The Effect of the Heuristic Information on a
Hybrid MAX—-MZIN Ant System for the
Quadratic Assignment Problem

Augusto Lopez Dantas! and Aurora Trinidad Ramirez Pozo!

Department of Computer Science — Federal University of Parand (UFPR)
augusto.dantasQufpr.br, aurora@inf.ufpr.br

Abstract. The MAX—MZIN Ant System is a bio-inspired metaheuris-
tic algorithm that has presented some of the best results for combinato-
rial optimization problems, specially the Quadratic Assignment Problem.
But, when applied with local search, it traditionally does not use any
heuristic information, since both the heuristic and the local search act
as an intensification component. In this work, we compared the results
obtained with and without heuristic, also analysing which pheromone
update choice rule is more suitable for each case. It was possible to ob-
serve that the algorithm benefits from the use of the heuristic regarding
the expended CPU running time to find good solutions.

Keywords: Ant Colony Optimization, Quadratic Assignment Problem,
Swarm Intelligence

1 Introduction

Ant Colony Optimization (ACO) is a class of metaheuristic algorithms that
simulate the behavior of ants on finding the shortest path between the nest and
the food source [5]. This is done through the exploration of the trail of pheromone
(a chemical substance) deposited by the ants during their walking.

ACOs are constructive and population-based approaches that use the learned
information throughout its execution (the pheromone trail), along with a problem-
dependent information, called heuristic, to guide the construction of better so-
lutions [4]. Therefore, each ant can be seen as an agent that moves on a graph
and select one edge at a time based on its desirability until the path is complete.

The first implemented ACO algorithm was the Ant System (AS) [5], which
was initially applied to the Traveling Salesman Problem (TSP). Since then, sev-
eral modifications and extensions to it were proposed, compounding the group
of ACO metaheuristic. These algorithms have presented some of the best perfor-
mances for many combinatorial optimization problems (problems with discrete
solutions and a finite search space) such as the quadratic assignment, the vehicle
and network routing, the sequential ordering, the graph coloring and others [4].

Among these variations there is the MAX—MZIN Ant System (MMAS),
whose main differences from the original AS is that it defines upper and lower

limits to the pheromone values and that only one ant is allowed to update the
learned information at each iteration. This ant could be either the iteration best
or the best found so far since the beginning of the algorithm [14].

Recently, there have been some studies attempting to further improve the
MMAS, like adding a reactive heuristic that provides better tour constructions
in case of pheromone reinitialization [11], or simulating a colony caste system by
having ants with different parameters, which helps the algorithm to adapt to a
particular problem instance [9].

One of the reasons for the MMAS to become relevant is its outstanding
performance on the Quadratic Assignment Problem (QAP), as shown in [14].
The QAP is one of the most challenging problems and was first proposed as a
mathematical model in 1957 [8]. It consists on assigning a set of facilities into a
set of locations in a way to obtain the minimal possible flux between the facilities
and the minimal distance between the locations.

Several others ACOs variants were proposed to solve the QAP [13], such as
the more recent Population-Based Ant Colony Optimization, that maintains an
archive of solutions that are used to update the pheromone information [10],
and the cunning Ant System, that uses pre-existing partial solutions in the con-
struction process [16]. Apart from ACO algorithms, different metaheuristic ap-
proaches have already been successfully applied to the QAP, like the Simulated
Annealing, Tabu Search, Genetic Algorithm, GRASP, among others [3].

According to [1], a good metaheuristic algorithm should have a balance of
intensification and diversification components. The former consists in extensively
scanning the local regions that contain good solutions, whereas the later is about
how the algorithm moves to unexplored regions. This requirement of having both
components often results in the elaboration of hybrid algorithms, that is, the
combination of intensification and diversification based approaches.

In fact, most of the ACO variants proposed for the QAP make use of a
local search mechanism to improve the constructed solutions [13]. Regarding the
MMAS, when combined with local search, it is traditionally applied without the
use of any heuristic information. The reason behind this is that the heuristic
information has the role of guiding the ants at the beginning of the algorithm
to avoid it to become a completely random search and to avoid the construction
of initially bad paths. It is concluded then, that this behavior is overlapped by
the local search, making the heuristic unnecessary [13].

Although this affirmation may be correct, the experiments to evaluate it were
only made on the TSP [13, 14]. Hence, in this work we analyse the performances
of MMAS with local search to the QAP (MMAS-QAP) when using or not the
heuristic information. The following sections are divided like this: in Sect. 2 the
QAP is formally explained. Sections 3 and 4 explain in details how the MMAS
and local search algorithms work for QAP. Following, in Sect. 5 and 6 we present
the performed experiments and its results, ending with a conclusion in Sect. 7.

2 Quadratic Assignment Problem

Given two sets of n activities and n locations, the goal in QAP is to assign each
facility into one unique location in order to minimize the total flux and distance
between the associations. The problem can be formally defined as

miny > fiadswot) (1)
=1 j=1

where S, represents all possible permutations of a set N = {1,2,...n}, fi;
and d;; are the correspondent values in the flux and distance matrices, respec-
tively, and the product f;;dei)s(;) is the singular cost of assigning the activity i
to the location ¢(i) and the activity j to the location ¢(j).

In the permutation {2, 5,1, 4, 3}, for example, the activity 3 is assigned to the
location 5 and the activity 1 to the location 3. Therefore, the singular assignment
cost between them is given by the product f3; * ds3. Thus, the objective is to
find a permutation ¢ that minimizes the sum of all the products.

The QAP can be applied to several real world problems, such as the type-
writer keyboard design, the location of the hospital departments, the backboard
wiring, and many others [3].

Because it is an NP-hard problem [12], the use of exact methods is unfeasible
for instances with large sizes. Until now, the largest instance without any special
property optimally solved has the size of 36 [2]. Instances with sizes of 64 and
128 were solved in [6], but benefiting on their extremely symmetric structures.

3 MAX—-MIN Ant System for QAP

In MMAS, the solutions represented by permutations, described in Sect. 2, are
initially empty and one facility is selected and assigned to one location at each
time according to the desirability of this association [5]. Let m represent the
number of ants, then this construction process is done simultaneously by each
anty, with k =[1,2,...,m].

The assignment desirability is generally based on two informations: the pheromone
trail (7) and the heuristic (n). Each of them is represented as a matrix of dimen-
sions n X n, with n being the instance size. In this way, 7;; and 7,; are respectively
the pheromone trail and the heuristic information of assigning the facility 7 to
the location j. So, the probabilistic choice of this association is given by [5]

ol 18
(7351 [1i;] - if j € free, .
J=) 2 Tl (2)
ij lefree,
0 otherwise .

where freey, is the set of all free locations available for an ant k and a and 3
are parameters that control the influence of the pheromone and heuristic values.

To achieve the rule for the MMAS-QAP described in [14], in which no heuristic
information is used, these parameters are set to « =1 and 8 = 0.

Since our goal is to observe the effect of the heuristic information in MMAS
for QAP, we use the same heuristic described in [4]. In this definition, first
two vectors are generated by the sum of the rows in the distance (D) and flux
(F) matrices (see Sect. 2). They are called the potential vectors Py and Py,
respectively, and represent the importance of the correspondent locations and
facilities. An example of this process can be seen in (3).

05 2 4 11 0 50 60 94 204

50 1 3 9 50 0 22 50 122)
D=1y 10 1| T Pa=]4 F=160 22 0 44| = P5r=|126 (3)

4310 8 94 50 44 0 188

With these potential vectors we can then obtain a potential matrix H by
multiplying Py to the transpose of Py. Following the example, this multiplication
results in (4). Each column of H represents a facility and each value represents
the potential cost of assigning that facility to the row location. Finally, the
heuristic information is given by the inverse of the potential cost, meaning that
n;; = 1/Hj;. For now on, when the MMAS is applied with this heuristic, we
refer to it as MMAS;,.

1836 1098 1134 1692

816 488 504 752
1632 976 1008 1504

H=PgxPj = (4)

2244 1342 1386 2068:|

The process described so far is shown in Alg. 1, in which the order of the
values returned by GetUnassignedFacility() is random if 8 = 0, as in [14],
and it is in descending order from Py otherwise, according to [5]. The location
returned from GetFreeLocation() is probabilistic according to (2).

Algorithm 1: Construct Solution

Function ConstructSolution()

ant «]

freeLocations <— GetAllLocations ()

repeat
facility <— GetUnassignedFacility()
location < GetFreeLocation(facility, freeLocations)
ant[l] < f
freeLocations <— PopItem(location)

until ant is complete

return ant
end

For representing the pheromone information, another matrix with a similar
structure from the heuristic is used, called the pheromone matrix (7). Thus, the
pheromone trail on assigning facility ¢ to location j is given by 7;;. After all ants
construct their solutions, this matrix is updated according to the equation

Ti; = (1 —p)j + ATibjeSt (5)

where p represents the evaporation rate and Arbest

;" 1s given by

Arbest _ 1/J e if facility i is assigned to j in ¢?es? .
Y 0 otherwise .

Thus, the amount of pheromone deposited at each iteration is the inverse of
the cost function J (given in (1) for the QAP) of the solution ¢***t. This solution
can be either the best of the current iteration (¢*) or the best-so-far since the

beginning of the algorithm execution (¢9°).

The main difference introduced by MMAS is the maximum (7™%%) and mini-

mum (77™") limits imposed to the allowed values of pheromone. This is intended
to prevent search stagnation, where all ants produce the same solution due to a
high predominance of that path in the pheromone matrix [14]. The calculation
for them are often given by

T = and 77" = —— (7

with n being the instance size, and they are updated every time a new global
best solution is found. Therefore, after applying (5) to update the pheromone
matrix, 7;; will be set to 7% if 7,; > 7™ and to 7" if 7;; < T

Finally, with the construction and pheromone update methods defined, the
whole MMAS algorithm is summarized in Alg. 2. Regarding the initial values
for the pheromone matrix, it is better to set them at an arbitrary high value so
that after the first iteration they will be set to 7%, which increases the initial
exploration of the algorithm [14].

The method SelectBest () is responsible for choosing which of the best ant
will be used to update the pheromone trails. This could be a fixed choice or
could be according to some schedule of variation between both of them [14].

Algorithm 2: MAX—-MIN Ant System

m < number of ants
global-best +— oo
pheromone-matrix <— InitializePheromoneMatrix ()
repeat
k<« 0
iteration-best < co
while k£ < m do
ant < ConstructSolution()
ant < LocalSearch(ant)
if Cost(ant) < Cost(iteration-best) then
| iteration-best +— ant
end
k+—k+1
end
if Cost (iteration-best) < Cost(global-best) then
global-best < iteration-best
UpdateMaxMinValues ()
end
best-ant <— SelectBest (global-best, iteration-best)
UpdatePheromoneMatrix (best-ant)
until stopping criteria is not met
return global-best

The stopping criteria may be defined as a maximum number of iterations or
computational time. It could also be the acceptance of the current global best
solution or some convergence detection mechanism [13]. The LocalSearch()
method is described in the following section.

4 Local Search for QAP

The most basic local search mechanism is the Iterative Improvement, which
only allows movements that improve the current state until getting stuck in a
local optimum solution. Nevertheless, it is still a suitable approach to be used
as an intensification component in a hybrid approach, due to its simplicity and
because the good quality of the constructed solutions means that less local search
improvement is necessary, specially in later stages of the ACO algorithm [13].

The behavior of the algorithm depends on the movement operator and on
the pivot rule, which respectively define the neighborhood and how it is scanned.
For the later, the two main approaches are the First Improvement (FI), where
the movement happens as soon as a better solution is found, and the Best Im-
provement (BI), in which the whole neighborhood (or a truncated one) is first
scanned and then it moves to the best solution among them [3].

As for the movement operator, it can be easily achieved by exchanging
two elements from randomly selected positions ¢ and j (with ¢ # j). For ex-
ample, with ¢ = 1 and j = 6, the permutation {2,4,8,1,3,5,6,7} becomes
{2,5,8,1,3,4,6,7}. In this operator, the positions pairs (4,j) and (j,7) result
in the same permutation, so, for an instance of size n, the amount of possible

le -n

neighbors is given by (

In case of the QAP, the computational performance of this algorithm using
the described operator can be enhanced by, instead of calculating the O(n?) cost
function for each neighbor, we calculate just the cost (¢, i,j) of swapping the
elements from positions ¢ and j in permutation ¢, with the linear equation [15]

0(9,4,7) = dii * (fo(i)o) — fowew) + dij * (fotyet) = fomet)) +
dji * (foyot) — fotrow) + dig * (Fomet) = Fotet)) +
- (8)
D (drix (oot — fomre) + dis * (fowet) = fome)) +
k=1,k+i,j
di. * (foyo) = fomow)) + dik * (Fotiyom) = Fotem))

This computational cost can be even further reduced by using information
from preceding iterations. For the cases where the swapping indexes {u,v} are
different from the previous indexes {4, j} that were used to generate the current
permutation ¢, such as that ({u,v} N {i,j7} = 0), the movement cost can be
calculated in constant time by [15]

0(d',u,v) = 6(4,4,) * (drw — dry + dso — dsu)*(fo(j)ow) = To()ow) +
fowyow) = foew) *
(dur — dor + dys — dus)*(f¢(u)¢(j) - f¢(¢))¢(j) +

Foe) = fowow)

This justifies the use of the BI pivot rule, hence it is the one that benefits
the most from the preceding neighborhood scans.

5 Experiments

We compared the performances of the standard MMAS-QAP (8 = 0) to the
MMAS-QAP using heuristic information (8 = 1). In preliminary tests, higher
values for § yielded bad results for most instances. The other parameters were
set according to [13], being a = 1, p = 0.2 and the number of ants m = 5. The
low number of ants is justified by the employment of a complete local search
with the best improvement pivot rule. As for the values of 7™ and 7", they
depend on the instance size and are given by (7).

We also studied the three different choices for which ant is allowed to update
the pheromone trails, they being: the global best; the iteration best; both of them
in a specific schedule. For the later, we used the following schedule described in
[13]: for every u9® iteration, the global best is selected, then, for the first 11
iterations, u9 is set to 3, decreasing to 2 until iteration 25 and to 1 from there
on. The ideia behind this is to initially select the iteration best ant more often,
and then, gradually increase the frequency of the global best ant. In this way,
the algorithm starts with diversification and moves towards intensification.

In order to observe the dimension of the search space covered by the ants,
we used the average A-branching factor (\), proposed in [7]. Considering each
column ¢ of the pheromone matrix (whose values represent the pheromone trail
on assigning the correspondent facility to each location by row), we set 77*%* and
TN t0 the greatest and the smallest values of that column, respectively. Thus,
the A-branching factor of ¢ is given by the number of values that are greater
than 7/ 4+ X % (7/9% — 7m) where \ is a control parameter (0 < A < 1).

The average A-branching factor is then obtained by computing the average
of all columns factors and its value varies between [1,n — 1], with n being the
instance size (for the first iteration, where all pheromone trails are equal, thus
resulting in A = 0, we manually set it to 1). With this, we can infer the degree of
exploration made by the algorithm, being that high values indicate high explo-
ration, whereas values decreasing close to 1 indicate search stagnation. During
the tests, we set A\ = 0.05 and measured the \ every iteration.

All the experiments were applied on sixteen QAP instances under different
classifications. According to [15], the instances can be classified in four groups:
(i) Random and uniform distances and flows (nug30, sko42, sko56, sko64); (ii)
Random flows on grid (tai3ba, tai40a, taib50a, tai60a); (iii) Real-life prob-
lems (kra30b, kra32, ste36a, ste36¢c); (iv) Randomly generated real-life like
(tai3ba, tai40Ob, taib0b, tai60b). The instances were retrieved from the online
repository QAPLIB and the numbers in the names represent their sizes.

Every configuration was applied 30 times during 10 minutes, where each 15
of them ran simultaneously on an Intel Xeon CPU with 16 threads (8 cores) and
2.4 GHz clock frequency. The results shown are the average of the 30 executions.
We applied the Kruskal-Wallis H test and the Nemenyi post-hoc test to check
if the results samples being compared are from different distributions. This is
shown in the tables by marking the best results in boldface and marking with a
gray background all that are equivalent to the best (p-value > 0.05).

6 Results

We initially observed the performance of the three choices for updating the
pheromone matrix when not using the heuristic information. These results are
shown in Table 1, in which the values are the average distances from the known
optimum solutions for each instance.

Table 1: Comparison of the average distances from known optimum solutions for
different update choices not using the heuristic information (8 = 0)

Instance [Custom Schedule [Global Best [Iteration Best
Random flows on grid
nug30 0.146 0.177 0.197
sko42 0.207 0.299 0.226
skob56 1.123 1.023 1.224
sko64 1.300 1.278 1.238
Random and uniform distances and flows]
tai3ba 1.537 1.594 2.376
tai40a 1.907 1.781 2.694
tai50a 2.720 2.623 3.160
tai60a 3.291 3.194 3.257
Real-life problems |
kra30b 0.087 0.147 0.126
kra32 0.509 0.601 0.557
ste36a 0.340 0.597 0.379
ste36¢ 0.162 0.285 0.046
[Randomly generated real-life like]
tai35b 0.088 0.095 0.062
tai40b 0.201 0.182 0.366
tai50b 0.376 0.401 0.512
tai60b 1.329 1.202 1.216
Total Average 0.95769 0.96744 1.10225

It can be seen that the global best and the custom schedule strategies choices
presented best results, each outperforming the other more often depending on the
instance class. The custom schedule had a clear advantage by absolute majority
for the real-life problems whereas the global best had its best performance for
the random and uniform instances.

But there was no unanimity in any of the classes, which means that there are
instances whose MMAS behavior diverges from the others of the same class. For
example, even though the iteration best was the least overall performing choice,
it had the best result for the instance ste63c, even with statistical difference
from the global best choice.

So, for comparison we selected the custom schedule as the best update choice
for 8 = 0 because it outperformed the others more often and, in cases it did not,
it was always statistically equivalent to the best one. Also, it presented the least
overall distance, given by the average of all instances results.

As for the experiments using the heuristic information, the results are shown
in Table 2, in which we can see that, again, the competition was between the cus-
tom schedule and global best choices, since they presented similar performances.

Although both of them were always statistically equivalent to the best one,
only the global best remained its absolute majority for the random and uniform
class. Also, it was the strategy that had the best total average and with the most

wins. The reason for why the global best update strategy is now outperforming
the custom schedule is that the heuristic information allows better initial solution
constructions, thus rewarding the use of a more intensifying strategy.

Table 2: Comparison of the average distances from known optimum solutions for
different update choices using the heuristic information (8 = 1)

Instance [Custom Schedule [Global Best | Iteration Best
Random flows on grid]
nug30 0.179 0.251 0.150
sko42 0.168 0.238 0.208
skob56 0.909 0.761 1.128
sko64 1.179 1.219 1.313
[Random and uniform distances and flows |
tai3ba 1.644 1.520 2.170
tai40a 1.682 1.710 2.587
tai50a 2.671 2.546 3.166
tai60a 3.232 3.119 3.305
Real-life problems
kra30b 0.174 0.175 0.112
kra32 0.648 0.383 0.511
ste36a 0.516 0.451 0.441
ste36¢ 0.043 0.131 0.085
Randomly generated real-life like]
tai3bb 0.080 0.136 0.082
tai4d0b 0.269 0.335 0.400
tai50b 0.374 0.300 0.466
tai60b 0.794 0.651 0.936
Total Average 0.91013 0.87038 1.06625

Finally, in Table 3 we then compared the results obtained by the MMAS with-
out heuristic and using the custom schedule update choice rule (MMAS,,,1,_¢s) to
the MMAS with heuristic and using the global best update choice rule (MMAS}, 43).

Table 3: Comparison of the average distances from known optimum solutions
between MMAS,, o1, s and MMAS;, 4

Instance [MMAS, 5, _cs | MMAS;, g3 Instance [MMAS,, 55 _cs | MMAS), g3
Random flows on grid Real-life problems
nug30 0.146 0.251 kra30b 0.087 0.175
sko42 0.207 0.238 kra32 0.509 0.383
sko56 1.123 0.761 ste36a 0.340 0.451
sko64 1.300 1.219 ste36¢ 0.162 0.131
Random and uniform distances and flows Randomly generated real-life like
tai3ba 1.537 1.520 tai35b 0.088 0.136
tai40a 1.907 1.710 taidOb 0.201 0.335
tai50a 2.720 2.546 tai50b 0.376 0.300
tai60a 3.291 3.119 tai60b 1.329 0.651
[[MMAS,, oh_cs [MMAS,_gp]
[Total Average | 0.95769 | 0.87038 |

Apart from the random and uniform class, in which the MMAS},_g, had better
results for all instances, both strategies outperformed each other in equivalent
times, with a slightly better overall performance for the MMAS,, ,. However, it
is noticeable that, for the larger instances, the MMAS,, ¢, yielded statistically
better results than MMAS,,,;_.s. This, allied to the fact that the execution time

might not have been enough for those larger instances, indicates that the use of
heuristic information allows a faster convergence.

To further analyse this statement, in Table 4 other informations from the
previous experiments are given: the average iterations made by each strategy for
all instances, the average time in seconds in which the best solution was found
and the average value of A captured at the end of the algorithm execution. It
is possible to notice that the strategy that uses heuristic information completed
more iterations, meaning that less time was required in the local search phase
due to the better constructed solutions.

Table 4: Average of iterations, times in which the best results were found and
the A at the end of algorithm for all instances with both strategies

MMASnoh,cs MMAS}L,gb
instance | Iterations (seTC‘IOIE(e;ls) Finishing X | Iterations (serl;lomnjls) Finishing X
nug30 229 160 1.0244 271 153 1
sko42 66 453 1.0627 80 406 1.05
skob56 19 438 6.2065 23 529 2.3869
sko64 12 325 7.0651 14 360 2.1182
tai3ba 161 354 1.0448 187 267 1.0095
taid0a 102 450 1.0758 118 380 1.0408
tai50a 46 481 1.3373 55 501 1.334
tai60a 24 387 5.3539 28 475 1.7733
kra30b 239 172 1 278 158 1
kra32 194 222 1.0198 198 184 1
ste36a 119 297 1.0037 150 272 1
ste36¢ 117 381 1.0315 150 287 1.012
tai35b 120 229 1 137 226 1
taidOb 71 318 1.0092 84 301 1.0092
tai50b 26 571 3.4593 32 556 1.8073
tai60b 13 406 7.0022 15 463 2.5667

Furthermore, the instances that managed to enter in a convergence state, i.e.,
with X close to 1, achieved their best results faster with the MMAS;), g strategy.
On the other hand, for the larger instances, which ended with a relatively high
value of)\, we can see that the MMAS, o, cs strategy yielded its best results
earlier. Yet, these premature results are worse than those obtained with the
strategy using heuristic (see Table 3), besides, their average A-branch factor at
the end were also higher than those obtained by using heuristic. We can then
conclude that, for larger instances, the MMAS,,on s finished while still in the
beginning of a more exploratory phase, meaning that it required more execution
time, whereas the MMAS), 4, strategy ended closer to search stagnation.

Aside from requiring fewer iterative improvement appliances, the MMAS,,
strategy was also able to achieve faster convergence due to the benefit of using
the global best update choice, which means that less exploration was necessary.
This behavior is exemplified in Fig. 1, which illustrates the average A-branching
factor history by execution time in seconds. We can see that for the instance
ste36¢c (Fig. 1a), both strategies started converging about the same time the
best result was found, as shown in Table 4. It is also clear the difference of the

exploration made by them, which was mainly due to the different update choices.
Meanwhile, Fig. 1b shows the exploration behavior for the instance sko56, which
was one of the larger instances with premature algorithm termination.

o o~
PN

o
>

»
®

IS
°

—— MMAS,p s
rrrrrrr MMAS),_y,

—— MMAS,oh_es
rrrrrrrr MMAS;,_g

© 3.6

N

Average A-Branching Factor

oW
Y

Y

100 200 300 400 500 600 100 200 300 400 500 600
Seconds Seconds

(a) ste36e (b) sko56

Fig. 1: Average A\-branching factor history for different instances

Thus, this confirms what has been stated about the faster convergence time
for the MMAS}, 4. However, it is important to remark that, although the average
A-branching factor can represent the convergence for MMAS, the upper and lower
pheromone trail limits avoid that all ants follow the same path. Therefore, even
though it seems that the exploration made by MMAS;, g is less than desired,
the use of heuristic information made it possible to yield overall better and faster
solutions than those obtained by employing more exploration.

7 Conclusion

The goal of this work was to do an analysis about the influence of heuristic
information for the MAX—-MZIN Ant System with local search when applied
to the Quadratic Assignment Problem. Through the performed experiments, it
was possible to observe that the use of it or not determines how much exploration
is required by the algorithm.

This alters which pheromone update strategy is more suitable to be employed.
We were able to conclude that, when using the heuristic, it is better to always
use the best solution found so far. If no heuristic is present, the best approach
is to vary between this global best ant and the iteration best, in order to make
the algorithm spend more time diversifying the search.

We could notice that using the heuristic information results in faster conver-
gence time, meaning that the best results are found earlier than if not using it.
The explanation for this is that the solutions constructed by the ants require
fewer iterations of local search, and also, the use of heuristic allows less explo-
ration to be made. Since both strategies presented similar solution qualities, the
required execution time was a decisive factor for the comparison.

However, this CPU running time performance enhancement was possible be-
cause the selected heuristic for the QAP was simple and straightforward. For

some other optimization problems, whose heuristic may be rather complex and
add a meaningful overhead to the algorithm, the use of MMAS without heuristic
is still a robust approach for them due to its problem independence nature.

For future work, it can be studied the effect of the heuristic when using some

techniques such as pheromone smoothing and pheromone reinitialization. It is
also possible to apply different and more robust local search strategies.

References

1.

2.
3.

10.

11.

12.

13.

14.

15.

16.

Blum, C., Roli, A.: Metaheuristics in combinatorial optimization: Overview and
conceptual comparison. ACM Computing Surveys (CSUR) 35(3), 268-308 (2003)
Brixius, N.W., Anstreicher, K.M.: The steinberg wiring problem. SIAM (2001)
Burkard, R.E., Cela, E., Pardalos, P.M., Pitsoulis, L.S.: The quadratic assignment
problem. In: Handbook of Combinatorial Optimization, pp. 1713-1809. Springer
(1998)
Dorigo, M., Caro, G.D.: Ant colony optimization: a new meta-heuristic. In: Pro-
ceedings of the 1999 Congress on Evolutionary Computation. vol. 2, p. 1477 (1999)
Dorigo, M., Maniezzo, V., Colorni, A.: Ant system: optimization by a colony of
cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics, Part
B (Cybernetics) 26(1), 29-41 (1996)
Fischetti, M., Monaci, M., Salvagnin, D.: Three ideas for the quadratic assignment
problem. Operations Research 60(4), 954-964 (2012)
Gambardella, L.M., Dorigo, M.: Ant-q: A reinforcement learning approach to the
traveling salesman problem. In: Proceedings of the Twelfth International Con-
ference on International Conference on Machine Learning. pp. 252-260. Morgan
Kaufmann (1995)
Koopmans, T.C., Beckmann, M.: Assignment problems and the location of eco-
nomic activities. Econometrica: Journal of the Econometric Society pp. 53-76
1957
%(ovéf)l'k, O., Skrbek, M.: Ant Colony Optimization with Castes. In: Artificial Neu-
ral Networks - ICANN 2008. pp. 435—442. Lecture Notes in Computer Science,
Springer, Berlin, Heidelberg (Sep 2008)
Oliveira, S.M., Hussin, M.S., Stuetzle, T., Roli, A., Dorigo, M.: A Detailed Analysis
of the Population-based Ant Colony Optimization Algorithm for the TSP and the
QAP. In: Proceedings of the 13th Annual Conference Companion on Genetic and
Evolutionary Computation. pp. 13-14. GECCO ’11, ACM, New York, USA (2011)
Sagban, R., Ku-Mahamud, K.R., Abu Bakar, M.S.: Reactive max-min ant system
with recursive local search and its application to tsp and gap. Intelligent Automa-
tion & Soft Computing 23(1), 127-134 (2017)
Sahni, S., Gonzalez, T.: P-complete approximation problems. Journal of the ACM
(JACM) 23(3), 555-565 (1976)
Stiitzle, T., Dorigo, M.: Aco algorithms for the quadratic assignment problem. New
Ideas in Optimization (C50), 33 (1999)
Stiitzle, T., Hoos, H.H.: Max—min ant system. Future Generation Computer Sys-
tems 16(8), 889-914 (2000)
Taillard, E.D.: Comparison of iterative searches for the quadratic assignment prob-
lem. Location Science 3(2), 87-105 (1995)
Tsutsui, S., Fujimoto, N.: A Comparative Study for Efficient Synchronization of
Parallel ACO on Multi-core Processors in Solving QAPs. In: 2015 IEEE Symposium
Series on Computational Intelligence. pp. 1118-1125 (Dec 2015)

