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Abstract. In this paper we propose a sample selection procedure for
improving accuracy of supervised classifiers in fault classification tasks.
To generate faulty samples, a laboratory testbed is constructed and to
avoid loss of a 3-phase AC induction motor (due to high short-circuit
currents) resistors are used to limit current levels. This gives rise to
short-circuit faults of different impedance levels, which may generate
data samples difficult to classify as normal or faulty ones, specially if the
faults are of high impedance (easily misinterpreted as non-faulty sam-
ples). Aiming at reducing misclassification, we use the clustering of the
SOM approach [1] with modified information criteria for cluster valida-
tion. By means of comprehensive computer simulations, we show that the
proposed approach is able to cluster successfully the different types of
short-circuit faults and can be used for the purpose of sample selection.

1 Introduction

Several unsupervised machine learning algorithms, such as the self-organizing
map (SOM) [2], the K-means [3], and the growing neural gas (GNG) [4], have
been often used for data samples selection in building pattern classifiers. How-
ever, they have been mostly used as vector quantizers (VQ) for simple data
volume reduction. In words, the original data samples are replaced either by the
much smaller set of prototype vectors (to which are attached the dominant class
labels), or by selecting just a few data samples around the learned prototypes.

In this paper we introduce an alternative methodology for generating a com-
pact representative realistic datasets for fault detection/classification of a 3-
phase AC induction motor. Instead of a VQ-based approach, we use a clustering
strategy to dig deep down into the class labels distribution per cluster and de-
cide for the removal of irrelevant or ambiguous samples. For this purpose, we use
the clustering of the SOM approach introduced by [1] together with modified
information criteria for finding a suitable number of clusters.
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Our target task is the identification of inter-turn short-circuit faults in the
stator winding, which we have been investigating lately using standard powerful
nonlinear classifiers, such as the MLP and the SVM [5]. For this purpose, we
built a lab scale testbed for simulating faults with different degrees of severity.
In order to avoid loss of the electric motor (due to high short-circuit currents)
resistors are used to limit current levels.

This approach gives rise to short-circuit faults of different impedance levels,
some of them very difficult to classify as normal or faulty ones. This occurs
particularly for high impedance faults, which can be misclassified as normal
samples even by human experts, because the resulting short-circuit current is still
low (a condition called incipient fault). By means of a careful selected example,
we show that the proposed sample selection procedure is capable to increase
considerably the accuracy rate of a linear classifier to the same level of those
obtained by the aforementioned nonlinear classifier.

The remainder of the paper is divided into 5 additional sections. In Section 2,
we briefly describe the clustering of the SOM approach. In Section 3, the basics
of cluster validation techniques are presented and our proposal is introduced. In
Section 4, it is described the experimental test bed from which the the original
fault classification dataset was generated. In Section 5 the results are shown and
discussed. The paper is concluded in Section 6.

2 Clustering of the SOM

As mentioned before, the SOM is essentially a vector quantization algorithm [6],
which can be used as data reduction and information compress method. The
SOM learns from examples a mapping from a high-dimensional continuous in-
put space X onto a low-dimensional discrete space (output array) A of C neu-
rons which are arranged in fixed topological forms, e.g., as a rectangular 2-
dimensional array. The map i∗(x) : X → A, defined by the weight matrix W =
{w1,w2, . . . ,wC},wi ∈ Rd ⊂ X , assigns to the n-th input vector xn ∈ Rd ⊂ X
a winning neuron i∗n ∈ A, determined by

i∗n = arg min
∀i
‖xn −wi‖, (1)

where ‖ · ‖ denotes the Euclidean norm. In this paper, we use the batch learning
algorithm for training the SOM. Hence, the weight vectors of all C neurons are
adjusted at the end of the k-th epoch according to the following rule:

wi(k + 1) =

∑N
n=1 h(i, i∗n; k)xn∑N
n=1 h(i, i∗n; k)

(2)

where h(i, i∗n; k) is the neighborhood function, defined here as

h(i, i∗n; k) = exp

(
−
‖ri − ri∗n‖

2

2σ2(k)

)
, (3)
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where ri and ri∗n are respectively, the coordinates of the neurons i and i∗n in the
output array A, and σ(k) > 0 defines the radius of the neighborhood function
at the k-th epoch. The variable σ(k) must decay with time to guarantee con-
vergence of the weight vectors to stable steady states. In this paper, we adopt

an exponential decay rule: σ(k) = σ0 (σT /σ0)
(k/T )

, where σ0 and σT are the
initial and final values of σ(k), respectively. Weight adjustment is performed
until a steady state of global ordering of the weight vectors has been achieved.
The resulting map preserves the topology of the input samples in the sense that
adjacent data samples are mapped into adjacent regions on the map.

Once the SOM is trained, we can apply a standard clustering algorithm, such
as the K-means, over the SOM prototypes. This approach is known as cluster-
ing of the SOM [1, 7] and can be understood as a two-stage unsupervised data
processing approach. First, the SOM is used in order to generate a compact
representation of the available dataset. Then, the K-means algorithm – with the
help of cluster validation (CV) techniques – is applied over the SOM prototypes
aiming at finding relevant clusters of prototypes. This hierarchical SOM-based
scheme is supposed to facilitate cluster discovery by enhancing proximity rela-
tionships among data samples and filtering out irrelevant samples (e.g. outliers).

More specifically, the 2nd level of data processing requires the computation
of K = 2, . . . ,Kmax partitions of the SOM prototypes and the corresponding
values of the chosen cluster validity indices as well. The optimal partitioning,
represented by Kopt partitions, is then chosen by the following search procedure:

Kopt = arg min
K=2,...,Kmax

CV (W,PK), (4)

where W = {wi}Ci=1, wi ∈ Rd, is the set of C prototypes of the SOM (1st
level of data processing), while PK = {pj}Kj=1, pj ∈ Rd, denotes the set of K
prototypes of the K-means algorithm (2nd level of data processing).

3 Basics of Cluster Validation Techniques

Techniques for cluster validation are used a posteriori to evaluate the results
of a given clustering algorithm. It should be noted, however, that each cluster
validation techniques has it own set of assumptions, so that the final results may
vary across the chosen techniques.

3.1 Cluster Validity Indices

Some well-known indices available in the clustering literature are described next.
We denote K as the number of clusters, Kmax is the maximum allowed number
of clusters, d as the number of features, x̄ as the centroid of the d × N data
matrix X, ni as the number of objects in cluster Ci, ci as the centroid of cluster

Ci, and x
(i)
l as the l-th feature vector, l = 1, . . . , ni, belonging of the cluster Ci.

(i) The Davies-Bouldin (DB) index [8] is a function of the ratio of the sum
of within-cluster scatter to between-cluster separation, and it uses the clusters’
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centroids for this purpose. Initially, we need to compute the scatter within the
i-th cluster and the separation between the i-th and j -th clusters, respectively,
as

Si =

[
1

ni

ni∑
l=1

‖x(i)
l − ci‖2

]1/2
and dij = ‖ci − cj‖ (5)

where ‖ · ‖ is the Euclidean norm. Finally, the DB index is defined as

DB(K) =
1

K

K∑
i=1

Ri, where Ri = max
j 6=i

{
Si + Sj

dij

}
. (6)

The value of K leading to the smallest DB(K) value is chosen as the optimal
number of clusters.
(ii) The Dunn index [9] is represented generically by the following expression:

Dunn(K) =
mini 6=j{δ(Ci, Cj)}
max1≤l≤k{∆(Cl)}

, (7)

where

δ(Ci, Cj) = min
x∈Ci,y∈Cj

{d(x,y)}, and ∆(Ci) = max
x,y∈Ci

{d(x,y)}, (8)

with d(·, ·) denoting a dissimilarity function (e.g. Euclidean distance) between
vectors. Note that, while δ(Ci, Cj) is a measure of separation between clusters
Ci and Cj , ∆(Ci) is a measure of the dispersion of data within the cluster Ci.
The value of K resulting in the largest Dunn(K) value is chosen as the optimal
number of clusters.
(iii) The Calinski-Harabasz (CH) index [10] is a function defined as

CH(K) =
trace(BK)/(K − 1)

trace(WK)/(N −K)
(9)

where BK =
∑K

i=1 ni(ci − x̄)(ci − x̄)T is the between-group scatter matrix for

data partitioned into K clusters, WK =
∑K

i=1

∑ni

l=1(x
(i)
l − ci)(x

(i)
l − ci)

T is
the within-group scatter matrix for data clustered into K clusters. The trace(·)
operator computes the sum of the elements on the main diagonal of a square
matrix. The value of K resulting in the largest CH(K) value is chosen as the
optimal number of clusters.
(iv) The Silhouette (Sil) index [11] is defined as

Sil(K) =

∑N
i=1 S(i)

N
, S(i) =

b(i)− a(i)

max{a(i), b(i)}
, (10)

with a(i) representing the average dissimilarity of the i-th feature vector to all
other vectors within the same cluster (except i itself), and b(i) denoting the
lowest average dissimilarity of the i-th feature vector to any other cluster of
which it is not a member. The silhouette can be calculated with any dissimilarity
metric, such as the Euclidean or Manhattan distances. The value of K producing
the largest Sil(K) value is chosen as the optimal number of clusters.
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3.2 Information criteria techniques

By understanding clustering as a data-driven process, one can make use of several
criteria rooted in information theory for evaluating model selection procedures.
Among the most common information criteria, we mention the Akaike’s Final
Prediction Error (FPE) [12], the Akaike’s Information Criterion (AIC) [13],
the Bayesian Information Criterion (BIC) [14] and the Minimum Description
Length (MDL) [15]. These criteria are briefly described next in the context of
order selection of a linear autoregressive (AR) model with p coefficients when
fitted to a stationary time series.

The general expression of an information criterion for model selection purpose
has the following form:

IC(p) = N ln

(
RSS(p)

N

)
+ penalty(p), (11)

where N is the number of samples, p is the model order and RSS(p) is the
residual sum of squares1 for a model with p parameters. As the number of pa-
rameters p increases, the first term on the right-hand side of Eq. (11) has a
decreasing exponential trend as p increases. The second term of this equation
acts as a penalty term for the excess parameters and, therefore, should exhibit
an increasing tendency as p increases. The smaller the IC(p), the better is the
model selection.

Different choices for the penalty term give rise to different information cri-

teria. For example, penalty(p) = N ln
(

N+p
N−p

)
(FPE), penalty(p) = 2p (AIC),

penalty(p) = p lnN (BIC), and penalty(p) = p
2 lnN (MDL).

3.3 Efficient Use of Information Criteria in Clustering Tasks

As mentioned, all the information criteria previously presented were developed
for order selection of AR models in time series modeling/prediction tasks. In
this paper we modify the information criteria by proposing a simple modification
that allowed us to correctly cluster the faulty samples into different categories.
In summary, we replace the RSS(p) with a more suitable figure of merit for
clustering and vector quantization tasks. In this regard, we selected the mean
squared quantization errors (MSQE) for N training data samples:

MSQE(p) =
1

N

K∑
i=1

ni∑
l=1

‖x(i)
l − ci‖2, (12)

where we additionally set the number of parameters p = K×d, with K denoting
the number of clusters and d is the dimension of the feature vector.

1 Also known as sum of squared residuals (SSR) or the sum of squared errors of
prediction (SSE).
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4 Experimental Test Bed

A 3-phase squirrel-cage induction motor built by WEG2 industry is used in
this study. Its main characteristics are 0.75 kW (power), 220/380 V (nominal
voltage), 3.02/1.75 A (nominal current), 79.5% (efficiency), 1720 rpm (nominal
rotational speed), Ip/In = 7.2 (peak to nominal current ratio), and 0.82 (power
factor). The dataset is generated with this motor operating in different working
conditions. The modules of the laboratory scale test bed are shown in Fig. 1,
and are hereafter explained.

Fig. 1. Modules of the laboratory test bed and the data acquisition system.

Firstly, a Foucault’s braking system is used in order to apply three different
levels of load: 0% (no load), 50% of nominal load and 100% (full load). In order
to vary the speed of the motor, a frequency converter (also known as inverter
drive) WEG CFW-09 is utilized with seven different frequencies: 30 Hz, 35 Hz,
40 Hz, 45 Hz, 50 Hz, 55 Hz and 60 Hz. It is worth mentioning that only open
loop operation is used with this frequency converter. Three Hall effect sensors
are used to measure the line currents of each phase of this frequency converter.

The motor was rewound so that some extra taps were made available by
exposing the stator winding turns of each phase. This was done in order to
simulate different inter-turn short-circuit scenarios. In this work, three different
levels of fault are used. In the lowest level (level 1), 5 turns were short-circuited,
totaling 1.41% of the turns of one phase. In the intermediate level (level 2), 17
turns (4.8%) were short-circuited. Finally, in the highest level (level 3), 32 turns
(9.26%) were short-circuited.

An auxiliary command system was built to execute two kinds of short-circuit
schemes: high impedance (aiming at simulating the initial low-current state of
a short-circuit) and the low impedance. With these two short-circuit schemes
and three levels of faults, there are six different fault conditions of the motor.

2 http://www.weg.net/institutional/BR/en/
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Short-circuit current levels leading to either low or high impedance faults are
controlled by resistors in order to protect the motor from permanent damages.

All the operation conditions of the motor are shown in Table 1, where the
load level applied to the motor, the phase identification, the frequency of the
voltage applied by the frequency converter and the fault extension are specified.
In this last operation condition, the letter H denotes a high impedance fault,
the letter L denotes a low impedance fault, while the numbers 1, 2 and 3 stands
for the level of the fault. All these conditions sums up to total of 441 (3 × 3 ×
7 × 7) time domain sample vectors.

Table 1. Tested operational conditions of the motor for data generation.

Load Level 0% 50% 100% – – – –

Converter Phase Phase 1 Phase 2 Phase 3 – – – –

Converter Frequency 30Hz 35Hz 40Hz 45Hz 50Hz 55Hz 60Hz

Fault Extension Normal HI1 HI2 HI3 LI1 LI2 LI3

As shown in Fig. 1, the motor was delta connected. In this configuration, two
line currents of the frequency converter are directly connected to the faulty phase
of the motor. As we aim at developing a monitoring system able to detect faults
using just one phase of the converter, just one of these previously mentioned
phases was used in order to avoid redundancy of information. Thus, 294 samples
are used: 147 from phase 1 (directly connected to the fault current) and 147
from phase 3 (indirectly connected to the fault current). As can be inferred from
Table 1, the task of interest can be approached as a multiclass problem, if one
considers each fault extension as a class (normal, H1, H2, H3, L1, L2, L3). As
such, each class has 42 samples. Alternatively, one can rearrange data samples
into three classes, namely: normal condition (with 42 samples), high impedance
fault (with 126 samples, merging the classes HI1, HI2 and HI3) or low impedance
fault (also with 126 samples, merging the classes LI1, LI2 and LI3).

In the dataset, by a “sample” we mean a current signal stored as a vector
of 100,000 components, resulting from 10 seconds of acquisition with a 10 kHz
sampling frequency. To generate the feature vectors for classification purposes,
the Fast Fourier Transform (FFT) is used. The procedure for building the feature
vector for each current signal is comprised of the following steps:

Step 1 - Define the load condition of the motor.
Step 2 - Define the fundamental frequency (fc) of the converter drive.
Step 3 - Read the current signal for 10s at a 10KHz sampling rate.
Step 4 - Apply the FFT to the current signal. Since the output of the FFT is

comprised of a sequence of complex numbers, take their absolute values.
Step 5 - Find the frequency corresponding to the maximum value of the com-

puted spectrum. Denote it as f̂c, since it is an estimate of fc (see Step 2).
Step 6 - Build the associated 6-dimensional feature vector by selecting the

corresponding FFT output values for the following harmonics of f̂c: {0.5f̂c,
1.5f̂c, 2.5f̂c, 3f̂c, 5f̂c, and 7f̂c}.
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In summary, the dataset is comprised of 294 6-dimensional labeled feature
vectors, in which the attribute values represents the FFT values for the chosen
6 harmonics of the fundamental frequency of the converter drive. It should be
mentioned, however, that we are interested in data selection by clustering meth-
ods. For this purpose, unlabeled data is presented to the evaluated clustering
algorithms. We want to know if the evaluated clustering algorithms with the
help of presented cluster validation techniques are able to distinguish between
high- and low-impedance faults (without class information). This is a particu-
larly challenging task because high-impedance faults can be easily misinterpreted
as normal (i.e. non-faulty) samples, as observed in our previous works on fault
classification [16, 5]. We hypothesize that by selecting those samples correctly
identified by the clustering algorithms, we can further improve the recognition
rates of supervised classifiers trained with the selected dataset.

5 Results and Discussion

In this section we apply the clustering of the SOM technique to find dominant
clusters for the 3 types of classes existing in the generated dataset, which are rep-
resented by the labels Normal (NO), High Impedance (HI) and Low Impedance
(LI). By dominant clusters, we mean either clusters containing only samples of 1
(out of 3) class, or clusters in which there is a clear dominance of one class label
over the two others. Samples belonging to non-dominant clusters are removed
from the dataset. By means of this removal procedure, we hope to end up with
a set of representative samples for the problem of interest that can be used for
improving recognition rates of supervised classifiers. Experiment with a linear
classifier corroborates our hypothesis.

The training methodology is comprised of two stages. In the first stage, the
training of a 10 × 10 SOM network is repeated for 50 independent runs3. The
initial and final values of the width of the Gaussian neighborhood are set to
σ0 = 5 and σT = 1, respectively. Since our goal is data selection via clustering,
all the available data samples are used to train the SOM. Each training run lasts
100 epochs, with the MSQE (see Eq. (12)) computed at the end of training.
Once the 50 training runs are finished, we select the SOM weights {wi}Ci=1 that
produced the lowest MSQE value. For the second stage, we apply the K-means
algorithm over the chosen SOM prototypes for K = 2, 3, · · · ,Kmax = 20. For
each value of K, 50 independent runs of the K-means algorithm are executed. For
a specific K, we choose (out of 50) the set of prototypes {pj}Kj=1 that produces
the lowest MSQE. Using this selected set, we compute the corresponding values
of the cluster validity indices and the information criteria.

As can be seen in Fig. 2(a), the optimal number of clusters suggested by
the DB and CH indices is Kopt = 2, while the Silhouette and Dunn indices
suggested Kopt = 3. The corresponding class label distributions per cluster are
shown in Table 2. By analyzing this table, one can easily see that there is no

3 This size was chosen because it corresponds approximately to one third of the total
number of data samples.
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(a) Validity Indices. (b) Information Criteria.

Fig. 2. Values of the validity indices and information criteria for different values of K.

Table 2. Class label distributions per cluster for Kopt = 2 and Kopt = 3.

Kopt = 2 Kopt = 3

Labels Cluster 1 Cluster 2 Cluster 1 Cluster 2 Cluster 3

NO 11 31 27 11 4

HI 42 84 72 42 12

LI 43 83 71 43 12

Table 3. Class label distributions per cluster for Kopt = 8.

Labels Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7 Cluster 8

NO 14 0 9 9 4 0 0 6

HI 7 0 30 21 12 35 0 21

LI 5 20 23 20 10 18 16 14

dominant cluster at all, neither for Kopt = 2, nor for Kopt = 3. In words, we note
that for all clusters most class labels belong to samples representing high- and
low impedance faults (in approximately equal proportions). Worse, there is no
dominant group of normal samples. Thus, the data partitions recommended by
the cluster validity indices are not useful for our purposes of sample selection.

We then decided to tackle this awkward situation by investigating the results
provided by the information criteria using the modification proposed in Subsec-
tion 3.3. As shown in Fig. 2(b), the optimal number of clusters suggested by
MDL, FPE and AIC is within the interval from 8 to 10, while the BIC suggested
that the Kopt is between 4 and 6.

Following a majority voting scheme, we carried out careful analyses of the
resulting partitions for Kopt = 8, 9 and 10. We then verified that the most
coherent data partitions were obtained for Kopt = 8. The corresponding class
labels distribution is shown in Table 3.
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Table 4. Class label distributions of subgroups of faulty samples within Cluster 1.

NO HI1 LI2 LI3

Cluster 1 14 7 3 2

Table 5. Class label distribution across the clusters of the cleaned dataset

Labels Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7 Cluster 8

NO 14 0 0 0 0 0 0 0

HI 0 0 30 21 12 35 0 21

LI 0 20 23 20 10 18 16 14

A closer look at this table reveals the occurrence of a cluster comprised ex-
clusively of LI faulty samples (Cluster 2). Cluster 6 and Cluster 7 are comprised
exclusively of faulty samples (LI and HI). Clusters 3, 4, 5 and 8 are comprised
predominantly of faulty samples, with just a few normal samples being mapped
to these clusters. The normal samples of Clusters 3, 4, 5 and 8 are strong can-
didates to be removed from the original dataset.

Cluster 1 demands a deeper analysis. In Table 4 we show the class label
distribution of subgroups of faulty samples. These subgroups correspond to dif-
ferent levels of severity of the faults (see Table 1). That said, we observe in
Cluster 1 that the number of normal samples is far more expressive than the
LI ones. Recall that LI samples differ considerably from normal ones due to the
high short-circuit current they produce. If these LI samples are grouped together
with normal samples by the clustering algorithm, this occurs probably because
the LI samples have been mislabeled by the human experts. Thus, the five LI
samples in this cluster (3 samples labeled as LI2 and 2 samples as LI3) are strong
candidates to be removed from the original dataset.

In what concern the HI samples mapped to Cluster 1, they are all of low
intensity (i.e. they produce low short-circuit current), a condition that could be
easily misinterpreted as normal by a human expert. Thus, the 7 samples labeled
as HI1 are tagged as strong candidates to be removed from the original dataset.

Finally, by removing the faulty samples from Cluster 1 and the normal sam-
ples from Cluster 3, Cluster 4, Cluster 5 and Cluster 8, we eventually produced
a new cleaned 3-class dataset containing 254 samples: 14 labeled as normal, 119
labeled as HI and 121 labeled as LI. The class label distribution of the cleaned
dataset can be seen in Table 5.

The ultimate experiment for validating our hypothesis4 consists in comparing
the performance of a given classifier when trained with the original and cleaned
datasets. For this purpose, we use the simple linear least squares (LS) classifier
and treated the problem as a binary classification by merging the LI and HI
samples into a single class. Thus, each sample is labeled as +1 if it represents

4 That of using the clustering of the SOM for sample selection.
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Fig. 3. Boxplots of the distribution of the accuracy rate achieved by the linear LS
classifier for the original dataset and for the cleaned one.

normal operation condition or as −1 it corresponds to a faulty condition. For
each dataset (original and cleaned), 100 independent training-testing runs are
executed. For each run, the samples are randomly divided into two groups: 80%
for training and 20% for testing.

The boxplots of the correct classification (i.e. accuracy) rate for test data
along the 100 runs are shown in Fig. 3. The central mark is the median of the
distribution, the asterisk is the mean value. by comparing the two boxplots in
the figure, it can be seen that the median value of the accuracy rate improved
considerably and the accuracy dispersion decreased for the cleaned dataset. Nu-
merically, the median of the accuracy rate for the original dataset was 84.7%,
while for the cleaned one it reached 94.1%.

As a final remark, it is worth mentioning that the high accuracy rate achieved
by the linear classifier on the cleaned dataset is equivalent to the ones achieved
by nonlinear classifiers (e.g. MLP and SVM) in previous works on the original
dataset. This way, we can conclude that the proposed sample selection procedure
succeeded in achieving its goal.

6 Conclusions and Further Work

In this paper, we introduced a clustering-based approach for data sample se-
lection aiming at improving accuracy rates of pattern classifiers on fault clas-
sification tasks. The target task of detecting inter-turn short-circuit faults is
challenging (even for human experts) because of the high probability of misin-
terpretation of high impedance faults as normal ones. We succeeded in reporting
a sharp increase in the accuracy rate of a linear classifier when used the cleaned
dataset. The achieved rates were equivalent to those obtained by powerful non-
linear classifiers. Currently, we are investigating a fuzzy clustering approach to
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the same sample selection task, with the hope of further increase the accuracy
rates for different types of classifiers.
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