see Fig. 2), the feedback from the small intestine into gastric 

emptying rate. Consequently, eq.3 it models a surrogate variable herein called small 

intestine (D). The rationale behind this modeling simplification is that the hormones 

that truly participate in the dynamics of controlling the gastric emptying feedback are 

all produced directly/indirectly proportionally to the amount of nutrient load in the 

small intestine, as so, being the amount of food in the small intestine as we are meth-

odologically accepting a pretty good approximation. 

Next equations are: i) small intestine, eq.4; and ii) ghrelin dynamics, eq. 5. As a 

direct consequence of eq.6, we have eq.7. Eq.7 was created to account for the shift in 

dynamics between day and night behavior of ghrelin (around t= 25h =2 am [3]), it was 

observed in the literature [3]; however, a plausible physiological explanation has not 

been yet published to the best of our knowledge, and eq.7 is the most naïve way to 

handle the issue mathematically. 



 

 

 

 (4) 

 

 

 
(5) 

 

As a direct consequence of eq.5, we have: 

 

 
 (6) 

 

 
(7) 

In the upcoming figure, Fig. 1, we have a scheme of the gastric emptying feedback: 

as the small intestine is loaded with (processed) foodstuff, the more hormones are pro-

duced; and the more hormones are produced, the higher is the suppression effect; one 

exception omitted is ghrelin, which induces gastric emptying, in the scheme we should 

have for ghrelin an arrow-headed vector instead of bar-headed vector (which means 

suppression). 

 

 
Fig. 1.  Gastric emptying feedback system (Source: adapted from Pires et al [3]) 

 

Table 3. List of equations 

 
Eq. Meaning in the model Group 

1 

Stomach dynamics – on this equation, one can find a mathematical 

description of the dynamics happening in the stomach, foodstuff 

comes in and chyme comes out; a mass conservation formulation.  

G
as

tr
o

in
te

st
in

al
 

tr
ac

t 2 
Food intake – this equation models the food intake as an “on-off func-

tion” 

3 
Gastric feedback – this equation describes the feedback created by the 

small intestine in the stomach output.  

4 
Small intestine dynamics – as foodstuff leaves the stomach as chyme, 

this equation models the dynamics of input-output 

5 

Ghrelin equation – this equation represents how ghrelin changes as a 

function of time, in the bloodstream in terms of concentration, 

pg/(ml*min) 

G
h

re
li

n
 d

y
n

am
-

ic
s 

6 
Ghrelin production dynamics – this equation models how ghrelin pro-

duction changes as a function of time, pg/(min*ml) 

7 

Diurnal-nocturnal production rate of ghrelin – ghrelin was found to 

have a shift in dynamics during sleep-time, a nocturnal dynamics most 

likely caused by several hormones produced during the night 



3 Parameter Estimation 

3.1 Theoretical considerations 

Fitness/loss function. The fitness or loss function is a mathematical relation used to 

measure how well/badly an algorithm/model is performing on its task [8]; it is mini-

mized for finding the best parameters of a model. Thus, for having a fitness function 

we need to have a way of measuring what we want; i.e. a measure of distance from 

“bad to good.” Once we have this measure, we just need to minimize/maximize this 

relationship; in biology, that may become problematic since not always the optimal is 

what we can find in real physiological systems, and such an approach is merely a math-

ematical trick. The optimal parameters found by an algorithm may not be necessarily 

physiologically plausible, or the one actually tuned by evolution.   

The commonest function is called Residual Sum of Squares (RSS), also known as 

the Sum of Squared Residuals/ Sum of Squares Residuals (SSR) [8].  In one of its var-

iations, it is known as Mean Squared Error (MSE). Hence, the residual sum of squares 

reads on its simplest shape:  

 

 

 
(8) 

 

Where our experimental dataset is given by: ���� � ���			�; 	�� 			� ; ��			�
; ‘N’ is 

the number of experimental data pairs (input-output) we have. The data is a matrix of 

two columns, one for the input and the corresponding output, and N lines, in which 

lines correspond to one realization of the physical system under investigation. ����; ��� 
can be “anything,” from a neural network with weights to be adjusted to a polynomial 

series with coefficients to be adjusted or a dynamical system with parameters to be 

adjusted in order to achieve minimal error, the latter called parameter estimation or 

system identification. Furthermore, �� are the inputs, the same set applied to generate 

	�;  �� are the model adjustable values (e.g., weights for neural networks, coefficient 

for regressions and parameters for dynamical system). Some [8] normalizes eq.8 with 

the standard deviation, however we do not have this measure directly, thus we have 

chosen to use the “raw” RSS. 

Generating data. One issue that our data presents is that it is not abundant: the more 

data we have the better usually is the parameter estimation process. A second issue is 

that we just have data for ghrelin in bloodstream, no data for the gastrointestinal tract 

dynamics (the second issue was handled by fixing some parameters in order to avoid 

several possible solutions, see table 2, which would have been pointless letting it free). 

Thus, we need to generate/sample more data (unfortunately, we cannot redo the exper-

iment, and we challenge medical doctors and biologist reading this paper to sample the 

data we need to enforce the model). 

Two pathways can be followed for exploiting the data we have, both tested herein, 

and giving to a certain extent the same result for our problem: 1) simulate the dynamical 



 

system and compare the distance between the experimental sample time and the simu-

lated time, take the closet one; 2) Use another methodology for creating “fake” data, so 

we have data for any time we need, for the numerical routine. We preferred the latter 

for allowing more flexibility regarding future changes in the model. We applied a feed-

forward neural networks to learn the data we have, and replacing them as input for the 

parameter estimation process.    

 

 
Fig. 2.  Optimal curve (Hybrid SAPSbnd). The upper and lower bounds are also experi-

mental, being given by: mean +/- Standard Error [3]. See table 6 for acronyms.  

3.2 Methodological considerations 

We provide an exhaustive parameter estimation, testing several possible combinations 

of what we have called herein “hybrid” algorithms2 (global search + local search, cf., 

Fig. 3); the motivation is gathering the well-known strengths of each technique in one 

practice, i.e. global search is well-known to explore the search space, whereas local 

search to converge fast to the closest optimum. After the exhaustive investigation on 

the model from a parameter estimation perspective, we can conclude that any improve-

ment is no longer an optimization issue, but rather future versions of the model for 

accounting for missing details; the model presented herein can be called the “mini-

mum/reduced model” keeping in mind a more well-elaborated version is discussed on 

[1];  

 

Fig. 3.  Schematic view of our hybrid algorithm (Source: Pires, 2017 [1]) 

                                                           
2 In the literature, they are known as memetic algorithm. 



3.3 Simulations  

For solving the dynamical system presented previously numerically (eq.1-7), we pre-

ferred our own coding, a Runge-Kutta 4. As we shall see, we have tested several opti-

mization routines; all the optimization methods were borrowed from Matlab, built-in 

functions, inserted within the scripts employed for accomplishing the simulations re-

ported herein. For the local search, just one method was tested, we have done just one 

simulation, whereas for the hybrid methods, composed of one stochastic search (Fig. 

3), we have done ten simulations and reported the average values for the parameters 

and the interval of confidence for the optimal values using the Gaussian distribution 

(α=5%).  Some of the codes will be shared on:  

https://www.dropbox.com/sh/8v3knol6u1zwp69/AABWw6TeXW3VzEYLlAHYtrV-

a?dl=0 

It was tested several routines, see [1] for comparing, however, we just report the 

imperative simulations, the least promising results are left for curious readers to get in 

touch. One interesting case to report is regarding particle swarm. Unfortunately, due to 

unknown reasons it did not work well for the problem herein, even after parameter 

changes; therefore, we shall not report the hybrid algorithms designed. Because our 

problem is physiological, it is senseless allowing any solution: bounds were set at the 

parameters. Two ways can be done for bounds: i) using an algorithm based on bounds; 

ii) creating an external trick. We have tested both; details on the external bounds can 

be found on [2]. The advantage of external bounds is that we can use unconstrained 

optimization (generally faster than constrained optimization), whereas for internal 

bounds we can avoid problems that can happen when we arrive close to the bounds. 

Just one local search is reported, but we tested several of them: Nelder-Mead Method. 

The problem with local search is the need to set initial conditions: it was set by hand-

picking, which can be cumbersome if we must change the model, or any detail, for 

future versions of the model. As so, the hybrid methods overcome this detail: but they 

are surely slower and give more variability on the final solutions.  

In the upcoming table, Table 4, we have the algorithms and their outputs. The results 

are quite similar, with small differences between the methods. For the hybrid methods, 

due to the first step being stochastic search, we ran it out ten times, and took the average 

value; for the fitness function, we report an interval of confidence based on a Gaussian 

distribution (α=5%). 

4 Discussions  

The application of soft computing (e.g., genetic algorithm) is not uncommon in biolog-

ical systems, as we have done herein. Therefore, we show once more numerically the 

possibility to apply soft computing successfully and hybrid algorithms on ‘parameter 

estimation', as an alternative route for classical methods/local search. 



 

4.1 The numerical simulations  

On Table 4, we have the numerical methods applied and their outputs. The methods 

were divided into: local search and global search. We reported just the interesting re-

sults, further results are left as curiosity for interested reader to contact us. The global 

search was done in the hybrid style: one local search + a global search, see Fig. 3. 

 
Table 4. List of optimization methods and their outputs (see Table 6) 

Parameter  Nelder-Mead 

Method 

Hybrid GAIP Hybrid SAPSbnd 

kxh 2.4380 (0.8912) 2.0945 1.9958 

βd 1600 (3.9221 1015) 1349.9  1314.7 

βn 1256.1 (1.6407)   1063.1    1314.7 

tswitch 26.9992 (2694.0) 26.6877 26.8828 

γ 1.2788 (0.2459) 1.2553  1.2332 

τb 38.4919 ( -0.0533) 40.6454 42.1076 

τl 24.0363 (-420.9745) 25.6978 26.5781 

τd 24.0060 (-2554.7) 24.9550 24.0592  

δ 5.0909 10-04 (-

6.3191) 

2.8197e-04 8.3576e-04 

r 2.1(FV) - - 

ksj 2.3(FV) - - 

kjx 0.71(FV) - - 

Best (107) 6.05527 (5.8962, 

5.9508, 6.0054) 

(5.8826, 6.0514, 

6.2203) 

Legend. FV – fixed value.  Note. The values between parenthesis are the true values found, 

before external bound setting.  

In the upcoming table, Table 5, we have initial conditions used on the local search. 

 
Table 5. Initial values applied when needed 

kxh βd (1015) βn tswitch γ τb τl τd δ 
0.9257 1.5851  -150.361 1273.2 -0.112 -0.043 -254.387 -254.387 -3.075 

4.2 Effectiveness of the modeling 

Ghrelin has two key dynamics: i) day-night dynamics; ii) long-short term dynamics. 

The former has to do with the shift of physiological behavior observed around 2 a.m 

[3], whereas the latter has to do with the double-dynamics observed in ghrelin [12], one 

in meal-like timescale and the other in terms of bodyweight timescale. In our model, 



we just concerned about the day-night dynamics; insights for the long-short term dy-

namics is presented by [2,5]. As we can see from eq.7, we solved the problem by adding 

a two-state variable, one ghrelin production rate for day, when meals drive the ghrelin 

production, whereas at night it is internal physiological processes, modeled by a second 

value for ghrelin. As we can see from Table 4, the value estimated for night is slightly 

smaller. This can be explained based on the fact that at night our hormonal machinery 

is reduced (metabolism), which most likely affects also the production of the hunger 

hormone; see that ghrelin is a pleiotropic hormone, which means that its functions go 

beyond just food intake control. The half-life of ghrelin in humans is about 240 min 

[12], which gives us an elimination rate equals about ‘0,003 min-1’or ‘0,17 h-1’; we 

found 1.9958, which is relatively close, the value 0.007 was applied by [13] in mice 

studies. 
Table 6. List of acronyms (algorithms) mentioned herein 

Acronym  Meaning comment In Matlab 

SAPSbnd 
Simulated Annealing 

Pattern Search Bounded 

This algorithm mixtures 

sa and ps, all bounded 

search. 

Simulannealbnd 

+ patternsearch 

GAIP 
Genetic Algorithm Internal 

Point 

This algorithm mixtures 

ga and ip, all unbounded 

search.  

ga + fmincon 

4.3 Improving the model 

Remodeling the gastric feedback. The model for gastric feedback we have applied 

herein is a simplification for the physiology behind. It is true that as the small intestine 

starts to be excited by nutrient load present in foodstuff, the hormones that control gas-

tric feedback shall be either suppressed or produced, thus we have a positive correla-

tion. However, the true physiology behind, if we want to have a model closer to reality, 

must be taken into account. It means that we must model the hormones individually, or 

at least some of them. Ghrelin also was found to control gastric emptying, in an opposite 

direction, when ghrelin is high, it seems to induce gastric emptying, rather than sup-

pressing, as most of them do. 

The “night mode”. The “night model”, as we see it here and may be found in the 

literature with other names, is a sequence of hormone changes due night/sleeping pe-

riod. One example is the dawn phenomenon (cf., [17] ). In our model, we have modeled 

the effect of that on ghrelin production as a “two-state” function (day or night); in fact, 

we are assuming that the “night mode” is responsible for the decline in ghrelin concen-

tration at night, where there is no meal to explain the fall-off. More interesting modeling 

would be to take into account “hormones”, being it “fake” (a mathematical trick) or real 

(based on physiological observations); thus, the concentration of this hormone must 

grow throughout the day and become significant high at night. Some of this fall-off 

seems to be explained by leptin, that can join independently or as net force on this fall-

off of ghrelin during the night. 



 

The production rate. As we can see in Fig. 2, the model fits well on the two meals 

after breakfast, but fails between breakfast and lunch. It happens because the ghrelin 

production rate, a constant β, is the same for the whole day. We may need to consider 

a time-dependent “constant” for ghrelin production; or even consider having different 

suppression factors for ghrelin as a function of food content, which is not an unknown 

physiological fact that ghrelin responds differently to different macronutrients. 

Optimization methods. We have used several optimization models. We honestly be-

lieve that from an optimization perspective, we did more than enough, accordingly any 

future problem is regarding model improvement. We did not test all the combinations 

on the “hybrid style”, since we have a considerable amount of local and global search 

techniques to consider. Others were not considered, e.g. evolutionary strategies, except 

for scientific curiosity, we see no strong reason to elongate further this issue; it seems 

unlikely that other methods may improve the fitting, if we need it somehow. 

The loss/fitness function. One problem with our parameter estimation is that we do 

not have data for the stomach and small intestine (gastrointestinal tract), from the same 

experiment with ghrelin. It means that we either must fix the parameters from the gas-

trointestinal tract, to avoid multiple possible solutions, or we need data for the gastro-

intestinal tract3. To the best of our knowledge, at the current time, there is no paper that 

would fulfil the last possibility, thus avoiding multiple solutions for the parameter esti-

mation procedure. A possible fitness function would be, which is just an extension of 

eq.8: 

 

 

 

(9) 

Where: ����; ��� is the stomach dynamics, and ��  experimental data, like the one for 

ghrelin, measured in time; ℎ���; ��� is the dynamics for the small intestine (or any other 

chosen compartment, e.g. jejunum), and �� the time dependent experimental data.  

5 Final Remarks 

On this short paper, we have presented a mathematical model for ghrelin dynamics, a 

hormone now well-known to play a central role on appetite/food intake control. We 

have confronted the model mathematically with in vivo data via parameter estimation. 

Notwithstanding the parameter estimation was unable to model precisely the experi-

mental data, most likely due to physiological details still unclear in the literature, it 

generated an optimized curve relatively close to the experimental data, leaving prom-

ising results for future investigations. As a key future work is obtaining in vivo data for 

the gastrointestinal tract, by this manner estimating also the parameters relative to the 

                                                           
3 It seems, from personal communication with a nutritionist interested in the model, that such a 

measure may be physiology hard to obtain.  



gastrointestinal tract and comparing them with values already found using other meth-

ods.   

References 

1. Pires, J.G.: Mathematical modeling in energy homeostasis, appetite control and food intake 

with a special attention to ghrelin. Dissertation, University of L’Aquila (2017, in press) 

2. Cobelli, C., Carson, E.: Introduction to modeling in physiology and medicine. Elsevier/Ac-

ademic Press, Amsterdam (2008) 

3. Cummings, D.E., Purnell, J.Q., Frayo, R.S, Schmidova, K., Wisse, B.E., Castracane D.S.: 

A Preprandial Rise in Plasma Ghrelin Levels Suggests Role in Meal Initiation in Humans. 

Rapid Publication. Diabetes. 50(8),1714-9 (2001) 

4. Pires, J.G., Borri, A., De Gaetano, A., Manes, C., Palumbo, P.: A short-term dynamical 

model for ghrelin. Paper presented at 20th World Congress of the International Federation 

of Automatic Control, Toulouse, France, 9-14 July 2017 

5. Cummings, D.E., Foster-Schubert, K.E., Overduin, J.: Ghrelin and energy balance: Focus 

on current controversies. Curr Drug Targets. 6, 153–169 (2005) 

6. Fox, SI.: Human Physiology. Twelfth edition. McGraw Hill, New York. (2011) 

7. Karasu, S.R., Karasu, T.B.: The Gravity of Weight: a clinical guide to Weight Loss and 

Maintenance. American psychiatric Publishing, Inc. (2010) 

8. Roman, H., and Paolo V.: Parameter Estimation. In: Carson, E., Cobelli, C. (eds) Modelling 

Methodology for Physiology and Medicine, pp. 107-151, Academic Press, San Diego (2001) 

9. Jacquier, M.: Mathematical modeling of the hormonal regulation of food intake and body 

weight Applications to caloric restriction and leptin resistance. Dissertation, Université 

Claude Bernard Lyon 1. (2016) 

10. Pattaranit, R., van den Berg. HA.: Mathematical models of energy homeostasis. Review. J. 

R. Soc. Interface 5, 1119–1135 (2008) 

11. Tam, J., Fukumura, D., Jain, R.K.: A mathematical model of murine metabolic regulation 

by leptin: energy balance and defense of a stable body weight. Cell Metab. 9(1), 52–63 

(2009)  

12. Cummings, D.E., Weigle, D.S., Frayo, R.S., et al.: Plasma Ghrelin levels after diet-induced 

weight loss or gastric bypass surgery. New England Journal of Medicine. 346(21), 1623–

1630 (2002) 

13. Müller, T.D., et al.: Ghrelin. Minireview. Molecular Metabolism. 4, 437-460 (2015) 

14. Jacquier, M., Soula, H., Crauste, F.: A mathematical model of leptin resistance. Mathemat-

ical biosciences. 267:10–23 (2015)  

15. World Obesity Federation: World Obesity. http://www.worldobesity.org/data/map/trend-

maps-boys. Accessed on 21/07/2017 

16. Liddle, R.A., Morita. E.T., Conrad, C.K., Williams, J.A: Regulation of gastric emptying in 

humans by cholecystokinin. 77(3), 992–996 1986. 

17. Ling, S.H., San, P.P.  Nguyen, H.T.: Hypoglycemia Detection for Insulin-dependent Diabe-

tes Mellitus: Evolved Fuzzy Inference System Approach.  In: Lam. H.K, Ling, S.H.  Nguyen, 

H.T. (eds.) Computational Intelligence and its applications: Evolutionary Computation, 

Fuzzy Logic, Neural Network and Support Vector Machine Techniques, 61-85. Imperial 

College Press, London (2012) 


