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Resumo. In this paper we evaluate the performances of randomized
pattern classifiers in the task of EEG-based epileptic seizures detection.
Our goal is to investigate if these new class of machine learning meth-
ods actually outperform powerful nonlinear classifiers, such as the MLP
and SVM, in complex pattern recognition tasks. The rationale for the
current work comes from the observation that the recent wave of ap-
plications involving randomized classifiers tend to report only positive
reports, in which these networks always achieve equivalent or better per-
formances than non-randomized nonlinear classifiers. A comprehensive
performance evaluation is carried out, with the results strongly corrob-
orate our hypothesis that randomized classifiers usually do not perform
better than well trained standard nonlinear classifiers. Additionally, the
performances of randomized classifiers are more dependent on the fea-
ture extraction method than non-randomized ones.

Keywords: epileptic seizures, randomized classifiers, Welch’s periodogram,
LPC coefficients, ROC curves.

1 Introduction

There has been an ever growing interest on randomized machine learning
algorithms for complex pattern recognition tasks. A few examples of such algo-
rithms are the random vector functional link (RVFL) [II2], the extreme learning
machine (ELM) [3], the no-prop network [4], random forests [5], and random
kitchen sinks [6]. All this interest seems to be primarily motivated by the very
fast way they are designed, without resorting to a long learning process across
several training epochs, as required by standard learning algorithms such the
backpropagation algorithm [7].

Fast classifier design is achieved (e.g. for the neural network based classi-
fiers) simply by randomizing the input-to-hidden layer weights/biases. Only the
hidden-to-output layer weights (output weights, for short) are computed, which



can be carried out by means of any standard parameter estimation technique for
linear systems (e.g. ordinary least squares).

A direct consequence of all the hype around randomized classifiers is that the
papers on this issue almost always report positive results, in which the perfor-
mances of the randomized classifiers are equivalent or better than those achieved
by powerful nonlinear classifiers, such as the MLLP and SVM. Critical evaluations
are very rare or inexistent. Thus, a more experienced reader can clearly iden-
tify confirmation bias in the reported results, where the randomized networks
are built to their best performances, while more traditional classifiers are not
designed with the same enthusiasm.

From the exposed, in this paper we aim at filling a gap in the literature of
randomized pattern classifiers. For this purpose, we selected a very challenging
task of detecting epileptic seizures from EEG signals [§]. The epileptic seizure is a
state in which there is an abnormal, excessive, synchronous discharge of neurons
located basically in the cerebral cortex. This abnormal activity is intermittent
and usually self-limiting, lasting from a few seconds to a few minutes and affects
millions of people worldwide (around 1% of the world population) [9].

The EEG signal is highly noisy, nonlinear and nonstationary [10]. Such fea-
tures characterize EEG processing (e.g. for seizure detection) as a very chal-
lenging task, despite all the developments in nonlinear feature extraction and
machine learning methods. The literature on the application of standard non-
linear classifiers in seizure detection/classification, such as the MLP and kernel
machines (SVM and LSSVM), is extensive [I1]. As expected, there is an increas-
ing interest in applying randomized classifiers for the same tasks [T2/T3IT4IT5].

The contribution of this paper is twofold. First, we provide a comprehensive
investigation of the performances of randomized classifiers in EEG-based seizure
detection for different feature selection techniques. Then, we compare the per-
formances of these randomized classifiers to those of standard linear/nonlinear
classifiers. The obtained results seem to corroborate our hypothesis that random-
ized classifiers often do not perform better than well trained standard nonlinear
classifiers. Furthermore, for the task we are interested in, the performances of
randomized classifiers are highly dependent on the feature extraction method.

The remainder of the paper is organized as follows. In Section [2] we describe
the randomized classifiers evaluated in this paper. in Section [3| we briefly present
the two feature extraction methods used in the simulations and describe how to
build the feature vectors for classification purposes. The results are presented
and discussed in Section [d] The paper is concluded in Section [f]

2 Evaluated Classifiers

Let us assume that we have already collected N data pairs {(x,,d,)}Y_,
for building and evaluating the model, where x,, € RP is the n-th p-dimensional
input pattern and d,, € {—1, +1} is the corresponding target class label. Then, let
us randomly select N7 (N7 < N) training input-output pairs from the available

data pool and arrange the input vectors along the columns of the matrix X



(p x N1), while the target values are stacked into the column-vector d (Ny x 1):
X=[xi|x2| - |xn,] and d=[didy - dp,]", (1)

where the superscript T' denotes the transpose of a vector/matrix.

2.1 The Random Vector Functional Link Network (RVFL)

The RVFL [12] is a randomized SLFN with two pathways for processing
information from input units to output neurons. These pathways are then added
to form the network’s output. The first pathway is a linear one, which directly
connects the input units to the output neuron. Mathematically, we get

ygzl) = fona (2)

where w; € R? is the corresponding weight Vectorﬂ The second pathway pro-
cesses the input vectors through a hidden layer of ¢ (¢ > 1) nonlinear neurons;
that is,

yg) = Wghnv (3)

where wy € RY is the corresponding weight vector and h,, € R? is the hidden
activation vector, i.e. the vector containing the outputs of the hidden neurons in
response to the current input vector x,,. The vector h,, is computed as

h, = ¢(Mxn) = [d)(m?xn + bl)) cee ad)(mgxn + bq)]Ta (4)

where ¢(+) is a nonlinear (e.g. sigmoidal) activation function operating at each
component of its argument vector, M is a ¢ X p weight matrix, and b;, j =1, .., g,
denotes the bias of the j-th hidden neuron. It should be noted that the weight
vectors wi and wy are estimated from data, while the entries of the matrix
M and the biases b; are randomly sampled either from a uniform or a normal
distribution.

If we add the outputs of both pathways, we get

Xn
Yn = ,(Ll) + yff) = wlTxn + wghn = [w? | WQT] — | =wTlz,, (5)
h,

where w = [wl | wi]7T is the (p+¢) x 1 vector obtained from the concatenation
of the weight vectors wi and wy. By the same token, z, is the (p+¢) x 1 vector
formed from the concatenation of the current input vector x, and the current
hidden activation vector h,,.

The weight vector w can be readily estimated via the ordinary least squares
(OLS) method by means of the following expression:

w = (ZZ")"'Zd, (6)

1 .
We assume that all vectors are column-vectors, unless stated otherwise.



where Z = [z1|2z2| -+ | zn,] is & (p+ ¢) X N7 matrix whose N7 columns are the
augmented vectors z, = [x1 | hI]T € RPT9 n = 1,..., Ny, where N; is the
number of available training input patterns. The vector d is defined in Eq. .
To avoid numerical problems, a regularized version of Eq. @ is commonly used,
which is given by

w = (ZZ" + \I)"'Zd, (7)

where the constant A > 0 is the regularization parameter.

2.2 The Extreme Learning Machine (ELM)

The ELM network is a recent randomized SLFN introduced by Huang et
al. [3], whose weights from the inputs to the hidden neurons are randomly cho-
sen, while only the weights from the hidden neurons to the output are analytically
determined. Consequently, ELM offers significant advantages such as fast learn-
ing speed, ease of implementation, and less human intervention when compared
to more traditional SLFNs, such as the Multilayer Perceptron (MLP) and RBF
networks.

From an architectural point of view, the ELM network can be understood
as a simplified version of the RVFL in which the direct linear path is removed.
Thus, the equations of the ELM are easily obtained as follows:

Output computation: From Eq. , once we remove the direct linear path-
way, we get
Yn = yr(f) = W2Thn7 (8)

where h,, is defined as in Eq. ‘
Estimation of wy: In this case, the expression of the OLS estimate in Eq. @

reduces to

w; = (HH") 'Hd, (9)
where H = [hy | ha | -+ | hy,] be a ¢ x N7 matrix whose N7 columns are the
hidden activation vectors h,, € R?, n = 1,..., Ny, where IN; is the number

of available training input patterns.

The former two randomized classifiers (i.e. RVFL and ELM) originated in
the neural network field. The RKS classifier [I6], in its turn, has origin within
the field of kernel machines.

2.3 Random Kitchen Sinks (RKS)

Kernel methods provide an elegant, theoretically well-founded, and power-
ful approach to solving many learning problems. Since traditional algorithms
require the computation of a full N x N pairwise kernel matrix to solve learn-
ing problems on N input vectors, however, scaling these methods to large-scale
datasets containing more than thousands of data points has proved challenging.



Rahimi and Recht[I7T6] triggered interest in one very attractive approach:
approximating a continuous shift-invariant kernel £ : X x X — R by

k(x,y) = 2(x)"2(y), (10)

where z : X — RP. Then primal methods in R” can be used, allowing most
learning problems to be solved in O(N) time [I8].
To approximate the RKHS induced by the Gaussian kernel

k(z,y) = exp(—[x - y[*), (11)

it suffices to sample the weights m from the inverse Fourier transform of k(- ),
which is just a multivariate Gaussian density with mean vector 0 and covariance
matrix 2vI. A direct consequence of this approach is that the RKS classifier
becomes very similar in structure to the ELM network.
Thus, for each input vector x,,, we compute the approximated feature map-
ping as
h, = $(Mx,) = [$(mIx, +b), .., ST, + b7, (12)

with m; ~ Normal(0, 2vI) and b; ~ Uniform(—m,+). The output vectors are
then computed exactly as shown in Eq. @

For the sake of completeness, we included in the comparative analysis the
standard least squares (LS) linear classifier, and also two powerful supervised
nonlinear classifiers, namely the multilayer perceptron (MLP) network and the
Vapnik’s support vector Machine (SVM).

3 Feature Extraction Methods

The problem of interest - epileptic seizure detection - is usually treated a
binary classification problem. In this regard, the classifier has to differentiate be-
tween periods of either normal or convulsive epileptic activity (henceforth called
convulsive seizure or simply seizure). The data used in this study were collected
at the Children’s Hospital of Boston, Massachusetts (MIT). The database CHB-
MIT Scalp EEG Database is available for public downloadﬂ It is comprised of
24 patients already diagnosed with epilepsy, where video-EEG monitoring was
performed after the withdrawal of the anti-convulsive medication [I9J20]. The
files have a sample rate of 256 Hz, the electrode assembly follows the standard
10-20 and the number of channels vary from 23 to 32. In total, 197 seizures
were cataloged in 141 files, totaling 196 minutes of intervals containing epileptic
seizures for all patients.

Since EEG is a complex time series, with aperiodic behavior and highly
nonstationary, it is necessary to reparametrize the available time series in order to
extracting attributes that preserve relevant information contained in the original
signals. Two of the most commonly used methods for this purpose are the Welch’s
periodogram [21] or linear predictive coding (LPC) coefficients [22]. It should be

? CHB-MIT Scalp EEG Database, http://www.physionet.org/pn6é/chbmit/
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noted that, however, both methods assume stationarity of the time series. To
deal with the high non-stationarity of an EEG signal, the original sequence is
segmented in smaller subsequences, which are then assumed stationary.

Welch’s Periodogram - This method for estimating the PSD of a stochastic
signal combines windowing and averaging in order to obtain a smooth spectrum
estimation without random fluctuations resulting from the estimation process
itself. The original data sequence of each channel is divided into a number K
of possible overlapping segments. A window v,, is defined over each of these
segments and the corresponding periodograms are computed and then averaged.
If mﬁ{“ ) represents the sample z,, of the k*" data subsequence (of length L), then
the modified periodogram for that subsequence is computed as

L—-1
§ vnx;k)e—]wn
n=0

where w = 27 f (in rad/s) is the angular frequency, and the window v should obey
the following (normalization) property: (1/L) Zﬁ;é vZ = 1. Then the estimate

of the PSD of the signal, for each frequency w, is taken as

2

Ak 1
ng’”(w)zZ E=1,....K (13)

. 1 &
Sp(w) = 74 Y~ P (w) (14)
k=1

LPC coefficients - This method assumes that the dynamics of the k-th data
subsequence can be described by an autoregressive model of order p, AR(p):

xzF) = ak71x2k21 + ak’2$2k7)2 + ..+ akypx;kf)p + €n, (15)
where a1, ..., app are the coefficients of the AR(p) model of the k-th subse-
quence, and €, is an additive white Gaussian noise (AWGN) process i.e. €, ~
N(0,02). The coefficients {ay,;}}_, associated to each subsequence k = 1,..., K,
can be estimated by several methods, such as well-known Yule-Walker (YW)
equations or the ordinary least squares (OLS) [22].

3.1 Building the Feature Vectors

Let us consider a set of N = 23 channels from which we collect 23 EEG
signals of a certain duration for each patient. For the dataset we are working
with, each EEG signal lasts 1 hour, sampled at a rate of 256Hz. For a given EEG
channel, feature vectors are built every two seconds. Successive two seconds long
segments (called EEG epochs) are processed by a time window of duration L = 2
seconds. For a sampling rate of 256Hz, each segment contains 512 samples.

> Welch’s Periodogram - Following the methodology proposed in [20], feature
vectors extracted using the Welch’s method for one subject are built according
to the following steps (see Fig. [I):



e Step 1 - For the current two-second long EEG epoch, apply the Welch’s pe-
riodogram method. Repeat it for all the N EEG channels.

e Step 2 - Apply a logarithmic scale to the resulting PSD values to convert
them to decibels (dB).

e Step 3 - Segment the resulting PSD (in dB) in M = 8 frequency bands cover-
ing the range from 0.5 to 25Hz and then compute the spectral energy falling
within each band. For channel k, this procedure leads to the computation
M = 8 feature values 1 i, T2k, .. T k-

e Step 4 - Within each two second EEG epoch at time ¢ = T, concatenate the
M = 8 spectral energies extracted from each of N = 23 EEG channels. This
process forms a feature vector X of dimension M x N = 184, defined as

Xp=[r11 ®21 -+ Tmal| - |TIN T2an - xM,N]T (16)

e Step 5 - Build a stacked feature vector that is the result of concatenating
the feature vectors from W = 3 contiguous, but non-overlapping two second
epochs. The augmented feature vector Xt is defined as

Xr=[Xr Xpop - Xe—w-nz]’, (17)
and has dimension W x M x N = 552.

A word on the Step 5 is necessary. Electroencephalographerﬁ require an EEG
reading that looks abnormal to persist for a minimum of 6 to 10 seconds before
considering it an actual seizure [23]. To incorporate this domain knowledge, we
set W = 3 so that the evaluated classifiers take into consideration the evolution
of feature vectors over at least a period of 6 seconds.

> LPC coefficients - The feature vector design using LPC coefficients also
evolves in segments of two-second long EEG epochs. However, instead of speci-
fying the number M of frequency bands over which we compute the energy per
EEG epoch, we need to specify beforehand the order p of the AR model (p).
After some experimentation, we set p = 4. Larger values did not improve con-
siderably the classification accuracies, while lower values led to a degradation in
performance.

Thus, feature vectors built by means of the LPC method for one subject are
obtained as follows:

e Step 1 - For the current two-second long EEG epoch, apply the Yule-Walker
equation in order to estimate the corresponding p coefficients of the AR
model. Repeat it for all the N EEG channels.

e Step 2 - Within each two second EEG epoch at time t = T, concatenate the
p = 4 coefficients estimated for each of the N = 23 EEG channels. This
process forms a feature vector X of dimension p x N = 92, defined as

Xp=la11 a12 -+ a1p| - lang ana -+ anp]’ (18)

3 A person who specializes in reading and interpreting electroencephalography.
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Fig. 1. Building the feature vectors for epileptic seizure detection from the N EEG
channels for one patient [20].

e Step 3 - Build a stacked feature vector that is the result of concatenating
the feature vectors from W = 3 contiguous, but non-overlapping two second
epochs. The augmented feature vector X has dimension W x p x N = 276:

Xr =Xy Xeop - Xe—w-nr]’ (19)

It should be noted that due to the very nature of the task, there are many
more feature vectors labeled as normal (-1, negative class) than as seizure (+1,
positive class). In fact, only 2% of the analyzed EEG signals correspond to
intervals containing seizures. This implies that the seizure detection tasks is
highly unbalanced.

4 Results and Discussion

In this section we report the results of the performance analysis we carried
out. To handle the unbalanced categories, we purposely equalized the ratio of
positive to negative instances per patient. Then, we randomly divided the avail-
able instances per patient in 3 subgroups: training (70%), validation (20%) and
testing (10%). The following classifiers were evaluated in this paper, namely:
LS, RVFL, RKS, ELM, MLP and SVM classifiers. The two feature extraction
techniques and all the classifiers were implemented in Matlab.

The classifiers’ hyperparameters are listed in Table [ These values were
chosen after 100 independent runs of 5-fold cross-validation over the training
and validation sets. The numerical results reported in the following tables come
from two different individuals (represented by P1 and P2), whose numerical
results on test sets are typical among those collected across the whole set of
individuals.
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Table 1. Hyperparameters of the evaluated classifiers. ¢ is the number of hidden
neurons, 7 is the learning rate, « is momentum factor, « is the scaling parameter of
the Gaussian kernel in SVM and RKS, D is the dimension of the mapping in RKS.

l Classifier [Selected Hyperparameters
MLP q=250 |np=0.05|a=0.75
RKS D = 300 |y = 0.005 -
ELM q =280 - -
SVM |C =1000|y = 0.005 -
RVFL q =250 - -

Table 2. Scenarios defined for the experiments

Patient|Features Classifier
LS MLP|RKS|RVFL ELM|SVM
1 Welch |A| B C D E F
LPC G H I J K L
9 Welch (M| N O P Q R
LPC S| T U \ W X

We defined 24 scenarios (combination of feature extraction method and clas-
sifier) for the purpose of comparison of the results, as shown in Table|2| For each
patient, 100 independent runs were performed for the 24 scenarios. At the end of
each test phase, the ROC curve was constructed, and the accuracy, sensitivity,
specificity and Matthews correlation coefficient (MCC) were computed from the
corresponding confusion matrix.

Table 3. Results of Patients 1 and 2 for the 24 simulation scenarios.

Patient 1
Measures| A[ B[ C[D|E[F[G[H|TIJ[J]|K]JL
Accuracy [0.806]0.899]0.814]0.973]0.785[0.988]0.990][0.992[0.981]0.994]0.981]0.996
Sensitivity|0.648[0.802]0.667]0.948]0.631]0.994[0.994]0.992/0.996(0.992]0.996[0.992
Specificity[0.972]1,000]0.967]1,000[0.946]0.983]0.987]0.991[0.965/0.996|0.965[1,000
MCC_ [0.654]0.819]0.665]0.949]0.606/0.977]0.981]0.984]0.963]0.988]0.963]0.992

Patient 2
Measures[M[N[O[P[Q[R[S[T[U[V[W[X
Accuracy |0.734/0.940(0.809(0.970{0.823|0.934(0.981{0.977(0.951|0.994|0.931|0.991
Sensitivity|0.647|0.881|0.719(0.950{0.713]0.997|0.991{0.954|0.940|0.992{0.905|0.999
Specificity|0.822(1,000{0.901{0.991|0.937{0.870{0.970|1,000{0.963|0.995|0.958/0.983

MCC ]0.478|0.887|0.633]0.942|0.666|0.877(0.962|0.955|0.904|0.987|0.865|0.982
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Fig. 2. ROC curves for all classifiers using Welch’s features for the two patients.

In Table|3| the average values of the evaluation measures for the two patients
in the 24 scenarios are reported. It can be easily observed that, for all evaluation
measures, the use of the LPC coefficients led to better performances of the
classifiers (columns G to L for Patient 1, and S to X for Patient 2) when compared
to the results achieved by the use of the Welch’s periodogram.

A better way to visualize the differences in performance of the several clas-
sifiers for the two feature extraction methods and for the two patients is by
means of the corresponding ROC curves. These curves are shown in Fig. [2] for
the Welch’s periodogram features and in Fig. [ for LPC features.

We can infer from these figures several important conclusions. () First of all,
the MLP and SVM classifiers always perform well, independent of the chosen fea-
ture extraction methods. (ii) The only randomized classifier whose performance
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is equivalent to those of the MLP and SVM classifiers is the RVFL network.
(#31) The performances of the LS, RKS and ELM classifiers are always inferior
to those of the MLP, SVM and RVFL classifiers, no matter which feature ex-
traction method is used. (iv) The performances of all classifiers (including the
ELM/RKS/LS trio) improve when the LPC features are used for both patients
(compare Figs. [3h and [3p).

As a general conclusion, we can state that we cannot take it for granted
that the performances of randomized networks are always equivalent or superior
to those of nonlinear classifiers. As we have shown the MLP and SVM classi-
fiers performed quite well for the problem of interest. Among the randomized
classifiers there were high variability among the results, with the RVFL clas-
sifier clearly achieving the best performance. in reality, the performance of the
RVFL classifier was comparable to those presented by the MLP/SVM classifiers.
With respect to these two classifiers, the RVFL classifier offers the additional
advantage of very fast training, being this way a good alternative to them.

5 Conclusions and Further Work

In this paper we have compared the performances of randomized classifiers
with those achieved by standard nonlinear classifiers (SVM and MLP). the cho-
sen task was the detection of epileptic seizures from EEG signals. We have shown
that only one (the RVFL network) out of three of the most widely used random-
ized classifiers achieved performances comparable to those provided by the SVM
and MLP classifiers. The additional advantage of fast training of the former
makes it a respectable alternative to the latter ones.

In the current paper we evaluated only standalone classifiers. Currently, we
are investigating the performances of the randomized classifiers evaluated in this
paper in ensemble-like structures in order to compare their performances with
that of the random forest classifier on a fair basis. We are also evaluating their
performances using wavelet features.

Acknowledgments: The authors thank CNPq (grant 309451/2015-9), CAPES
and NUTEC for the financial support.

References

1. G.-H. P. Y.-H. Pao and D. J. Sobajic, “Learning and generalization characteristics
of the random vector functional-link net,” Neurocomputing, vol. 6, pp. 163180,
1994.

2. L. Zhang and P. N. Suganthan, “A comprehensive evaluation of random vector
functional link networks,” Information Sciences, vol. 367-368, pp. 1094-1105, 2016.

3. G. Huang, G.-B. Huang, S. Song, and K. You, “Trends in extreme learning ma-
chines: A review,” Neural Networks, vol. 61, no. 1, pp. 32—48, 2015.

4. B. Widrow, A. Greenblatt, Y. Kim, and D. Park, “The No-Prop algorithm: A new
learning algorithm for multilayer neural networks,” Neural Networks, vol. 37, pp.
182-188, 2013.



12

1 gt P — AR -
¥ e
09% L
i ,*'
08t ,--¥
% 1
0.7F i
1+
- 0.6;-: ‘,‘
.
g 0.5 o
204t/
ti
03t [+-LS |
i -+~ MLP
024 RKS
4 - RVFL
041k - ELM
3 SVM
0! ; | | I |
0 0.2 0.4 0.6 0.8 1
1-specificity

(a) ROC curves (P1, LPC)

£
0.8+
&
o7t
11
- 0.6 E—
=
g 05F
< |
Q |
© 04k
] |
0.3} -*-LS
| -~ MLP
02t RKS
¥ - - RVFL
0.1+ - ELM
¥ SVM
0' L I 1 1 ]
0 0.2 0.4 0.6 0.8 1

1-specificity

(b) ROC curves (P2, LPC)

Fig. 3. ROC curves for all classifiers using LPC features for the two patients.

T. K. Ho, “The random subspace method for constructing decision forests,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 20, no. 8, pp.
832-844, 1998.

A. Rahimi and B. Recht, “Weighted sums of random kitchen sinks: Replacing
minimization with randomization in learning,” in Advances in Neural Information
Processing Systems 21, D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, Eds.
Curran Associates, Inc., 2009, pp. 1313-1320.

. L. Zhang and P. N. Suganthan, “A survey of randomized algorithms for training

neural networks,” Information Sciences, vol. 364-365, pp. 146-155, 2016.

. H. Adeli and S. Ghosh-Dastidar, Automated EEG-Based diagnosis od neurological

disorders: Inventing the Future of Neurology. New York: CRC Press, 2010.

. K. Lehnertz, F. Mormann, T. Kreuz, R. Andrzejak, C. Rieke, P. David, and

C. Elger, “Seizure prediction by nonlinear EEG analysis,” IEEE Engineering in



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

13

Medicine and Biology Magazine, vol. 22, no. 1, pp. 57-63, 2003.

D. P. Subha, P. K. Joseph, R. Acharya, and C. M. Lim, “Eeg signal analysis: A
survey,” Journal of Medical Systems, vol. 34, no. 2, pp. 195-212, 2010.

T. N. Alotaiby, S. A. Alshebeili, T. Alshawi, I. Ahmad, and F. E. A. El-Samie,
“EEG seizure detection and prediction algorithms: a survey,” EURASIP Journal
on Advances in Signal Processing, vol. 2014, no. 1, p. 183, 2014.

Y. Wang, Z. Li, L. Feng, C. Zheng, and W. Zhang, “Automatic detection of epilepsy
and seizure using multiclass sparse extreme learning machine classification,” Com-
putational and Mathematical Methods in Medicine, vol. 2017, no. ID 6849360, pp.
1-10, 2017.

S. Ding, N. Zhang, X. Xu, L. Guo, and J. Zhang, “Deep extreme learning machine
and its application in EEG classification,” Mathematical Problems in Engineering,
vol. 2015, no. ID 129021, pp. 1-11, 2015.

H. Zhao, X. Guo, M. Wang, T. Li, C. Pang, and D. Georgakopoulos, “Analyze
EEG signals with extreme learning machine based on PMIS feature selection,”
International Journal of Machine Learning and Cybernetics, pp. 1-7, 2015.

C. Donos, M. Dumpelmann, and A. Schulze-Bonhage, “Early seizure detection al-
gorithm based on intracranial EEG and random forest classification,” International
Journal of Neural Systems, vol. 25, no. 5, pp. 1-11, 2015.

A. Rahimi and B. Recht, “Uniform approximation of functions with random bases,”
in Proceedings of the 46th Annual Allerton Conference on Communication, Control,
and Computing, 2008, pp. 555-561.

——, “Random features for large-scale kernel machines,” in Advances in Neural
Information Processing Systems 20, J. C. Platt, D. Koller, Y. Singer, and S. T.
Roweis, Eds. Curran Associates, Inc., 2008, pp. 1177-1184.

D. J. Sutherland and J. Schneider, “On the error of random fourier features,”
in Proceedings of the 31st Conference on Uncertainty in Artificial Intelligence
(UAI’2015), 2015, pp. 862-871.

A. H. Shoeb, “Application of machine learning to epileptic seizure onset detection
and treatment,” Ph.D. dissertation, Harvard University—MIT Division of Health
Sciences and Technology, 2009.

A. Shoeb and J. Guttag, “Application of machine learning to epileptic seizure de-
tection,” in Proceedings of the 27th International Conference on Machine Learning
(ICML’2010), 2010, pp. 1-8.

P. D. Welch, “The use of the fast fourier transform for the estimation of power
spectra,” IEEE Transactions on Audio FElectroacoustics, vol. 15, no. 2, pp. 70-73,
1967.

C. W. Therrien, Discrete Random Signals ans Statistical Signal Processing. New
Jersey: Prentice-Hall, 1992.

C. Logar, B. Walzl, and H. Lechner, “Seizure prediction by nonlinear EEG anal-
ysis,” Role of long-term EEG monitoring in diagnosis and treatment of epilepsy,
vol. 34, no. Suppl 1, pp. 29-32, 1994.



	Lecture Notes in Computer Science
	Introduction
	Evaluated Classifiers
	The Random Vector Functional Link Network (RVFL)
	The Extreme Learning Machine (ELM)
	Random Kitchen Sinks (RKS)

	Feature Extraction Methods
	Building the Feature Vectors

	Results and Discussion
	Conclusions and Further Work


