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1 Graduate Program in Electrical Engineering - Universidade Federal de Minas
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Abstract. The use of time-series from wrist worn accelerometers for
Human Activity Recognition is investigated in this work. We employ,
as features, coefficients of two-dimensional multivariate/vector autore-
gressive (AR) models obtained from raw acceleration signals and from
estimated wrist attitude roll and pitch angles. It is shown that the si-
multaneous use of both types of models improves the overall accuracy
about 20% when compared to recently published algorithms where only
univariate AR models coefficients for each raw acceleration signal are
employed.
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1 Introduction

Human Activity Recognition (HAR) has sprouted, in the past couple of decades,
as a field of high interest for applications from surveillance systems to patient
monitoring systems (lifecare and health care). In such contexts, the automatic
identification of activities of daily living has become relevant.

This field, which aims at extracting knowledge from sensor data, has two main
data sources: video based information [13], and non-visual sensors’ signals [12].
Even though the use of video has been widely researched, the sensors approach
seem to be more promising, since it is less intrusive and associated processing
techniques tend to require less computational power. Besides, it has been usual
for people to carry devices, such as mobile phones and smartwatches, that have
embedded various non-visual sensors, rendering the sensors data collection a
potentially ubiquitous possibility [15].

Measured attributes can be usually related to user movements, environmen-
tal or physiological signals. Even though there might be some sensor fusion to
improve recognition performance, tri-axial accelerometers signals have been the
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commonly used sensor data for ambulation activities (e.g. walk, sit, climb stairs).
However, it has been reported that for some daily activities (e.g. eat, drink, brush
teeth) the use of raw acceleration signals might not be the best option because
these activities are rich in arm movements [12]. It is worth noticing that these
more complex activities are usually not considered in many works on HAR based
on accelerometer signals [8, 11, 9].

On the other hand, researchers have reported in [14, 3] possible improvements
in the overall accuracy when working with features that depend on attitude
estimation of wrist-worn devices. Following this approach, our research considers
the feature extraction problem from wrist positioned accelerometer signals for
recognition of daily activities that are rich in arm movements, by relying not
only on raw acceleration signals, but also on estimated attitude angles.

The rest of this paper is organized as follows. In section 2, related work is
considered. In section 3 presents the main goals and contributions of this paper.
Section 4 presents the mathematical and physical background for the considered
feature extraction and Section 5 describes implementation and experimental
results. We discuss main contributions in Section 6.

2 Related Work

As shown in [15], accelerometers have been the most common sensors employed
in human activity recognition problems using wearable sensors. The information
extracted from sensor data is of two main types: time domain (TD) and frequency
domain (FD) features. The most common TD features are mean, standard devi-
ation, energy, and correlation between axes. Fast Fourier Transform (FFT) and
Wavelet Transform coefficients are the most common FD features. TD features
are most frequently used in real-time applications since they depend on shorter
time windows and are computationally cheaper [15].

Alternatively, the use of coefficients from Autoregressive (AR) models have
been considered in previous works as features for HAR problems [4, 8]. AR mod-
els can be used as powerful one-step ahead predictors, and they can be considered
as mixed TD and FD representations for the dynamic behavior of a stochastic
process.

[4] shows that better performance in activity recognition was attained when
using AR coefficients over traditional TD features. The authors in [8] go further
and present improvements by augmenting the feature vector with signal mag-
nitude area (SMA) and the tilt angle (TA) defined as the angle between the
z -axis and the gravitational vector g. Their idea is that SMA will enable distin-
guishing dynamic and static activities (e.g. standing and walk), and TA allows
distinguishing postures (e.g. standing and lying).

An extra step before classification is added in [9, 11] in order to reduce large
within-class and low between-class variance and therefore improve separabil-
ity. High within-class variance can be related to lack of firm attachment of the
wearable accelerometer and its different positioning, as in the case of embedded
sensors in phones that might be in shirt pockets, trousers front or back pock-
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ets, facing upwards, facing downwards, etc. Thus, linear discriminant analysis
(LDA) is applied to the feature vector composed of AR coefficients and SMA so
that recognition can be independent of accelerometer position. However, kernel
discriminant analysis (KDA) proved to be more effective in reducing within-
class variance, as shown in [7]. Another extra step in feature extraction was
also applied in [5], where raw accelerometer signals were decomposed by com-
puting Wavelet Transform prior to AR model building. In a work by Khan and
co-workers [10] a complete smartphone-based activity recognition system is pre-
sented, relying on AR models coefficients extraction from accelerometer signals
followed by the use of KDA.

In these previous works where AR models coefficients were considered as
features to perform HAR, data is collected from one single tri-axial accelerometer
either strapped to the user’s chest or in a trouser pocket, and ambulation type
activities were investigated (such as running, walking, climbing up stairs, going
down stairs, standing still and jumping). More complex daily activities, such as
eating, are not considered in such researches. With respect to classifiers, authors
in [8, 9, 11, 5] have used artificial neural networks (ANN), while [4, 5] have opted
for SVM following a one-versus-one approach.

3 Statement of the Contributions

Considering the lack of works that actually deal with complex daily activities,
that are rich in arm movements, we investigate in this paper if HAR accuracy
can be improved by describing these movements with the time evolution of the
wrist pitch and roll attitude Euler angles using AR models coefficients. This can
be considered as the application of prior nonlinear transformations to low-pass
filtered acceleration signals aiming at the extraction of relevant information for
HAR. The attitude angles resemble the TA variable proposed in [8], but they
are a more complete description of the wrist attitude.

By representing the attitude angles in a multivariate/vector autoregressive
model, instead of separate autoregressive models as done in previous works, we
consider our system coupled and we are able to quantify the correlation between
variables, which increases the level of information that can be used in HAR.

Finally, we present measurements of variability of our main results. Since the
number of data trials is not high and the classifiers depend on training examples
randomly chosen, one single result may be biased, if such variability factors are
not taken into account.

4 Methodology

In this work, feature extraction is done in two stages: 1) attitude estimation based
on Euler angles and 2) autoregressive modeling of estimated attitude signals.
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4.1 Attitude Estimation

The measured acceleration can be represented as am = at − g+ ν, where am =
[ax ay az]

>; at ∈ R3 is the translational acceleration; g ∈ R3 is the gravity

acceleration vector (‖g‖ = g0 = 9.806 m/s
2
); and ν ∈ R3 represents additive

zero mean measurement noise.

The next step, assuming that the contribution of the wrist translational ac-
celeration is much smaller than that of the local gravity, and that the level of
noise is negligible, the wrist roll φ and pitch θ orientation angles were computed
as

φ = atan2 (−ay,−az) ,

θ = −asin

(
−ax,

√
(ax)2 + (ay)2 + (az)2

)
.

(1)

Notice that, differently of what is commonly performed in previous works, the
acceleration data was not filtered before computing the attitude angles. The rea-
son is that this helps in providing numerically well-conditioned data to perform
least squares based parameter estimation, as described below.

4.2 Autoregressive Model Representation

To mathematically represent sequences of estimated attitude angles that could
be associated to the execution of specific human activities, we consider y(k) =

[φ(k) θ(k)]
>

, and we find an AR model representation for the time evolution of
the attitude angles given by the following vector autoregressive model (VAR):

y(k) = A1y (k − 1) + · · ·+Any
y (k − ny) + ε, (2)

in which Ai ∈ R2×2 are the model coefficients; ny = 1, 2, . . . is the autoregres-
sive’s model order; and ε ∈ R2 is considered to be zero mean white Gaussian
noise. This is a novelty of this work, since in previous works [8, 9, 11, 4, 5] the
authors have used independent univariate AR models, one for each accelera-
tion signal, instead of a vector/multivariate AR model that better captures the
cross-correlation among signals.

The model order ny was selected using the Akaike Information Criterion
(AIC), such that ny = 4 in (2) was found to be sufficient to explain each set
of data, while whiteness tests for the residues has shown that they carry little
information, which confirms the suitability of fourth order models [1] and that
an ARMA model is not really necessary.

Due to its relative simplicity and robustness to noise, the least squares algo-
rithm was used to estimate the model parameters in (2). These models were com-
puted for the non-filtered data of φ(k) and θ(k) in order to avoid ill-conditioning
in the computation of pseudo-inverses appearing in the least squares solution.
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4.3 Signal Magnitude Area

Following the work in [8, 9, 11, 5], we also consider another component in the
feature vector, namely the so-called Signal Magnitude Area, defined as

SMA =
1

N

N∑
i=1

|x(i)|+ |y(i)|+ |z(i)| (3)

for the tri-axial acceleration signals.

4.4 Building Feature Vectors

Features are therefore extracted from (2) and (3), and combined in order to
compare the use of attitude angles for recognition of rich wrist movements.

Three different scenarios were considered: 1) feature vector composed of AR
coefficients built from acceleration signal and SMA, aiming to reproduce results
from [8]; 2) feature vector composed of VAR coefficients built from estimated
attitude signals; and 3) feature vector composed of VAR coefficients built from
acceleration signals, VAR coefficients built from estimated attitude signals and
SMA, as depicted in Figure 1.

Fig. 1: Schematic describing the three feature vector components tested

5 Experimental Results

5.1 Dataset

The dataset used in this work was first presented in [2], and subsequently
made available by the authors. The Wearable Human Activity Recognition Folder



6

(WHARF) dataset is a public collection of labeled accelerometer recordings of
different Human Motion Primitives (HMP), which were defined as movements
that describe an activity of daily living (ADL).

In this dataset tri-axial accelerometer measurements ranges from -1.5g to
+1.5g, with 6 bits of digital resolution per axis and sampling rate of 32 Hz.
The accelerometers were embedded in an ad-hoc sensing device attached to the
right wrist of each one of the 17 volunteers (11 male, with age ranging from
19 to 81 years; and 6 female, with ages between 56 and 85 years), with x-axis
pointing towards the hand, y-axis towards the left, and z-axis perpendicular to
the hand’s palm. Data transmission to the PC was wired, via a USB cable. We
have considered a subset of the activities in this dataset, as listed in Table 1,
ranging from ambulation activities (Lie down, Stand up and Walk) to activities
that depend on arm movements (Comb hair, Drink glass and Pour water).

Table 1: Motion primitives from WHARFs’s dataset

Motion primitives Number of trials

Comb hair 31
Drink glass 115
Lie down 28

Pour water 100
Stand up 112

Walk 100

5.2 Feature Extraction

Sequences of roll and pitch were extracted by applying equations (1) to ac-
celerometer measurements for each trial from the dataset. The number of sam-
ples in each trial ranges from 200 to 1200, depending on the activity carried out.
Then, parameters of model (2) were estimated by least squares algorithm [1] in
batch mode for each trial. No windowing was applied to the signals.

Since Ai ∈ R2×2 in (2), and having defined ny = 4, each trial renders a VAR
model with 16 estimated parameters, which are used to compose the feature
vectors as described in Section 4.4.

Differently from the VAR case, but following the same approach in [4, 8, 11,
9] for comparison purposes, three independent third order AR models were also
identified for each accelerometer signal. SMA values for accelerometer signals
were also computed to complete the feature vector, as illustrated in Figure 1.
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5.3 Classification

For our supervised problem, we opted to use linear support vector machines
(SVMs) in the classification stage, due to robustness and requiring tuning of
just one hyper-parameter, the penalty factor C.

The multi-class problem was investigated by applying the one-against-one
approach, in which a classifier is trained for each pair of classes and the final
decision is made by a voting system for all pairwise classifiers.

5.4 Results

The process of classification was run 50 times in a Monte Carlo loop, in which
input feature vectors were randomly reshuffled at each iteration and equally split
into two sets: 70% for training, and the remaining 30% for testing. With this
methodology we were able to estimate average performance measures and quan-
tify their variability. At each resampling, the number of trials for each activity,
both for training and testing, was kept the same. Data imbalance, however, was
not treated.

In order to increase performance and avoid overfitting, values were assigned to
hyper-parameter C by grid-search, following recommendations in [6]. For each of
the three scenarios depicted in Figure 1, such procedure was applied, rendering
minimum test error rates at C = 213.5 for the accelerometer feature vector,
C = 212 for the attitude feature vector, as shown in Figure 2, and C = 28 when
combining both feature vectors.
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Fig. 2: Average training and test error rate for attitude feature vector
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Results are expressed as the average of true positive rate (TPR) (also called
recall), which measures the proportion of correctly labeled cases in a given class,
and the corresponding standard deviation. Total accuracy figures, considering all
properly labeled cases, were also computed. Results for the first feature vector
are presented in Table 2. When using the second type of features incorporating
attitude angles, improvements could be observed in activities rich in arm move-
ments such as drink glass and pour water, as shown in Table 3. However, a much
worse result was found for the comb hair activity.

Table 2: Average true positive rate (TPR) (%), related standard deviation
(σTPR) (%) and total accuracy for AR models of acceleration signals and SMA
as features.

Activities TPR σTPR (%)

Comb hair 89.11 12.67
Drink 85.06 6.08

Lie down 61.75 15.89
Pour water 69.20 6.95
Stand up 75.29 7.51

Walk 85.33 7.02

Total Accuracy 78.51 ± 2.96

Table 3: Average true positive rate (TPR) (%), related standard deviation
(σTPR) (%) and total accuracy for VAR models of attitude signals as features.

Activities TPR σTPR (%)

Comb hair 68.44 18.37
Drink 87.94 5.91

Lie down 34 16.40
Pour water 83.33 7.18
Stand up 58.29 7.95

Walk 66.73 9.08

Total Accuracy 71.46 ± 3.76

The TPR results in Tables 2 and 3 are also presented as box plots in Figure 3,
where one can notice the striking low averaged TPR associated with the comb
hair activity (activity number 1), when using attitude angles based features. This
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indicates that the VAR models parameters were not sufficiently discriminative
in this case. By investigating the time series of attitude angles, we noticed ap-
proximately periodic dynamics for each volunteer. We conjecture that the linear
structure of our VAR model should be changed to better capture this oscillatory
behavior.
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Fig. 3: Box plots for TPR results presented in Tables 2 and 3, respectively.
Groups one through six correspond, respectively, to activities comb hair, drink,
lie down, pour water, stand up and walk.

Finally, the simultaneous use of VAR models coefficients for attitude angles
together with VAR models for the acceleration signals increased considerably
the true positive rate average, and it has also reduced classification variability
as observed in Table 4 and Figure 4. Part of this improvement is related to the
fact that multivariate/vector AR models take into account the coupling among
all three acceleration signals. It is important to notice that even for the comb hair
activity, which had a low TPR rate when used alone in the classification stage,
as shown in Table 3, the simultaneous use of attitude and acceleration based
features was effective in increasing the performance of the original classification
procedure, i.e. apparently the information added by the attitude angles was
indeed new.

6 Conclusions

In this work, we have considered feature enrichment for human activity recogni-
tion from tri-axial accelerometer sensor data by computing attitude angles and
corresponding parameters of vector/multivariate autoregressive (VAR) models.
The underlying assumption is that these models are able to correctly capture
the time evolution of the measured and computed signals.

The use of VAR coefficients obtained from the estimated attitude angles in
fact has led to improvements in the recognition rate of activities that are rich in
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Table 4: Average true positive rate (TPR) (%), related standard deviation
(σTPR) (%) and total accuracy for VAR models of acceleration signals and atti-
tude signals and SMA combined as features.

Activities TPR σTPR (%)

Comb hair 99.56 2.17
Drink 82.71 7.43

Lie down 60 15.41
Pour water 84.80 6.84
Stand up 60.94 8.11

Walk 91.80 4.01

Total Accuracy 79.71 ± 2.88
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Fig. 4: Box plot for TPR results presented in Table 4. Groups one through six
correspond, respectively, to activities comb hair, drink, lie down, pour water,
stand up and walk.
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arm movements, such as “drink glass” and “pour water”. These features alone,
however, were found to be inappropriate for full body motion activities, in the
sense that the direct use of AR models for the acceleration signals were more
effective. On the other hand, by combining accelerometer signals and attitude
angles we were able to improve the recognition accuracy for each activity, while
reducing the associated performance variability of the linear SVM classifier.

In addition, the use of VAR models for the acceleration signals, instead of
multiple univariate AR models, as it is usually considered in the recent literature,
seems to be valuable to improve the overall accuracy by capturing the cross-
correlation among signals during the execution of the activities.

Notes and Comments. Part of the results presented in this paper were ob-
tained through research on a project titled “HAR-HEALTH: Reconhecimento
de Atividades Humanas associadas a Doenças Crônicas”, sponsored by Sam-
sung Eletrônica da Amazônia Ltda. under the terms of Brazilian federal law No.
8.248/91. This work has been supported by the Brazilian agency CAPES.

References

1. Aguirre, L.A.: In: UFMG, E. (ed.) Introdução a Identificação de Sistemas: Técnicas
Lineares e Não Lineares: Teoria e Aplicação, chap. 5, pp. 221–252 (2015)

2. Bruno, B., Mastrogiovanni, F., Sgorbissa, A., Vernazza, T., Zaccaria, R.: Human
motion modelling and recognition: A computational approach. In: Automation
Science and Engineering (CASE), 2012 IEEE International Conference on. pp.
156–161. IEEE (2012)

3. Dong, Y., Hoover, A., Scisco, J., Muth, E.: A new method for measuring meal
intake in humans via automated wrist motion tracking. Applied psychophysiology
and biofeedback 37(3), 205–215 (2012)

4. He, Z.Y., Jin, L.W.: Activity recognition from acceleration data using ar model
representation and svm. In: Machine Learning and Cybernetics, 2008 International
Conference on. vol. 4, pp. 2245–2250. IEEE (2008)

5. He, Z.: Activity recognition from accelerometer signals based on wavelet-ar model.
In: Progress in Informatics and Computing (PIC), 2010 IEEE International Con-
ference on. vol. 1, pp. 499–502. IEEE (2010)

6. Hsu, C.W., Chang, C.C., Lin, C.J.: A practical guide to support vector classifica-
tion (May 2016)

7. Khan, A.M., Lee, Y.K., Lee, S., Kim, T.S.: Human activity recognition via an
accelerometer-enabled-smartphone using kernel discriminant analysis. In: Future
Information Technology (FutureTech), 2010 5th International Conference on. pp.
1–6. IEEE (2010)

8. Khan, A.M., Lee, Y.K., Kim, T.S.: Accelerometer signal-based human activity
recognition using augmented autoregressive model coefficients and artificial neural
nets. In: Engineering in Medicine and Biology Society, 2008. EMBS 2008. 30th
Annual International Conference of the IEEE. pp. 5172–5175. IEEE (2008)

9. Khan, A.M., Lee, Y.K., Lee, S.Y., Kim, T.S.: A triaxial accelerometer-based
physical-activity recognition via augmented-signal features and a hierarchical rec-
ognizer. IEEE transactions on information technology in biomedicine 14(5), 1166–
1172 (2010)



12

10. Khan, A.M., Siddiqi, M.H., Lee, S.W.: Exploratory data analysis of acceleration
signals to select light-weight and accurate features for real-time activity recognition
on smartphones. Sensors 13(10), 13099–13122 (2013)

11. Khan, A., Lee, Y., Lee, S.: Accelerometer’s position free human activity recognition
using a hierarchical recognition model. In: e-Health Networking Applications and
Services (Healthcom), 2010 12th IEEE International Conference on. pp. 296–301.
IEEE (2010)

12. Lara, O.D., Labrador, M.A.: A survey on human activity recognition using wear-
able sensors. IEEE Communications Surveys and Tutorials 15(3), 1192–1209 (2013)

13. Poppe, R.: A survey on vision-based human action recognition. Image and Vision
Computing 28(6), 976–990 (2010)

14. Ramos-Garcia, R.I., Muth, E.R., Gowdy, J.N., Hoover, A.W.: Improving the recog-
nition of eating gestures using intergesture sequential dependencies. IEEE journal
of biomedical and health informatics 19(3), 825–831 (2015)

15. Shoaib, M., Bosch, S., Incel, O.D., Scholten, H., Havinga, P.J.: A survey of online
activity recognition using mobile phones. Sensors 15(1), 2059–2085 (2015)


