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Abstract. Soft biometrics classification has been gaining acceptance
during the recent years for critical applications, mainly in the security
field. Recognizing individuals by using only behavioral, physical or psy-
chological characteristics is a task that can be helpful for several pur-
poses. Thus, different Deep Learning approaches have been proposed to
perform this task. Since these methods require a large amount of data to
avoid overfitting, data augmentation is a commonly used method. How-
ever, its isolated effect on the performance of the models are usually
not evaluated. This work aims at studying the effect of different data
augmentation strategies on the performances of two Convolutional Neu-
ral Network architectures for classifying soft biometrics attributes from
samples of a novel dataset: LABICv1.
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1 Introduction

Soft biometrics are physiological or behavioral characteristics from humans that
provide information useful to differentiate one individual from another [1]. Al-
though they may not be unique for each subject when compared to traditional
biometrics, the correct identification of certain soft biometrics can provide help-
ful prior information to solve some problems. They can also be used to com-
plement other classic biometric identifiers such as fingerprints, voice and face
shapes. Some common soft biometrics are: gender, age, height, weight, clothes
color and hair length. Unlike traditional biometrics, soft biometrics can be ac-
quired from surveillance cameras without the cooperation of individuals. Over
the years, the number of surveillance cameras in malls, streets and offices have
increased massively. However, it is impossible to have humans monitoring all
the footages with accuracy and efficiency [1]. Thus, methods for automatically
identifying soft biometrics traits of individuals within images are necessary.



Recently, several works appeared, aiming at solving this problem through
different strategies, usually Deep Learning (DL) [2] approaches such as Convolu-
tional Neural Networks (CNNs) [3]. For instance, Perlin and Lopes [4] presented
two CNNs with the same architecture but with different operation modes: one
for classifying three soft biometrics (Upper Clothes, Lower Clothes and Gender)
at once and the other for classifying a single soft biometric. The first was trained
using the negative log-likelihood as loss function and the second with the mean
squared error. In the work presented by Levi and Hassncer [5], age and gender of
individuals were classified from images of human faces using a deep CNN, whilst
Wang et al. [6] presented an approach based on a 6-layer architecture CNN for
feature extraction, in order to estimate age from images containing faces. The
works by Zhu et al. [7] and Martinho-Corbishley et al. [8] presented architec-
tures based on slicing images of individuals and feeding each sliced window to
different input layers of the network. Each input is propagated through separate
Convolution and Pooling layers until reaching the Fully Connected layer, where
the outputs of each layer are combined to form an unique flattened vector. Both
approaches allow to perform multi-label classification. All works used variations
of the Stochastic Gradient Descent (SGD) method [9].

Since DL models require a large amount of data to obtain satisfactory results
and soft biometrics datasets are usually small, the use of data augmentation is
common to reduce overfitting and improve the classification performance [10, 11].
This method is based on generating new samples of the original dataset by
applying small random transformations to the original samples, whilst preserving
their labels. Works related to soft biometrics classification are often focused on
the architecture of the model without evaluating the particular isolated effect of
data augmentation.

This work presents a study regarding the effect of data augmentation on the
performance of CNN architectures with different complexities for a small dataset
(which can also be unbalanced depending on the attribute to classify). For this
purpose, we present a new labeled dataset for soft biometric classification: LAB-
ICv1. The dataset contains frames of individuals walking in front of a simple
white background. It was built specifically aiming at having a small number of
instances considering that obtaining labeled images is a very exhaustive task
in real world applications. We trained two models varying the augmentation
strategy in order to evaluate their effect on their classification results.

Considering what was presented before, this work has three main contribu-
tions: (1) the introduction of a novel small labeled soft biometrics dataset, (2)
the comparison of the performances of two CNN architectures for the LABICv1
dataset to serve as baseline for future researches, and (3) the evaluation of the
influence of data augmentation on the performances of the classifiers.

This paper is organized as follows: Section 2 presents a brief background
regarding CNNs. Section 3 presents details about the LABICv1 dataset, the
network architectures that were tested and the data augmentation strategies
that were applied. Section 4 reports the results. Finally, Section 5 presents the
conclusions and future works.



2 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) [12] are composed of Convolutional,
Pooling and Fully Connected layers. The first two are present at the start of
the network and act as the feature extractor, whilst the fully connected layers
are used for data classification. With this structure, a CNN learns not only the
classifier but also the feature extractor during its training phase.

Fully connected layers apply the dot product between the output of the pre-
vious layer and the network weights connected to them, then a bias term is added
to the result and finally a nonlinear activation function is applied to generate
an output. In a CNN, the first fully connected layer of the network receives as
input a flatten output of the previous layer, which can be a convolutional or a
pooling layer.

Convolutional layers are composed of a set of filters that slide across the
input and calculate dot products between their entries and the input at any
position. This operation produces activation maps containing the outputs of the
filters for all the spatial positions of the input. Pooling layers are inserted be-
tween convolutional layers to progressively downsample the data representation
in order to reduce the amount of parameters of the model. This is done to reduce
the computation required in the network and to control overfitting, which occurs
when the model is over-trained and loses its generalization capability [13].

There are several methods to avoid overfitting, the most common ones are
regularization [14] and dropout [15]. The first one is based on adding an extra
term to the cost function of the network in order to force it to preferably learn
small weights. Dropout, on the other hand, consists in deactivating a percentage
of weights of the network randomly chosen, during the training stage by setting
their values to zero.

3 Methodology

We evaluate the effect of data augmentation on the performances of two CNN
architectures with distinct complexity, which were designed to solve problems
related to soft biometrics classification in previous works [4, 5]. Figure 1 presents
an overview of our approach. We divided the dataset into train and test sets.
Details regarding the construction of the dataset are presented in Section 3.1.
Next, various on-line (at each epoch of the training step) data augmentation
strategies were applied on the train set, which was fed to each model at the
train phase. Finally, their classification capability was tested on the test set
using evaluation metrics defined in Section 4. Details regarding the dataset,
the architectures, the data augmentation strategies and the configuration of the
system are presented in this Section.

3.1 LABICv1 Dataset

The dataset introduced in this work contains 264 images taken from frames of 33
videos of 11 different individuals walking in front of a simple white background.



Fig. 1: Overview of the methodology followed in this work. After collecting and label-
ing the samples of the LABICv1 dataset, we divided it into train (70% of the original
dataset) and test (30%) sets. Next, two CNNs with different architectures were trained
using augmented versions of the train set, which were created at each epoch of the train-
ing phase by applying random transformations on the original set. Once the training
phase finished, the classification capability of the models was evaluated using the test
set through performance metrics.

Eight frames were selected from each video with a reasonable time gap between
them, seeking variety, although the content may be the same. Some samples of
the dataset are shown in Figure 2.

Fig. 2: Sample images from the LABICv1 dataset.

The frames of this set are very simple, since they contain only one individual
per image, the background is white, there is only one point of view per camera
and there is not any type of occlusion. Since it is a simple dataset, it is strongly
recommended to apply some type of noise or transformation to add complexity
in order to improve the generalization capability of the classifier.

Depending on the label, the dataset may be unbalanced. Figure 3 presents
the distribution of the instances for each class according to the attribute. This
is an issue tackled through augmentation strategies. In this work, for each label,



the dataset was divided into train (70% of the instances) and test (30%) sets
keeping the proportion of classes for each subset. Thus, a new dataset is created
for each label, varying the distribution of its instances.

Fig. 3: Distribution of the instances of the LABICv1 dataset for each class according
to the label.

3.2 Data Augmentation Strategies

We train the models with different strategies based by using data augmentation
to improve their classification capability. We also trained and tested the models
without any augmentation in order to consider those results as initial baselines.
Random transformations were applied on the raw images of the train dataset
to augment it (rotation, cropping, swirl, vertical flip, horizontal flip and differ-
ent types of noises such as salt and pepper and Gaussian noise). The test set
remained unchanged in all cases. Two strategies were defined:

a) Only Augmented This strategy consisted in augmenting the samples at
each epoch of the training phase (on-line data augmentation) without considering
if it is balanced or not. We augmented the dataset by 1, 2, 3, 4, 5, 10, 20 and 30
times to evaluate the effect of the size of the train set on the final performances
of the models using the test set. Note that the one-time augmentation has the
same amount of images as the original dataset, however, with transformations.

b) Balanced Augmented This strategy consists in balancing the train set
before starting to train the classifier and applying on-line augmentation. The
balancing is done by using the same strategies of the data augmentation. Samples
from the minority class are selected randomly and augmented until the data is



balanced. From this point on, the strategy is identical to the previous one. The
train set was also augmented by 1, 2, 3, 4, 5, 10, 20 and 30 times.

3.3 CNN Architectures

All networks are CNNs that receive as input raw images of size 128×128 with 3
channels, each for a color: Red, Green and Blue (RGB). The final layer outputs
a two-dimensional binary vector. All architectures use dropout, with a 50% of
keeping probability during the training phase, L2 regularization [16] and Local
Response Normalization (LRN) [10] in order to improve the generalization capa-
bility of the network. Rectified Linear Unit (ReLU) [17] was used as activation
function for all layers except for the output, which is a Softmax function.

Architecture #1 The first architecture is a modified version of that presented
in [4]. It contains three convolutional layers after the input layer, each followed by
a max pooling layer. We used zero padding in all cases. One fully connected layer
with 768 neurons follows the last pooling layer. Table 1 presents the configuration
of each layer of this architecture.

Table 1: Layers of Architecture #1.

Input Maps Input Size Output Maps Output Size Kernel Stride

Conv1 3 128×128 32 64×64 10×10 2×2

MaxPool1 32 64×64 32 32×32 2×2 2×2

Conv2 32 32×32 64 32×32 7×7 1×1

MaxPool2 64 32×32 64 16×16 2×2 2×2

Conv3 64 16×16 128 16×16 7×7 1×1

MaxPool3 128 16×16 128 8×8 2×2 2×2

Dense1 8192 - 768 - - -

Output 768 - 2 - - -

The model was trained with SGD and Mean Squared Error (MSE) as cost
function, presented in Equation 1, which is the mean of n patterns fed to the
model, ŷ is the ground truth label, and y is the output of the network for pattern
i.

MSE =
1

n

n∑
i=1

(ŷ − y)2i (1)

Architecture #2 This architecture is based on work presented by [5]. Similarly
as Architecture #1, it is composed by three convolutional layers, each followed by
a max pooling layer. However, two fully connected layers are placed after the last



pooling layer, both with 512 processing units. Table 2 presents the configuration
of each layer of this architecture.

Table 2: Layers of Architecture #2.

Input Maps Input Size Output Maps Output Size Kernel Stride

Conv1 3 128×128 96 128×128 7×7 1×1

MaxPool1 96 128×128 96 64×64 3×3 2×2

Conv2 96 64×64 256 64×64 5×5 1×1

MaxPool2 256 64×64 256 32×32 3×3 2×2

Conv3 256 32×32 384 32×32 3×3 1×1

MaxPool3 384 32×32 384 16×16 3×3 2×2

Dense1 98304 - 512 - - -

Dense2 512 - 512 - - -

Output 512 - 2 - - -

The CNN was trained with SGD and cross-entropy as cost function, presented
in Equation 2, where Li is the loss of the i-th pattern fed to the network, ti,j is
the correct label for that pattern and pi,j is the predicted class.

Li = −
∑
j

ti,j log(pi,j) (2)

3.4 Evaluation Metrics

The results are evaluated with two metrics. The first one is Accuracy, which is
calculated by dividing the number of correct classifications C by the number
of samples N (Acc = C/N). The other metric is the product of Sensibility by
Specificity (Se× Sp), presented in Equations 3 and 4 respectively, where TP is
the number of True Positives, FN is the number of False Negatives, TN is the
number of True Negatives, and FP is the number of False Positives.

Se =
TP

TP + FN
(3) Sp =

TN

TN + FP
(4)

3.5 System Setup

Four GPU boards were used in this work (GTX 1080, Titan X-Pascal, two Titan
Xp) for training and testing the models. The GPUs were built within two servers
with Intel Core i7-5820K processors and 32Gb RAM memory each. The servers
run Ubuntu 14.04.3 LTS. The Python library TensorFlow [18], version 0.11.0,
was used to implement, train and visualize the networks.



4 Experiments and Results

This section presents the results obtained by the architectures presented in Sec-
tion 3.3. We present only the study of Gender and Lower Clothes. The categories
were selected because they allow to study the effect of data augmentation in two
different scenarios related to the distribution of the instances of a dataset: bal-
anced (Gender) and unbalanced (Lower Clothes).

4.1 Experiment #1: Gender

In this experiment, the dataset contains 144 samples of the class zero and 120
of the class one, which is quite balanced. Therefore, we consider both Acc and
Se × Sp as metrics to evaluate the results for this label. The test set contains
43 samples of the class zero and 36 of the class one after dividing the dataset
in train and test sets. Since the dataset is balanced when using this label, the
experiments were performed with the Only Augmented strategy (see Section
3.2). Figure 4 presents the results obtained by the two architectures.

a) b)

Fig. 4: Results obtained for the label Gender by the architectures Arch#1 and Arch#2
for each augmentation size. Figure 4a presents the results considering the metric Ac-
curacy, whilst Figure 4b shows the results considering the metric Se× Sp.

Results show that Arch#1 achieved 82.27% of Accuracy, whilst Arch#2
achieved 64.55%, both without any augmentation. Arch#1 tends to improve
or at least maintain its performance when the augmentation size rises. Aug-
menting the training size by 20 and 30 times led to an accuracy of 100% in the
test set. Considering the Se× Sp metric, the tendency is similar, which implies
that the model balances its classification capability among both classes without
becoming specialized in classifying instances of only one class. Notwithstanding,
Arch#2 obtained a baseline result when the train set was doubled and triplied:
only 54.43% of accuracy. It correctly classified only instances of the majority
class, obtaining 0% of Se× Sp. However, the performance improves as the aug-
mentation size grows: the model achieved 100% of Acc and Se × Sp when the



train set was augmented by 30 times. These results show that Arch#2 needs
more data variety than Arch#1 in order to start improving its performance (al-
though it allows to ultimately obtain the same result), which may be due to its
higher complexity level.

4.2 Experiment #2: Lower Clothes

This dataset is very unbalanced when only the Lower Clothes attribute is con-
sidered: class zero contains 195 instances (58 for the test set), whilst class one
contains 69 instances (21 for the test set). Therefore, we consider Se×Sp as the
main evaluation metric, since a model capable of correctly classifying instances
of both classes even if the overall accuracy decreases is more desirable for unbal-
anced datasets. Figures 5 and 6 present the results obtained for this experiment.
The first one shows those obtained with the Only Augmented strategy, and the
second shows those achieved with the Balanced Augmented strategy.

Fig. 5: Results obtained for the label Lower Clothes by the architectures Arch#1 and
Arch#2 for each augmentation size. They were obtained without balancing the training
dataset before applying the augmentations.

For the Only Augmented strategy, the models tend to classify correctly only
instances of the majority class (0% of Se×Sp) even if the train set was augmented
by 4 times during the training phase. However, both architectures improve their
results as the size of the train set augments through on-line data augmentation.
Arch#1 was the fastest to improve its performance, since it achieved 98.73%
of Acc and 95.24% of Se × Sp when the train set was augmented 20 times
and maintained that value for an augmentation size equal to 30. The Arch#2
achieved maximum values of 94.94% for Acc and 90.31% for Se× Sp for a train
set augmented 30 times.

In the Balanced Augmented strategy, the performance of the models improve
faster, as shown in Figure 6. For instance, the Acc and Se×Sp values obtained by
Arch#1 were 75.95% and 37.68%, respectively, for an augmentation size equal



to 3, whilst their values were 73.41% and 0% (only majority class instances
correctly classified) for the same augmentation size.This shows that, for unbal-
anced datasets, applying augmentation to balance the train set before starting
the training phase (combined with on-line data augmentation afterwards) is a
valid alternative to improve the generalization capability of the model.

Fig. 6: Results obtained for the label Lower Clothes by the architectures Arch#1 and
Arch#2 for each augmentation strategy. They were obtained balancing the training
dataset before applying the augmentations.

The results presented in this Section for both experiments, Gender and Lower
Clothes, have shown that data augmentation may lead to improved classification
results of CNN models for both balanced and unbalanced datasets. For unbal-
anced datasets, balancing the train set before the training phase may lead to
better results with fewer augmented samples compared to the Only Augmented
strategy. Results also show that the simpler architecture (Arch#1) needed lower
data diversity in order to improve its performance.

5 Conclusion

This work aimed at studying the effect of on-line data augmentation on the
performance of two Convolutional Neural Networks (CNN) architectures for the
classification of soft biometric attributes of a novel dataset. Two augmentation
strategies were tested: Only Augmented, which applies on-line data augmen-
tation during the training phase without considering the class balance of the
dataset, and Balanced Augmented, which first augments the train set to balance
the classes before applying on-line augmentation during the training phase.

This work introduced the LABICv1 dataset, a set of images extracted from
videos containing pedestrians with white background. The dataset was manu-
ally collected and labeled to be used for supervised learning research projects
although unsupervised techniques can be also tested. The dataset provides sev-
eral soft biometrics attributes. For foster future research using this dataset, it



will be put freely available in the internet. We used the labels Gender and Lower
Clothes in this work.

The results obtained show that small augmentation sizes do not have much
influence on the performance of the classifiers for both, balanced and unbalanced
datasets. Notwithstanding, the Balanced Augmented strategy allows to obtain
an improvement of the performance with a smaller augmentation size than the
Only Augmented strategy for an unbalanced dataset. We also conclude that
a more complex architecture demands a higher augmentation size (more data
variety) in order to improve its performance for both approaches tested. Finally,
a high augmentation size does not seem to induce overfitting: instead, it allows
to improve the generalization capability of the model.

Future works may aim at experimenting with different classification methods
or testing different CNN architectures. Other available labels of the dataset may
also be used to test the classification capability of the models. Multi-label or
multi-class classification approaches can also be explored.
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