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Abstract. The aim of this paper is to propose a method for probabilistic
forecasting based on the aggregation of seasonal Fuzzy Time-Series techniques
with ensemble learning. The proposed method generates different seasonal FT'S
models and the best ones are combined into an ensemble learning. The fore-
casting procedure consists in evaluating individual models and combining their
outputs into a continuous probability distribution using Kernel density estima-
tion. The method was applied to SONDA dataset considering three seasonal
indexes on solar radiation data. The best Ensemble models were those with 15
minutes interval index and Entropy partitioning in their different parameters.
The built ensemble forecasts were then compared with ARIMA and Quantile
Auto-Regression models using Continuous Ranked Probability Score (CRPS)
metric. The Ensemble FTS method presented a slightly larger CRPS, especially
for the Epanechnikov, Tophat and Triangular kernels, which suggests a better
model.

Keywords: Fuzzy forecasting; Time-series; Fuzzy seasonality; Ensemble Learn-
ing.

1 Introduction

Time-series can be seen as a set of data observed at a discrete point of time.
Essentially, information can be inferred from the patterns of past observations
and can be used to forecast future values of the series [15]. In order to deal with
vague and incomplete data, Fuzzy Time-Series (FTS), introduced by [30] and
based on Fuzzy Set Theory (FST) [31], appear as computationally inexpensive,
efficient and simple to implement forecasting methods. FTS have been used in
several application fields, such as tourism [16], electric load [12, 24], stock mar-
kets [6, 23] and seasonal time-series [3, 29]. There are a variety of models to



forecast future events. When the data repeats at fixed intervals it becomes a
Seasonal Fuzzy Time-Series (SFTS) [15]. A wide variety of seasonalities can be
found in a time-series and the current prediction methods have not been able to
provide satisfactory accuracy rates for forecasts [22]. For this reason, Probabilis-
tic forecasts assign probabilities to different outcomes and have received good
attention [9, 28].

However, probabilistic forecasts are not equally accurate and different metrics
are necessary to assess the respective accuracy of distinct probabilistic forecasts.
The tradeoff between bias and variance in FTS is controlled by the number of
fuzzy sets and their distribution. For improving performance, some approaches of
preprocessing data with transformations are applicable, such as differentiation
[23], box-cox [17], adaptive forecasts [8] etc. These transformations can help
predict a future point as it improves accuracy over the time-series under analysis.

A measure of uncertainty is lacking for point forecasts, which means that this
type of forecasting is not enough to capture all the uncertainty of an estimate.
More complex forecasting tasks involving dynamic and nonlinear processes, such
as climatological and economic forecasts, contain many uncertainty sources [24].
Moreover, combinations of different learning methods have been used to improve
predictive performance, since it is expected that ensemble learning for probabilis-
tic forecasts is able to result in better accuracy, on average, than any individual
prediction. The main advantage of ensemble learning is the flexibility and ease
implementation, since the individual models can be replaced (or added) for any
other point forecast, such as any FTS method [18]. In this paper we provide a
new probabilistic forecasting approach using seasonal FTS, ensemble learning
and kernel density estimation (KDE). The proposed method generates different
seasonal FTS models and the best ones are combined into an ensemble. The
forecasting procedure consists in evaluating individual models and combining
their outputs into a continuous probability distribution using KDE. As numeri-
cal example, it was applied to solar forecasting data, using SONDA dataset.

2 Background

2.1 Fuzzy Time Series

Fuzzy Time-Series (FTS) are non-parametric forecasting methods introduced by
[30] based on Fuzzy Set theory [31]. FTS provide a different representation of
a time series data. While conventional time series are composed by sequential
observations represented by real numbers indexed by a time index ¢, FTS are
composed by fuzzy sets. These fuzzy sets form the Universe of Discourse (UoD)
for the forecasting problem. The UoD is obtained from the range of values ob-
served in the conventional time series. For example, consider a crisp time series
Y (t) € R, for t € [0,n]. The UoD can be divided into overlapping sub intervals
such as U = wuj,usg, - ,u,. The fuzzy sets A; are then defined over each sub
interval with a corresponding membership function p 4, : u; — [0, 1]. Therefore,
if F(t) consists of pa,(t), then F(t) is considered an FTS over Y (),



Fuzzy Logical Relationships (FLR) represent the causal relationship between
the observations at time ¢ and previous observations. Establishing the FLR is
one of the main steps for an FTS algorithm. If there exists a fuzzy relationship
R(t — p,t), such that F(t) = F(t — p) o R(t — p,t), where o is an arithmetic
operator, then F(t) is said to be caused by F(t — p). The relationship between
F(t) and F(t — p) can be denoted by F(t — p) — F(t).

Consider F(t—1) = A, and F(t) = A;. The FLR can be defined as A; — A;
where A; and A; are called the left-hand side (LHS) and the right-hand side
(RHS) of the FLR, respectively.

The main steps of all FTS methods were proposed in [30], but its computa-
tion demanded many matrix operations for each forecasting, making the process
computationally expensive. Then, Chen [7] simplified Song and Chissom’s algo-
rithm by creating the Fuzzy Logical Relationship Groups (FLRG), making the
forecasting process cheaper by avoiding the use of matrix manipulations. The
FLRG represent the knowledge base (rule base) of the model and are human
readable and easy to interpret.

The FLRs with the same LHS are gathered into FLRGs. LHS of groups indi-
cate input value (the point which prediction is performed) and RHS corresponds
to the outputs that were experienced in the estimation period.

If F(t) is caused by F(t — 1), F(t — 2),F(t — 3),--- , F(t — p), then the cor-
responding FLR is F(t — 1), F(t — 2), F(t — 3),--- , F(t — p) — F().

Additionally, Seasonal Fuzzy Time Series (SFTS) models were proposed in
[29] basically by defining a seasonal period i, where F(t) = F(t — i). Before,
Chang [3] proposed a method for capturing fuzzy trend and fuzzy seasonal in-
dexes using Fuzzy Regression.

2.2 Probabilistic Forecasting

Probabilistic Forecasting assigns probabilities to different outcomes, instead of
returning a single-valued forecast. The set of probabilities represents the proba-
bility forecasting. The set of outcomes delimited by these probabilities is known
as prediction interval.

A simple method for creating prediction intervals for generic forecasting mod-
els was proposed by [4], namely mean-variance model. From the point forecast
p = E[Yi41|Ys, Yio1,...] with the variance of the residuals o. = \/V ARJe] by as-
suming that these residuals as € ~ A(0,1). The prediction interval is calculated
by I = [ —2q/20c , pi+ 2q/20] and 2,9 = P((1 — a)/2) is the standard normal
distribution function.

The main probabilistic approach for interval forecasting is the Quantile Auto
Regression (QAR) [14], based on the Quantile Regression [13]. The QAR esti-
mates a conditional quantile function Qy, (7|Y;—1,...) = ming > ., pr(y: — vi0)
where Y} is the estimated quantile value, 7 is the quantile level, # are the fitted
coefficients for the Y; lagged values and p,(u) = u(7 — I(u < 0)) is the Pinball
Loss Function, where I(z) = {1 if z > 0 or 0 if < 0}. QAR approaches have
been used in many application fields, for instance energy load forecasting [11]



and wind forecasting [20]. Each QAR model is fitted for a specific 7, so for a cer-
tain o two QAR models are needed. The independence of quantiles also allows
to create asymmetric inter-quantile intervals, if needed.

2.3 Ensemble Learning

An ensemble prediction consists of multiple runs of numerical weather prediction
models, which differ in the initial conditions [1, 9]. This concept was exploited in
[1] and [18], which proposed an ensemble learning approach for solar power prob-
abilistic forecasting based on k-Nearest Neighbors, Regression Trees, Random
Forests and regression methods. Given an ensemble with £ models and taken the
ordered set of the k individual forecasts, the probabilistic forecast is constructed
as an empirical cumulative distribution F', calculated with the percentiles of the
individual forecasted values. F' can be made with three approaches: Quantile
Linear Interpolation, Normal Distribution and Normal Distribution with initial
different conditions. The linear interpolation approach calculates the 7 quantile
position 7 on the individual forecasts as r, = 1’%0 + 0.5. With the set of indi-
vidual forecasts, the mean p and variance o are calculated and the T quantile is
given by 7 = u—+ z; - 0. The third approach is specific for the application domain
of solar power. Ensemble Learning for time series forecasting is also proposed in
[5].

2.4 Kernel Density Estimation

Distribution generating techniques for ensemble forecasts exist as Kernel Density
Estimation [11] and Kernel Dressing [2, 21]. Both approaches smooth the discrete
values in a continuous function that approximates the empirical distribution of
data, as P(z) = (nh)™'Y,cy K((x —i)/h) where Y is the set of individual
forecasts, K is the kernel function and h is a smoothing parameter also known as
bandwidth. A kernel function K has to be non-negative, real-valued, symmetric,
integrable and normalized. A review of density estimation methods can be found
in [26] and a specific study on estimation of h parameter can be found in [25].

3 Proposed Method

3.1 Training Procedure

The aim of the training procedure is to build an ensemble M with & individual
models m;, given a crisp training set Y (¢). The overall training procedure is
shown in Figure 1 and it is composed as follows:

Step A) Data Preprocessing The first step necessary in any forecasting prob-
lem is to verify the dataset beforehand and preprocess it if necessary. Very
often the data contain outliers, missing fields and wrong info that, if ignored,
can worsen the prediction results. This step includes data selection, cleaning,
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Fig. 1: Ensemble FTS training procedure

dimensionality reduction, removing seasonality and trend. Besides, there are
transformations that can be applied in order to facilitate the predictions and
improve the results. On this method, all models were built using differenti-
ated time series (with a lag of one sample) or simply the original data.

Step B) Universe of Discourse Partitioning Two methods of partition were
applied: a) Grid Partitioning [3, 7, 29], which divides the UoD in n over-
lapping intervals of equal length and b) Entropy Partition which creates n
partitions of different lengths based on the distribution of observations in the
UoD. The fuzzy sets were created with triangular membership functions in
both cases. For each of these methods of partition, the number of partitions
still needs to be supplied as a parameter, but its definition is empirical and
data dependent.

Step C) Data Fuzzification Once defined the partitioning schemes and num-
ber of partitions, each data point on crisp time series Y () is replaced by the
fuzzy set with maximum membership value, i. e, F'(t) = argmaxa, pa, (Y (t)).
The fuzzified time series F(t) is different for each partitioning scheme and
number of partitions.

Step D) Individual Seasonal FTS model training In this step the Multi-

Seasonal F'TS method and its training procedure are defined. Given a fuzzi-
fied time series F(t), the traditional Seasonal FTS defines a seasonal period %
such that F(t) = F(t —4). The Multi-Seasonal FTS deals with the definition
of multiple and nested seasonal indexes ig, .., i, with different time granular-
ities go, ..., gk, such that F(t) = F(t¢ mod gg =ig A ... At mod gx = i). It
allows us to construct seasonal indexes by combining months, hours, minutes
etc.
For each data point F(t) = A, the time index ¢ is decomposed such that
m; = t mod g;, where m; is the seasonal index, generating the seasonal
pattern [ig, ...,ix] — Aj. For example consider the F'(¢) on (1), using time
granularities month (0—11) and hour (0—23) the seasonal indexing generates
the patterns presented on (2). These seasonal patterns are equivalent to the
FLR’s on conventional FTS models.

(2015-01-03 00:00am , Ap) (2015-01-03 06:00am , A;)
(2015-01-03 12:00pm , A,) (2015-01-03 06:00pm , A;)
(2015-01-04 00:00am , Ap) (2015-01-04 06:00am , Ag)
(2015-01-04 12:00pm , A;) (2015-01-04 06:00pm , A;)



(0, 0) — AO (0, 6) — A1 (O7 12) — AQ
(0,18) = A1 (0,0) = Ay (0,6) — Ao 2)
(0,12) — A; (0,18) — A,

Then all seasonal patterns with the same seasonal indexes are grouped, rep-
resenting all fuzzy possibilities that may happen on that seasonality. The
final model is the set of all possible seasonal indexes and their consequent
fuzzy sets. By instance, consider the seasonal patterns on (2) will generate
the seasonal pattern groups on (3).

(O, 0) — AO (0,6) — AQ,Al (3)
(0, 12) — Al, AQ (0, 18) — A1

Step E) Model selection Based on the previous steps, many different models
can be created, varying the transformations applied to the series (differential
or none), the type of partitioning of the UoD (grid or entropy), the number
of partitions and the seasonal indexes defined. Given all the possible combi-
nations, all distinct models m; are benchmarked on a validation dataset and
ranked by their Root Mean Squared Error (RMSE). After that, the best 20
models are selected and used to create the ensemble M.

3.2 Forecasting Procedure

With the ensemble built as in previous section, it is desired to forecast a full
probability distribution for Y (¢ +1). The overall process is described in Figure 2
and is composed by: a) the forecasting of individual models; b) forecast selection
and c) distribution smoothing with the KDE.

Ensemble FTS
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Fig. 2: Ensemble FTS forecasting procedure

Step A) Individual Seasonal FTS forecasts On Multi-Seasonal FTS the fore-
cast is defined solely by extracting the seasonal indexes from ¢, using the same
method of model training. With the seasonal indexes ig, ..., iy, extracted from
t it is necessary to find the seasonal pattern group with this antecedent or
premise and the fuzzy forecast, F'(t + 1) will be the consequent.

The crisp forecast is calculated by defuzzifying F(t 4+ 1) using the center of
mass of each fuzzy set A; € F(t+1), such that Y (¢t +1) =n~' > A; where



n is the number of fuzzy sets in F(t + 1). The output set of this step is
composed by the individual forecasts Y;(¢ + 1) of each model m; € M.
Step B) Forecast selection In order to control the total forecast variance and
eliminate the effect of possible outliers the forecasted output is limited by an
inter quantile interval (a, 1 — «) where « € (0,1) is the confidence level. By
varying « parameter it is possible to fine tune the final distribution accuracy

by eliminating forecasts that are too distant from the mean.

Step C) Kernel density estimation The final step uses KDE methods to
smooth the individual forecasts and provide a continuous probability den-
sity distribution over the UoD. Two parameters are necessary on this step:
the type of kernel and the bandwidth h. Both parameters are domain spe-
cific and need to be empirically evaluated for each application. Common
kernel functions are Epanechnikov, Histogram, Tophat and Triangular or
Retangular kernels are used to create different models [27]. The bandwidth
h was selected based on computational experiments, with values varying in
the interval [0.1, 0.9].

4 Computational Experiments

In order to evaluate the proposed method* among the environmental datasets
available in the literature, the SONDA - System of National Organization of
Environmental Data (Sistema de Organizacao Nacional de Dados Ambientais - in
Portuguese) stands out for providing reliable and valuable information to be used
by energy sector in planning and deployment of energy resources for electricity
generation and distribution in Brazil [19]. For this work, three different seasonal
indexes were used in order to experiment with the best period as follows:

1. 15 minutes interval index, which groups the data in 15 minutes intervals
during the day (0-95) and allows 96 FLRG;

2. Month (1-12) and hour (0-23) index, which allows 288 FLRG;

3. Month (1-12), hour (0-23) and 15 minutes interval (0-3) allowing 1152 FLRG.

The instances® were split as Training data (from January 2012 to December
2014. 105.312 instances) and Test data (from January 2015 to November 2015.
24.225 instances).

The CRPS (Continuous Ranked Probability Score) is used to evaluate the
probabilistic predictions of the models [10] and can be seen as a ranked proba-
bility score.

4.1 Ensemble FTS parameter tunning

It was adopted an empirical method to select the models and parameters of the
Ensemble FTS, based on exploring all the parameter space by building models
and evaluating their performances on validation dataset.

* Source code is available in: http://bit.ly/pyFTS_ensemble
® Dataset is available in: a)  http://bit.ly/sonda_bsb_hourly —and b)
http://bit.ly/sonda_bsb_15
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Fig. 4: Ensemble FTS sample results for SONDA dataset

The models were trained both with original data and differentiated data and
also varying the number of partitions of the UoD in the interval from 10 to
90 (with a step size of 10). For each one, Grid and Entropy partitioning were
tested, both with triangular fuzzy membership functions. In total 108 models
were trained and evaluated, of which the best 20 ones were selected to compose
the ensemble. The inter-quantile parameter o € [0.05,0.95] was evaluated under
its CRPS score. It was chosen @ = 0.1. The kernel function and bandwidth
h parameter were also tested with the built ensemble. We tested the kernels
Epanechnikov, Histogram, Tophat and Triangular considering the bandwidth in
the interval h € [0, 1]. The best CRPS scores were achieved by the Epanechnikov
kernel with A = 0.55, the values used for benchmarks.

The forecast of the trained Ensemble FTS can be seen in Figure 4a, where
one can see the probability distributions along a day, and in Figure 4b, where
the probability density is plotted over the time series data.



4.2 Model Evaluation

Following the parameter tuning for the Ensemble FTS models, their predictions
for the test dataset were evaluated using the CRPS metric. ARIMA and QAR
models were also evaluated for comparison. The results are shown in Figure 5.
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Fig.5: CRPS values boxplot

In order to check for a statistically significant difference between the mean
CRPS for each model, an ANOVA test was performed, corrected for the het-
eroscedasticity present in the data. The test result refuted the null hypoth-
esis that all the models are equivalent in terms of mean CRPS (p_value =
5.708¢ — 07).

A multiple comparison test was then performed between each pair of mod-
els, considering a significance level of 95% (a = 0.05). The comparisons are
summarized in Figure 6. The results show non-inferiority between the Tophat,
Epanechnikov and Triangular ensemble models proposed and the ARIMA model,
for the effect sizes §* greater than 0.02. These three models also have a statisti-
cally significant lower mean than the QAR model, and there is no statistically
significant difference between them. Finally, the Histogram ensemble model has
the worse mean than all models (with statistical significance for all except the
QAR model)

4.3 Discussion

The best models as candidates for the Ensemble were those with 15-minute
seasonal indexes. The transformation of the data using Differentiation had a
positive result, as well as other pre-processing, such as horizontal and vertical
reduction.

It was observed that 18 of the 20 ensemble models formed from the com-
bination of different partitioning models of the UoD and seasonality indexes,
the ones with the best performance in terms of RMSE were those of 15-minute
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Fig. 6: Pairwise CRPS comparison between models

seasonality indexes and the Entropy partitioning model in their different param-
eters. It is known that grouping by minutes provides much more data available
and this allows better learning of the proposed model. The monthly evaluation,
considering the range of available data (2 years for training and 1 for testing),
may not provide as much information as possible to allow for a better accuracy
of the model.

Three of the proposed ensemble FTS models (Tophat, Epanechnikov and
Triangular) had better CRPS results than QAR model, and were non-inferior to
the ARIMA model. They also had much smaller variance, which indicates more
stability in a model.

It is noted that for some seasonal time series, especially those with environ-
mental data, data can be indexed in several ways, for example by a minute,
hour, month, quarter etc, and combinations between them allowing to capture
of different seasonality effects.

The number of partitions of the UoD has a great impact on FTS accuracy,
and different partitioning schemes generate different FTS representations. So, on
Ensemble FTS the models were trained with both schemes and several numbers
of partitions with the objective that the model diversity, and their consequent
forecasting variance, would cover different scenarios and fluctuations that an
isolated model cannot cover.

5 Conclusions

This paper deals with a new method for probabilistic forecast which aggregates
traditional seasonal Fuzzy Time-Series techniques with ensemble learning and
KDE. The proposed method has as main feature the capability of capturing



a wide spectrum of seasonal effects and time series trends by the variation of
several parameters of its internal models. A parameter tuning method is also
presented.

We tested the proposed method in SONDA dataset, comparing the CRPS
values of the proposed models and ARIMA and QAR models. Statistical tests
show that the proposed method resulted in models with non-inferior mean CRPS
and much lower variance for this dataset. These results show that the method
could bring better results for some probabilistic predictions problems, and sug-
gest further investigation with other datasets.
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