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Abstract. This paper presents an experimental analysis of some of the
most popular methods for handling boundary constraints in the Dif-
ferential Evolution algorithm. We also propose an additional method
were an infeasible mutant vector is scaled back to the allowable bounds
through the selection of an adequate scale factor. The selected meth-
ods are applied to the CEC2017 benchmark suite for single objective
real-parameter numerical optimization. We present a statistical analysis
using the Wilcoxon test and Performance Profiles. The experimental re-
sults show the superiority of the method known as Resampling and that,
for some scenarios, our proposed method might be a good option.

1 Introduction

Differential Evolution (DE) is a stochastic and population-based metaheuristic
proposed in [1, 2], originally to solve unconstrained optimization problems with
continuous variables. It is a well-know algorithm characterized, among other
features, by the simplicity, robustness and the ability to handle problems that
are not easily solved by classical optimization methods. The results obtained by
DE in practical real-world problems have drawn the attention of a large number
of researchers resulting in a growing number of publications.

Although DE was initially proposed for unconstrained problems, several sub-
sequent publications have been addressing adaptations in the original algorithm
in order to tackle problems with constraints, such as follows:

wmin f(z) M)
subject to:
u; <y < (2)
g(x) > l=1,...p (3)
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where @ denotes the solution vector for the objective function f(x).

The majority of works in the literature is related to the study of techniques
used for handling constraints defined by (3) and (4). Works related exclusively
to the type of constraint defined by (2), also called boundary constraints, seem
to be overlooked despite the impact that the selected method for handling such
type of constraint might have over the efficiency of the Differential Evolution
algorithm. As argued in [3], the handling of such constraints is simple, being the
repair or substitution of infeasible solutions some of the most popular methods.

In [4], a systematic study of different boundary constraints handling methods
found in the literature is carried out. The authors of the study show that the
efficiency of the Differential Evolution algorithm on the CEC2005 benchmark
suite [5] is significantly influenced by the chosen method. It is also shown that,
for the considered benchmark, the best approach is to repeat the differential
mutation by resampling individuals from the population until a feasible mutation
is obtained.

As in the aforementioned paper, the present work has the objective of eval-
uating different boundary constraints handling methods. Nevertheless, we add
three approaches to the set of analyzed methods, two found in the literature and
one new proposal. Then, they are evaluate using the CEC 2017 special session
on single objective real-parameter numerical optimization [6]. Besides, in order
to establish a comparative analysis, Performance Profiles [7, 8] are used.

The rest of the paper is organized as follows: Sect. 2 presents an overview of
the basic DE algorithm; in Sect. 3 the boundary repair methods found in the
literature and an additional proposal are described; details about the computa-
tional experiments and the results obtained are given in Sect. 4; some conclusions
drawn from the experiments are given in Sect. 5.

2 Differential Evolution Algorithm

The iterative process that characterizes the DE algorithm starts with the gener-
ation of a random population of NP individuals with D design variables, being
NP one of the control parameters of the algorithm to be defined by the user.
The generation of the j-th design variable, for the individual with population
index i, is performed according to:

Xi,j,G=0 = lj + Tand(O, 1)(’[1,] — ZJ) (5)

where the function rand(0,1) is responsible for returning a real pseudo-random
number uniformly distributed in the interval [0, 1], while u; and I; stand for the
upper and lower bounds, respectively, of the j-th design variable.

After the step above, an objective value is computed for each individual
present in the population. For unconstrained minimization problems, individuals
with lower values of the objective function correspond to better solutions for the
problem, while in maximization problems, larger values denote better solutions.
For the purposes of the following explanations, only the former case is considered.



Evaluation of Bound Constraints Handling Methods

In the next step of the algorithm, for each member of the current popu-
lation, called a target vector (x;), a new candidate solution, called a mutant
vector (m;), is produced by means of the mutation operator. This new vector
is obtained by adding to a candidate solution in the current population one or
more scaled differences between vectors in the population.

Several variants of the original mutation scheme have been proposed since
the inception of DE, the difference between them given by the way that the
vectors employed are selected and the number of scaled differences used. This
work considers the mutation scheme named target-to-best/1, proposed in [1],
which has been largely employed in several works concerning the DE algorithm.
In this scheme, a mutation vector is generated according to:

m; = x; + F1 (Tpest — i) + Fo(Tr1 — Tr2) (6)

where the control parameters Fy and Fy are scale factors, with Fy, F» € (0,14)
for the difference vectors with the possibility that Fy; = F5. The subscript best
denotes the population member with the best fitness (lowest objective function
value), while 71 and 72 indicate randomly selected population members.

It is easy to see that the mutation operator may sometimes produce values
that fall outside the prescribed range [I;,u;] for the j-th design variable. The
next section present some of the methods employed to address such cases.

The next step of the algorithm is given by the crossover operator, which
generates a trial vector (¢;) through the exchange of components of the mutant
and target vectors. The scheme employed here and in the majority of works
related to the DE is known as bionomial (or uniform) crossover and is given by:
m; ;, if rand;(0,1) < CRor j=J
0= - (7)
’ 24, otherwise

where CR € [0,1] is the user-defined crossover probability, and the value J is
an integer randomly generated in [1, D] in order to ensure that the trial vector
is never an exact copy of its corresponding target vector.

Finally, after a fitness value is assigned to the trial vector, a replacement
operator takes place. The elitist replacement depicted in Eq. 8 is considered,
where the trial vector will replace its corresponding target vector if it has a
smaller or equal objective function value.

o = Lt i f(tig) < f(@ic) (8)
LG+ x;.c, otherwise.

A pseudo-code for the Differential Evolution algorithm can be seen in Alg. 1. The
mutation, crossover, and replacement operators are performed for each individual
in the population, for several iterations, also called generations. The algorithm
is terminated when a maximum number (GEN) of generations is met.
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Algorithm 1 Basic DE algorithm
: procedure DE(NP, CR, F, GEN)
: g=0

1

2

3 CREATERANDOMINITIALPOPULATION(NP)

4: Evaluate f(@i,q) >Vi,i=1,...,NP
5: for g=1:GEN do

6 fori=1: NP do

7 m;.g = Mutation (Zs,g, Tbest,gs Lri,g) Lr2,g)

8 ti,g = Crossover (m; g, ®i,g)

9: Evaluate f(t;,4)
10: T;,g+1 = Replacement (t;,g,xs,g)
11: end for

12: end for
13: end procedure

3 Methods for Handling Bound Constraints

The mutation operator of the DE algorithm may generate individuals where
one or more components fall outside the corresponding bounds. In such cases, a
method to repair or substitute an infeasible individual is usually employed. This
section presents the approaches compared in our experiments and the novel
method for handling bound constraints suggested as part of this paper. The two
techniques added to those in [4] are named Midpoint Base and Midpoint Target.

3.1 Methods found in the literature

— Projection [9]: infeasible components are assigned the value of the violated
bound.
Uy, if My j.g > Uj
Mijg = b Mg <l (9)
m; j.q, Otherwise

— Reinitialization [3]: a new value is randomly generated inside the allowable
range for infeasible components.

Mijg = {l] + ’I"CL’I’Ldj(O, 1)(’(1,] — lj), if Uj < My j.qg < lj (10)

M j.q otherwise

— Rand Base [3]: out-of-bounds components are assigned a new value that
lies between the respective base vector’s component and the violated bound.

base; 4 + rand;(0,1)(u; — base; q), if m;jq > u;
mi g = & base; g +rand;(0,1)(l; — basejq), if m; ;4 <l (11)
My j.gs otherwise
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— Midpoint Base [3]: infeasible components are replaced by the midway
point between the respective base vector’s component and the violated bound.

F(basejq+uy), i mijg > u;
Mmijg =4 z(basejq+1;), ifmi;, <l (12)
M4 j.gs otherwise

— Midpoint Target [10]: similar to the above method, except this time infea-
sible components are replaced by the midway point between the respective
target vector’s component and the bound being violated.

l(tczrgetjg +uy), if my g > u;
Mijg =4 g(target;q+1;), ifmi;e <l (13)
M4 j.gs otherwise

— Reflection [11]: out-of-bounds components are replaced by a value that
denotes the reflection of the violation relatively to the violated bound.

2uj —mijg, it m g >u;
Mijg =4 2lj —mijg, mg;q <l (14)
My j.gs otherwise

— Conservatism [4]: if one or more trial vector’s components fall outside the
allowable ranges, the trial vector becomes a copy of the base vector.

— base;. g, if uj <my 4 <l (15)
w9 mig,  Otherwise

— Resampling [4]: different individuals are randomly sampled from the popu-
lation to take part in the mutation operator, which is performed again until
a feasible individual is yielded or a maximum number of tries is reached.
Here, we selected 100 as the maximum number of tries. If this number is not
sufficient to produce a feasible individual, the target vector is kept in the
population.

3.2 An Additional Proposal

Here we propose a simple bound handling method, called Scaled Mutant, for
the case when the origin is an interior point of the feasible set: an infeasible
mutant vector is scaled back to the allowable bounds via a multiplier « selected
according to:

a =min{l,ay,...,ap} (16)
where «; is given by:
B 7::7517 if m; ; > 0
Oéj = l; f (17)
o 1M <0

When m; ; = 0, the corresponding « is not computed.
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4 Experiments and analysis tools

In order to study the performance of the methods described in Section 3, we
employed each of them to solve a set of problems via Differential Evolution
algorithm. Then, we analyse the results with the support of a statistical and a
visualization tools. This methodology and its items are explained in this Section.

4.1 Numerical experiments

We used the benchmark designed for the CEC 2017 special session on single ob-
jective real-parameter numerical optimization [6]. While the set provided in [5]
is composed of 25 problems, this test-suit offers 30 scalable minimization prob-
lems, which can be categorized into: unimodal functions (f1, f2, f3), simple mul-
timodal functions (f4, f5,..., f10), hybrid functions (f11, f12,..., f20), and
composition functions (21, f22,..., f30). For all cases, we choose 30-dimension
configuration and the search range is given by [—100, 100]3°.

The implemented Differential Evolution algorithm employed the target-to-
best/1/bin mutation scheme and the binomial crossover operator described in
Section 2. The crossover rate (CR) and the scaling factor (F') were set to 0.9
and 0.8, respectively. These values were chosen in order to increase the utiliza-
tion of the bound constraint handling methods while not disrupting the search
process. The population size was set to NP = 100 and the maximum number of
generations to 3,000, what results in a total of 300,000 evaluations per execution.

Each problem was executed 25 times, for each bound constraint handling
method, with different random seeds to extract statistical information. To make
it easier the visualization and interpretation of these numerical experiments re-
sults, we employed a statistical test known as Wilcoxon Signed-rank Test [12]
and an analytical tool known as Performance Profiles [7].

4.2 Wilcoxon Test and Performance Profiles

The Wilcoxon test is a non-parametric statistical hypothesis test used to compare
two numerical samples, giving the significance of the difference between them.
It indicates, according to a chosen confidence level, here selected as 95%, if it
might be asserted or not that one sample is statistically different from another.

In turn, to use performance profiles, first it is necessary to select a mea-
sure (t, ) representative of the relative performance of the algorithm a; € A =
{a1,...,a,} applied to the test-problem p; € P = {p1, ..., pm }. Given the defini-
tion of ¢, 4, the performance ratio r, , can be described as

tpa
a = . - 18
e min{t, , :a € A} (18)

The performance profiles present in a compact graphical form the performance
of the solvers in A on a large set of problems P. Denoting the cardinality of a
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set A by |A| and given the definition of p(7) as
1
ppa=—HpeP:rpq <7} (19)
p

then p(7) is the fraction of the problems in P such that the solver a; € A is able
to find solutions in a factor r, , < 7 compared to the best performance observed.
It is suggested in [8] that the area under the p, curve (AUC, = [ p,(t)dt) is an
overall performance/measure for solver a in the problem set P: the larger the
AUC the higher the solver efficiency. This property is employed to assess the
results obtained in the numerical experiments.

4.3 Results and Discussion

Initially, Tables 1 and 3 list results derived from the Wilcoxon tests, discrimi-
nating the test functions. For each of the 30 test functions from the benchmark,
the cell related to the method that achieved the minimum median regarding
the optima found along the 25 independent runs is highlighted in black. Then,
to the same problem, if the Wilcoxon test does not allow us to consider the
results obtained by another method statistically worse than the best, but the
method also presents the lower median, the corresponding cell is marked in gray.
Otherwise, the corresponding cell remains white. In turn, these observations are
grouped in Tables 2 and 4, which present the sum of Wilcoxon tests without
discriminating the problems. In Tables 3 and 4 we recorded results with 100,000
function evaluations, while Tables 1 and 2 present the results related to the total
budget of 300,000 function evaluations.

Table 1. Wilcox results for all algorithms and 300,000 function evaluations

Method 01]02]03]04]05[06[07[08]09]10]1 1[12[13[14]15[16[17]18[19[20[21]22[23[24]25[26]27[28]29]30
Scaled Mutant
Resampling
Projection
Reinitialization
Rand Base
Midpoint Base
Midpoint Target
Reflection
Conservatism

With respect to the Wilcoxon test, it is possible to note the superiority of the
Resampling method, in general. Among the other techniques, the Scaled Mutant
method, suggested here, is highlighted achieving the best results. With 100,000
function evaluations, this pattern is maintained. However, in this case the per-
formance difference between the Resampling method and all other is increased.
On the other hand, Projection and Conservatism present the worst results, also
emphasized in the 100,000 function evaluations configuration. A relevant aspect
of this observation is that the Projection method is specially widely employed
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Table 2. Sum of Wilcox results for all algorithms and 300,000 function evaluations

Scaled Mutant
Resampling
Projection

Reinitialization
Rand Base

Midpoint Base

Midpoint Target.
Reflection
Conservatism

Table 3. Wilcox results for all algorithms and 100,000 function evaluations

Method [O1[OQ[OS[O4[O5[OG[O7[08[09[10[1 1[12[13[14[15[16[17[18[19[20[21[22[23[24[25[26[27 28 29[30]
Scaled Mutant
Resampling .
Projection
Reinitialization
Rand Base
Midpoint Base
Midpoint Target
Reflection
Conservatism

in the literature. According to these results, the influence of this approach in
optimization algorithms and the existence of alternative strategies deserves a
greater attention by the researchers. The other methods beyond the two best
and the two worst present more close results, when compared the amount of
promising results through Tables 2 and 4. Some large standard deviations that
we recorded associated with each set of 25 independent runs give rise to the
number of times that the statistical test did not ensure a real difference between
the samples (gray cells in Wilcoxon tables). Despite this, the statistical results
show that the choice of an appropriate boundary constraint handling method
leads to relevant differences in the optimization process.

Regarding the Performance Profiles, Figs. 1 and 2 show the results for 300,000
and 100,000 function evaluations, respectively. A performance profile including
only hybrid and composite functions is presented in Fig. 3, while another in-
cluding only unimodal and multimodal simple functions is presented in Fig. 4.
These classifications are according to the published benchmark definitions.

In both Figs. 1 and 2 the curve related to the Resampling method already
presents the higher values for the first values of 7, and is the first to reach the
maximum possible value in these Performance Profiles. There is a difference in
chart scales due to the difference in budget, since the treatment of the problems
with 100,000 function evaluations is a harder task. Moreover, in both cases the

Table 4. Sum of Wilcox results for all algorithms and 100,000 function evaluations

Scaled Mutant
Resampling
Projection

Reinitialization
Rand Base

Midpoint Base

Midpoint Target,
Reflection

Conservatism
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curves related to the Conservatism and Projection approaches are highlighted
as lower values of success performance. All other curves are relatively close, in a
simple visual observation.

The distinction provided in Figs. 3 and 4 allows relating different perfor-
mances to different types of problems. Regarding the Scaled Mutant approach,
for hybrid and composition functions a prominent performance is not observed.
However, when comparing only simple unimodal and multimodal functions it is
easy to see the superiority of this method. Also, for both performance profiles the
worst performances correspond to the Conservatism and Projection methods.

The Table 5 lists the normalized areas under the curves, for each one of the
performance profiles. For 3 performance profiles the Resampling method achieves
the greater area under the curve, while the Scaled Mutant presented the greater
area in 1 performance profile. In addition, the second greater area under the curve
is attributed to the methods Reflection (Figs. 1 and 3), Scaled Mutant (Fig. 2)
and Resampling (Fig. 4). The smaller areas correspond to Projection (Figs. 1, 3
and 4) and Conservatism (2), as expected after the analysis of the medians. In
addition, the difference in success performance for the Scaled Mutant method
when comparing the two budget configurations can indicate that this approach
holds an additional capability to solve problems in lower budget conditions.

Table 5. Normalized areas under all the performance profile curves

Fig. 1 Fig. 2 Fig. 3 Fig. 4
Scaled Mutant 0.9736 0.9993 0.9564 1.0000
Resampling 1.0000 1.0000 1.0000 0.9924
Projection 0.8958 0.9842 0.9015 0.8779
Reinitialization 0.9699 0.9892 0.9624 0.9774
Rand Base 0.9717 0.9990 0.9635 0.9804
Midpoint Base 0.9632 0.9959 0.9516 0.9787
Midpoint Target 0.9632 0.9959 0.9516 0.9787
Reflection 0.9813 0.9940 0.9770 0.9823
Conservatism 0.9189 0.9666 0.9216 0.9066

5 Conclusions

Firstly, the results obtained in this work show that the boundary constraint han-
dling strategy has a relevant influence on the results obtained by the Differential
Evolution algorithm. Due to this fact, it is possible to indicate the usefulness of
the efforts in this theme, which is not one of the most studied in the literature.

The Resampling method achieved the best results, with a significant dif-
ference with respect to other methods. In general, the Scaled Mutant method
presented the second best results also with a very relevant difference to other
methods. However, it is important to note that the Scaled Mutant vector does
not produce a large number of mutant vectors whenever an infeasible individual
is found, in contrast with the Resampling Method. In addition, it is possible to
cite the Reflection as the third best technique.
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Considering only the simple unimodal and multimodal functions, Scaled Mu-
tant presents the best results, suggesting that this proposal can be an interesting
alternative in similar cases. Thus, a promising approach may be to try both the
Resampling and the Scaled Method, whenever one needs to solve a new problem.

An important finding is related to the strategies that achieved the worst
results. Specially regarding Projection, one of the most employed strategies in
the literature, which presented one of the two worst performances in general. An
interesting future analysis concerns the use of benchmarks in which the optima
have active constraints. For these cases, it is possible that methods not positively
highlighted in this work may achieve good results, according to their pattern of
treatment of infeasible solutions.
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