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Abstract. Discrete Interval Binary Signals (DIBS) is a well-known multi-
frequency two-level amplitude signal used in system identification and
commonly occurs harmonic distortion in the frequency spectrum as a
drawback. Hence, an optimization must be done to improve the relation
between signal and undesired harmonic distortion to improve the Crest
Factor (CR). This paper proposes the use of Particle Swarm Optimiza-
tion (PSO) to optimize DIBS. The employed PSO is the canonical codi-
fied in the continuous domain. Eight different experiments with different
parameters of DIBS are proposed to validate this PSO application. PSO
performance is compared with the Van Den Bos algorithm widely used
in the literature. Results show better performance for PSO compared to
the Van Den Bos algorithm passing the Wilcoxon rank sum test with
a very small p-value. Another remarkable fact is that PSO shows good
convergence to all problem instances, giving robustness to the solution.

Keywords: System identification, PSO, Signal Optimization, Swarm
Intelligence

1 Introduction

Frequency domain system identification is the area which tries to estimate the
frequency transfer function of black box systems. The system is excited using an
input signal and the output response is measured to identify the relation of the
output over the input [1]. In frequency domain system identification there are
many different types of multi-frequency signals which can be used as input. Some
of the most popular are multi-sine, DIBS, maximum length binary sequences
(MLBS), or chirp. There are studies evaluating the quality of these signals and
DIBS shows superior characteristics over the rest [1-3]. An example where these
multi-frequency signals are widely used as input is bioimpedance, allowing fast
measurements in multiple frequencies [2,4, 5].

DIBS is a two-level and periodic signal defined by a set of Fourier coefficients
of a Fourier serie. The most important drawback of two-level signals is the pro-
duction undesired harmonics along the whole frequency spectrum increasing the



harmonic distortion and reducing the power on the desired Fourier coefficients
reducing the crest factor [6]. In frequency domain system identification there are
two conditions to attend: the input signal should be small enough to minimize
non-linear distortion and large enough to minimize noise effects [7]. Because of
these two characteristics, optimizing the effective power of excitation signals has
become a critical and important task in system identification [1, 8, 9].

The optimization of the power of the desired Fourier coefficients in DIBS is
achieved through optimizing the relation between the desired Fourier coefficients
and the harmonic distortion. It does not exist any numerical method to optimize
DIBS, so alternative strategies must be adopted in order to solve this problem.
Nowadays, only one approximative method has been described in literature for
optimizing DIBS, named Van Den Bos algorithm[10].

Heuristic algorithms are well known for their capability to find good so-
lutions with affordable computational capacity for problems where parameter
optimization is needed. Some of them are based on populations such as Genetic
Algorithms (GA), Differential Evolution (DE), and Particle Swarm Optimization
(PSO) [11]. They have been widely used in the area of system identification[12—-
15] and with the objective of optimizing excitation signals such as multisine[15,
16].

The objective of this paper is to optimize the generation of DIBS signals
using PSO and compare it with the Van Den Bos algorithm [10]. To statistically
validate the improvement of the solution the non-parametric statistical Wilcoxon
signed-rank test is used. P-value is given as two-tailed. The used PSO is the
originally proposed by[17] with the particles codified in the continuous domain.

The paper is organized as follows. Section 2 describes the mathematical na-
ture of DIBS. Section 3 exposes the original Van Den Bos algorithm. Section
4 exposes the application of PSO for optimizing DIBS. Section 5 defines the
set of experiments and the setup used to evaluate the application of PSO com-
pared with the Van Den Bos algorithm. Section 6 shows the results and analysis.
Section 7 is the conclusion and future projects for this application.

2 Discrete Interval Binary Signal Optimization Problem

DIBS are periodic discrete and two-level amplitude signals composed of N num-
ber of points. Two-level amplitude signals such as square wave or in this case
DIBS, create plenty of undesired harmonics along the frequency spectrum pro-
ducing harmonic distortion. This results in a reduction of power in the desired
Fouirier coefficients with the same amplitude increasing the crest factor.

In order to measure the optimization quality of a signal, some metric has
to be used. Focusing on the objective of reducing the harmonic distortion and
increasing the signal power an objective P can be defined. P is the relation
between the power on the desired Fourier coefficients and the sum of the Fourier



coefficients in th whole frequency spectrum [1]. This is measured as follows:
n
> H
k=1
P=-—
Z |Hsk:|
k=1

where |H| are the magnitudes of every Fourier coefficients in the obtained signal
(desired signal + undesired harmonic distortion), |Hgk| are the magnitudes of
the desired Fourier coefficients in the obtained signal (desired signal) and n is the
number of Fourier coefficients of the spectrum, equal to N /2. The objective of
the optimization will be reducing the value of P in order to reduce the harmonic
distortion. The theoretical minimum of this metric will be 1 when |Hy| = |Hg|,
in other words, the harmonic distortion is equal to 0 and the whole power of the
signal is on the desired Fourier coefficients. In this signal, because of its binary
nature, it is impossible reduce P down to 1 but algorithms can be used to reduce
P as much as possible [10].

(1)

3 Van Den Bos algorithm for optimizing DIBS

The algorithm was firstly proposed by Van Den Bos in 1979 [10]. It is described
in Algorithm 1. It is iterative and convergence is expected in 2-15 iterations [10].

Algorithm 1 Basic DIBS construction
1: New Oy (current) = {x]z ~ U(0,27)}
2: Loop is set to true

3: repeat

4: Dy = \Dk|ej6k(w”€m) Containing | Dsg|

5. dip=F 'Dg

6: hi = sng(dk); If a € hy = 0 then a ~ U{—-1,1}
7: Hy = Fhy

8: Extract Osp(new) from |Hk\ej9k

9: if esk(new) 7é esk(cu'rrent) then

10: Gsk(current) — esk(new)
11: else

12: Loop is set to false
13: end if

14: until Loop is set to false

To have a better visual comprehension of DIBS Figure 1 shows a concep-
tual instance. Figure 1.a is a 64 points DIBS. This signal is obtained in step 6
of Algorithm 1. Figure 1.b shows the 32 Fourier coefficients contained in Hy.
These coefficients are used to evaluate P. Figure 1.c shows phase angles 6 of



the respective Hj Fourier coefficients. Terms with the subscript ; in addition
to i such as O refer to desired Fourier coefficients vector only, not the total
spectrum.
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Fig. 1. Example of DIBS (a) DIBS in the time domain (b) Fourier coefficients |H|
in the frequency domain (c) phase angle 65, of the respective Fourier coefficient in the
frequency domain

This algorithm improves a single solution iteratively. The algorithm converges
when the phase angle vector 6, (new) obtained at the end of each iteration is equal
t0 Osi(current) Used at the beginning of the iteration. At this moment Algorithm
1 is stagnated and successive iterations will give the same result 0y (ne.)- This
vector is the solution given by the algorithm. When the algorithm converges, P
is minimized for that execution, but it does not guarantee an optimal solution
[10]. We can run Algorithm 1 from step 4 to 6 to get the DIBS signal with the
obtained solution O,x(pew). This algorithm can be executed multiple times in
order to try to find a better minimum of P.

The main problem of this method is the lack of strategies to improve the
result. Because of this, PSO as a population-based method is proposed to find
better solutions.

4 PSO for optimizing DIBS

PSO is a population based meta-heuristic algorithm. Populations are decentral-
ized and composed by homogeneous particles. Each particle represents a poten-
tial solution and moves around the search space. Particles only have two infor-
mations, the historic best solution that is called cognitive component and the
swarm best solution called social component. The algorithm works iteratively,
updating the position of every particle of the population individually based on
the cognitive and social component of the particle.

The standard continuous PSO is employed in this paper[17]. A basic pseudo-
code for this algorithm is described in Algorithm 2.



Algorithm 2 Canonical PSO

1: Initialize random x; 4 and v; g for every particle 4 in every dimension d
2: repeat

3: for each particle i do

4: if f(z;) < f(pb;) then > Update particle best position
5: pbi = x;

6: end if

7 if f(z;) < f(gb) then > Update global best position
8: gb=uz;

9: end if

10: end for

11: for each particle i do > Update particle velocity and position
12: for each dimension d do

13: Vi,d = V;id + Ch * Rnd(o, 1)[pb¢,d — mi,d} + O * Rnd(o, 1)[gbd — xi,d]

14: Ti,d = Ti,d + Vi,d

15: end for

16: end for
17: it=dt+1
18: until it>number of iterations

The objective function of the PSO is represented in Algorithm 3. This is
essentially the same objective function from Algorithm 1. In Algorithm 1 the
possible solutions is the phase angle vector of the desired Fourier coefficients
051 In the case of PSO, each particle is a possible solution. The PSO particles
will be the phase angle vector 8 of the desired Fourier coefficients. For example,
from Figure 1, if we want to optimize DIBS to get the maximum power in the
Fourier coefficients |Hs|, |Hy| and |Hg| and reduce the harmonic distortion, the
particles will be codified as (02,04, 05).

Taking in count that particles are phase angle vectors, they are codified in
the continuous domain. Each element of the particle can take values from 0 to
2m. The length of the particle is the number of Fourier coefficients we want to
create the signal.

Algorithm 3 Objective function of PSO

1: D = |Dk\ej9’“ > Particle is 0, contained in 0y

2: dy = F'Dy

3: hy = sng(dk); If a € hyy =0 then a ~ U{-1,1}

4: Hyp = Fhy

5: Extract Osp(new) from |Hk|ej0"'

6: P= Z |Hz|/ Z | H sk | > From equation 1. P is the fitness value
k=1 k=1




As we can identify from the objective function, the input variables are the
phase angle vector 6. The dimensionality of the input vector is the same as
the number of Fourier coefficients we desire.

The objective function has parameters to be defined. This will define the
characteristics of the DIBS we are looking for. These characteristics are the
amplitude and and the position in the frequency spectrum of the desired Fourier
coefficients. They take positions from 0 to N /2, being N the number of the DIBS
points in the time domain. | Dy | represents the amplitude of the desired Fourier
coefficients and it is contained in |Dy|.

5 Benchmark Instances and Experiment Setup

In order to validate the proposed solution for optimizing DIBS, 8 different sets
of parameters for the objective function in Algorithm 3 are defined and shown in
Table 1. Instances 1 to 5 are taken from the paper where Van Den Bos proposed
his algorithm [10]; 6, 7 and 8 are added to complete different scenarios. Second
column shows the quantity of the desired Fourier coefficients representing the
dimensionality of the PSO particles. Third and fourth columns represent the
position and the amplitude ratio of each desired Fourier coefficients respectively.
Fifth column shows the number of points of the DIBS instance. Instances 1 to 5
show different particle dimensionality, different Fourier coefficient positions and
different amplitude ratios. Instances 5 to 8 show different number of points for
DIBS.

Table 1. Problem instances

Quantity

of desired Harmonic position Amplitude ratio N

harmonics
1 3 1,16,32 1,1,1 256
2 5 1,3,7,15,31 1,v2,1,v/2,1 256
3 3 1,6,10 1,3,5 256
4 9 3,17,18,19,28,29,30,31,32 1,v3,vV3,V3,V5,v5,vV5,V5,V/5| 256
5 16 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16| 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 | 128
6 16 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16| 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 | 256
7 16 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16| 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 | 512
8 16 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16| 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 [1024

Population size is 50 particles. Cognitive and social components are C1 =
C2 = 2. Stop criterion is 800 iterations giving an amount of 40,000 function
evaluations. These were set empirically. The minimum and maximum speed are
set to 0 and 27 respectively. No constriction or inertia coefficients were needed.

To have a reference of the quality of the solutions from PSO it is compared
with Van Den Bos algorithm described in Algorithm 1. Because of the objective



function for both algorithms is the same, the stop criterion of 40,000 function
evaluations is also used for the Van Den Bos algorithm. Each time the Van
Den Bos algorithm converges it will be executed again tracking the number of
function evaluations until reaching the stop criterion. The best result will be
updated every time after a better result is obtained.

The hardware used to run the algorithm is an Intel Core i7-3632QM and 8
GB RAM memory running Windows 7. Language employed for implementing
the algorithm is C. Source code is available in Github'.

Every experiment is executed 30 times by both algorithms. Average value and
standard deviation are calculated. Percentage improvement is calculated in or-
der to appreciate the difference between average results. At last, non-parametric
signed rank Wilcoxon test is applied to the result of the 30 executions given by
each algorithm for each instance. Result is given as two-tailed p-value. Signed
rank Wilcoxon test does not give us any information about how much one so-
lution is better than the other, it only guarantee us that the populations of the
results from both algorithms are statistically different and not a product of the
causality with a confidence level of 95%. Tests are performed in the statistical
software R.

6 Results and Analysis

Table 2 shows the results for P including average deviation of both Van Den Boss
and PSO algorithms, percentage of improvement, and the two-tailed Wilcoxon
rank sum test p-values. Instances can be divided in two sets: from 1 to 4 and 6
have the same numbers of points but different Fourier coefficient quantity and
amplitudes; from 5 to 8 the properties of the Fourier coefficients are the same
but the number of points increases.

Table 2. Results obtained in experiments

Van Den Bos algorithm PSO Impr?‘;gment p-value
1 3.9278-0.000000 3.9278-0.000000 0 -
2 2.5391+0.000308 2.4950-+0.008739 1.74 1.7344e-06
3 4.1390-£0.000000 4.1265+0.006645 0.30 1.7344¢-06
4 2.719740.000000 2.6607+0.013973 2.17 1.7344¢e-06
5 1.5460+0.001126 1.4793+0.004593 4.31 1.7344e-06
6 1.8040=£0.003672 1.709740.009874 5.23 1.7344e-06
7 2.0690+0.000661 1.9531+0.011746 5.60 1.7344¢-06
8 2.3112+0.001504 2.1818+0.012984 5.60 1.7344e-06

1 Source code of Van den Bos and PSO-based algorithms for DIBS optimization:

https://github.com/sfs325/DIBS-PSO-optimization



Instance 1 can be considered the one with less complexity having a small
number of Fourier coefficients and equal amplitude of them. Results show the
same performance for both algorithms. Instance 2 increases the complexity com-
pared with instance 1 in the number of Fourier coefficients from 3 to 5 and
different amplitudes for the coefficients. PSO application gets a better result by
1.74%. Instance 3 has a PSO improvement of 0.30%. Instance 4 has 9 Fourier
coefficients with different amplitudes. In this case the improvement is 2.17%.
Instance 6 has 16 desired Fourier coefficients and the biggest improvement of
5.23%.

Instances from 5 to 8 keep the same characteristics for the Fourier coefficients
but the number of points increases from 128 to 1024. The lowest increase is found
with 128 points being 4.31% and increases gradually with the number of points
to 5.60% when 1024 points are used.

With these results some facts can be determined. Instances 2, 3, 4 and 6
with the same number of points of 256 show a proportional increment in the
improvement based on the number of desired Fourier coefficients. Instances 5,
6, 7 and 8 with the same Fourier coefficient conditions, the improvement of
PSO increases gradually with number of points. Standard deviations are small
showing robustness for both algorithms.

Wilcoxon rank sum test p-value shows for the first instance that the results of
both algorithms are statistically identical. However, for the remaining instances,
p-values are really small and meets the premise of being less than 0.05 to be con-
sidered statistically different with a confidence level of 95%. It can be considered
that the proposed solution statistically improves the optimization of DIBS.

When working with iterative algorithms it is important to monitor the con-
vergence in order to analyze the behavior of the algorithm. Figure 2.a and 3.a
shows convergence for Van Den Bos algorithm in orange and PSO in blue. Figure
2.b and 3.b shows diversity for PSO. In the first instance both algorithms con-
verged to the same result always as seen in Table 2, even though, PSO converges
faster. In instances from 2 to 8, Van Den Bos algorithm converges much faster
than PSO. It only needs less than 2,000 function evaluations to get stagnated for
every instance. On the other hand, PSO shows a constant improvement of the
result. At the end of the 40000 evaluations it can not be considered as totally
stagnated but close enough to give an acceptable solution.

The diversity for every instance seen in Figure 2.b Figure 3.b confirms a
healthy convergence of the PSO population, not too fast nor too slow. This is
important to detect problems such as premature convergence or stagnation in
local minima [18].

Execution time had no significant changes in instances with the same number
of points for both algorithms. This is because the most resource demanding
operations are DFT and IDFT where the time for these operations depends on
the number of points. The average time per execution for every experiment for
both algorithms was 1.4 seconds for 128 points, 2.5 seconds for 256 points, 4.9
seconds for 512 and 10.1 seconds for 1024 points.
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Fig. 2. Average values of Van den Bos and PSO algorithms executions for experiments
from 1 to 4 (a) PSO convergence in blue, Van Den Bos algorithm convergence in brown,

(b) PSO diversity
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7 Conclusions and Future Work

From the problem of the lack of numerical methods for optimizing DIBS, alter-
native methods must be employed. The Van Den Bos algorithm has been widely
used in the literature but it has a fast convergence to an aproximated value. It
also lacks mechanism to control the convergence in order to improve the results.
For this purpose PSO was applied to this problem in this work.

PSO has shown a good response solving this problem. Graphs show a proper
convergence for every instance. Diversity looks very healthy so it is not needed
to implement additional strategies to control it.

According to the percentage improvement in conjunction with p-value ob-
tained from the Wilcoxon rank sum test, PSO statistically offers better DIBS
optimization than Van Den Bos Algorithm. Apart from the first instance where
the complexity was the least, PSO gave a better result than Van Den Bos al-
gorithm for every execution. This shows how powerful are heuristics algorithms
for optimizing this type of problems such as PSO in this case.

A 5.60 % of improvement in the best case would seem small, but talking
about signals for system identification every improvement in the input signal
will improve the output measurements|2, 4, 5]. This will also increase the weight
of DIBS in the balance when compared with other type of signals.

It has been observed that parameters with impact in the optimization are
the number of desired Foutier coefficients and the number of points. As higher
the number of desired Foutier coefficients or the number of points the better the
optimization of PSO over Van Den Bos algorithm is.

As future work we intend to apply PSO to optimize DIBS using real life mea-
surements of the model to be identified as feedback to calculate the fitness. This
will include the model in the objective function of PSO making the optimization
of DIBS even more precise.
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