An Adaptive Pursuit Genetic Algorithm for
Solving Job-Shop Scheduling Problems

Guilherme S. Ferreira! and Heder S. Bernardino?

! Universidade Federal de Juiz de Fora (UFJF)
ferreira.guilherme@gmail.com
2 Universidade Federal de Juiz de Fora (UFJF)
heder@ice.ufjf.br
WWW home page: http://wuw.hedersb.uk.to

Abstract. When a metaheuristic is used for solving Job-Shop Schedul-
ing Problems (JSPs), ones need to select the correct movement operators
and their parameters to improve the results for them. However, to make a
correct setup of a problem is a hard work and it is problem-dependent. In
this work, we propose the use of an Adaptive Genetic Algorithm (AGA)
to automatically control the techniques contained in its framework while
it is solving the problem. An Adaptive Pursuit Method with Extreme
Credit Assignment is used to select the movement operators and their
rates (crossover and mutation techniques), and it is used to select the
Local Search rate. The algorithm is tested using instances provided by a
well-known generator for JSPs. The results show superior performance
and reliability when compared to a standard genetic algorithm.

Keywords: genetic algorithms, adaptive operator selection, adaptive
parameter control, adaptive pursuit, job-shop scheduling

1 Introduction

Several operations research, production management, and computer engineering
problems can be found in the literature and practical situations. One type of
them is Job-Shop scheduling problem (JSP), which is a widely studied class of
the combinatorial optimization problems classified as NP-Hard. Problems with a
reduced number of jobs and/or machines, called small size JSPs, are solved using
exact methods such as Branch & Bound algorithms [5] and linear programming
algorithms [22]. However, these methods are inefficient to solve larger or more
complex problems [20, 21]. Thus, a variety of metaheuristics techniques have been
proposed to reach near-optimal solutions in a reasonable amount of processing
time.

According to [6, 31], Evolutionary Algorithms (EA), more specifically Genetic
Algorithms (GA), are the most chosen metaheuristics to solve JSPs, frequently
applied in a hybrid way (Hybrid Algorithms) with Local Search (LS). Thus, this
work was guided by those studies to select the search techniques.

However, the selection of suitable parameters for a GA can be a hard task,
as they are problem-dependent. In fact, right parameter settings are usually



Guilherme S. Ferreira, Heder S. Bernardino

obtained by trial and error process. An Adaptive Genetic Algorithm (AGA) for
solving JSPs is proposed here to avoid these problems. The considered JSPs have
identical parallel machines with the objective of reducing the makespan. The
use of this type of algorithm is a trend in the evolutionary computation as they
automatically choose the movement operators (such as crossover and mutation)
and their parameters, reducing the time of setup and test of an algorithm.
According to [7] the approaches to set up the parameters can be classified as:

1. Parameter tuning - A person or a computer program makes tests to select the
parameters values. After that, they run the EA with the most appropriate
parameter found, a standard EA.

2. Dynamic control - the parameters are changed by some deterministic rule,
which changes the parameter values without any feedback from the EA.
Generally, these methods are focused on the evolutionary phases of an EA.

3. Adaptive control - In this context, there is some feedback from an EA, which
is used to change the component or the parameter. An EA may use the Credit
Assignment to define which operator or parameter will be used in the next
step of an evolutionary process.

4. Self-adaptive control - The parameters are encoded on a chromosome and
are susceptible to a crossover and mutation movements. This segment is not
considered to evaluate the fitness of an individual. The main idea is that the
best values produce best individuals and the elitism makes this propagate
throughout the generations.

AGAs have already been established in the JSP in previous work. The ap-
proach proposed in [19] receives information of the evolutionary stage, classified
as dynamic control, and different to the adaptive idea proposed here.

The next researches do not follow the adaptive methods of the literature such
as Probability Matching or Adaptive Pursuit. These authors use simple adaptive
methods. In [3], the crossover and mutation rates increases or decreases in fixed
steps, according to the improvements of the offspring. A multi-objective JSP
was presented in [12], even though Hongyan and Hong called it self-adaptive,
the previously mentioned concept used here, calls it adaptive. The adaptation
happens only in crossover and mutation rates, and the success of an operator
is evaluated based on the average fitness of the population. A similar approach
was proposed in [27], where the rates of the movements operators are changed
based on the average, the maximum and the minimum fitness of the individuals.

The work of [15] proposed an adaptive selection for a cellular GA, which im-
proves the probability of choosing the best individuals. In another study, Nalepa
et al. [17] introduced a new method that sometimes generates offsprings of the
same pair of parents, but differing about the applied crossover technique, and
sometimes generates multiple children, applying the same crossover technique.
Finally, in [26] a multi-population algorithm with adaptation in crossover and
mutation rates was implemented. According to the authors, the algorithm was
compared with other metaheuristics using many benchmark instances, and it
demonstrated a reasonable efficiency, not being worse or better than the other
techniques. A hybrid multi-objective backtracking search algorithm for solving



An Adaptive Pursuit G. A. for Solving Job-Shop Scheduling Problems

scheduling problems, which uses adaptation to select an appropriate population
to keep diversity, was developed in [16].

Lastly, these last ones are closer to our approach. Yan and Wu [29] used
an adaptive procedure to select between movements operators. The approach
used in that work is a roulette wheel based on the reward of the operators. The
reward was tested with and without a time window. In that article, four crossover
and four mutation techniques were implanted and the proposed outperformed
conventional GA algorithms. An adaptive multimeme algorithm was proposed to
solve the JSP in [30]. That work has a Multi-Armed Bandit technique integrating
a stochastic variation and a local search procedure into a composite operator for
each individual. The framework contains three LS techniques.

In this work, it was proposed an AGA for solving JSP to select between GA
techniques (and their parameters) and an LS rate. Also, there is a constructive
heuristic used to generate the initial population, if necessary it may be applied to
improve the results. The AGA selects the parameters according to the feedback
received in the evolutionary process, whereas in work of [19], the parameters are
adjusted according to the number of generations, without any feedback. This
proposal differs from the work of [15] as our proposal does not need a neighbor-
hood structure and it selects the parameters (crossover and mutation), while that
approach the adaptation scheme only happens in the selection mechanism. Fi-
nally, the work of [29] does not use a previously established method for adaptive
evolutionary algorithms, and this proposal uses the Adaptive Pursuit Method
proposed in [25]. So, Section 2 defines the studied problem. Section 3 explains
the search techniques used here. Section 4 introduces the proposed algorithm. Fi-
nally, Section 5 and Section 6 show the results of our computational experiments
and the conclusion about this work.

2 Job-Shop Scheduling Problems

The shop scheduling is a practical and relevant problem in several applications
areas, such as flexible manufacturing system, production planning, logistics, com-
munication and others. The problem consists in searching the best order to pro-
cess a set of N jobs in M machines, and the processing of each job in each
machine is also called operation.

The number of jobs, machines and constraint rules that indicate how the
operations should be scheduled, defines the types of shop-scheduling, like Single
Machine Shop (SMP), Parallel Machine Shop (PMP), Flow-Shop (FSP), Job-
Shop (JSP), and Open-Shop (OSP) [10]. In the SMP, there is only a single
machine, and each job has only one operation. The decision-maker has to find
the optimal sequence of the jobs. The PMP allows the use of some machines
working in parallel, doing the same work, where the jobs can be processed in all
of these machines. In the FSP, the jobs have the same technological route, that
is, the same machine order. The problem has M machines, and it is also possible
to have parallel machines. The JSP, which is the focus of this study, is similar



Guilherme S. Ferreira, Heder S. Bernardino

to the FSP, but the technological route may be different for each job. Finally,
the OSP has no order constraints concerning the operations in each job.

As previously mentioned, in the context of JSP, the jobs do not have the same
technological route and also have a predefined processing time. For standard
problems, the number of operations is the same of the number of machines, but
it can be smaller or greater (recirculation). Here we only considered the classical
problems. In JSP, the best order to process the A/ jobs in the M machines is
desired to achieve better results for the stipulated indicators. Formally, JSPs can
be defined as [21]:

— each job i € N can be processed by a machine j € M.

— the processing of the job N; in the machine M; is called operation O;;.

— operation O;; requires exclusive use of the machine M; by the time ¢;;,
called processing time.

— each job i has a technological route (operating sequence of z; operations).

— O;j can be processed by only one machine j at a time.

— each operation, after started, must be finished in the same machine and
should not be interrupted until it is concluded.

— each machine runs one operation after another.

As indicated, rework or recirculation is not allowed. The objective of the JSP
here is to reduce the makespan, defined as Cpax = max;epn{fi}, where f; is the
flowtime of the job 1.

3 Search Techniques

There are different kinds of metaheuristics for solving optimization problems,
and here GA, LS and the NEH heuristic are adopted. Thus, these techniques are
detailed in sequence.

3.1 Genetic Algorithms

GA was proposed by Holland [11] and it is a search technique inspired by the
evolution paradigm. One of its advantages concerning the other search techniques
is since GA can easily apply other techniques on its framework [20], such as LS
and others.

One way to represent the JSP is using a permutation coded-GA. In this work,
we adopt the Job-based representation which was recommended in [13], wherein
a chromosome is a vector with an equal length of the number of the jobs, and it
represents the order of the jobs. This representation is illustrated by Figure 1.

HBEIDE B ER

Fig. 1. Job-Based Representation

For solving JSPs, a large number of genetic operators have already been
developed, and we adopted five available in [28], namely,



An Adaptive Pursuit G. A. for Solving Job-Shop Scheduling Problems

— The order-preserving one-point crossover sets up a cut point in the first
parent and copies the genes until it. Then, the empty genes are filled with
the other missing jobs, keeping the relative order of the second parent.

— The LOX (linear order crossover) is a procedure similar to order-preserving
one-point crossover. First of all, it sets up two cut points and copies the
genes between it to the same gene location in the offspring. The missing jobs
in the offspring are filled with the relative order of the second father.

— The PMX (partially mapped crossover) selects two cut points, and the proto-
offspring receives these genes from the first parent. The other jobs are taken
from the second parent. The generated proto-offspring often has repeated
jobs, and to turn it into a feasible offspring, the jobs that appear two times
are replaced outside of the segment. To replace the jobs duplicity, they are
mapped from parent 1 to parent 2, as illustrated in Figure 2. In the proto-
offspring, the jobs numbered as 7 and 5 are duplicated. There a duplicity in
the job 7. To solve this the job 7 was mapped to 5, and it results in another
repetition. Then, we need one more step to solve that. For this, the job 5
was mapped to job 2. The other repetition is easier to solve, the job 4 was
mapped to job 8, and finally, the offspring was generated without repetition.

— The Shift Mutation takes a job randomly and changes it to an arbitrary
position.

— The Pairwise Interchange Neighborhood takes two jobs randomly and switch
their positions.

parent 1 EEE
) proto-offspring
lfl —» [o[3][7] [1]4]0]
parent2  [9]3]7] [A]4]0]

offspring

proto-offspring [9]3] 7] [1]4]0] » [9]3]2] [1]8]0]

Fig. 2. PMX crossover

Although GAs can find promising regions in the solution space, they are
not suitable to fine-tuning [8]. The algorithm is often applied with other search
techniques. In our algorithm, it is possible to employ a constructive heuristic to
generate some individuals and an LS in each generation.

3.2 Adaptive Genetic Algorithms

AGAs are a variant of a GAs that tries to adjust the algorithm during the search
process. In this work, the implemented AGA is defined as adaptive dynamic.
This algorithm requires components to evaluate the used components called by
Credit Assignment, and components to select the operators and parameters on
its framework, named respectively as Operator Selection or Parameter Selec-
tion [14].



Guilherme S. Ferreira, Heder S. Bernardino

The Credit Assignment compares the results of the application of the com-
ponents and assigns an approximation of their quality. When an AGA is used
for solving a mono-objective optimization problem, the fitness improvement is
often applied to compare the differences of the components. The credit can be
estimated using one of the following ideas [1, 14]:

1. Instantaneous reward — received after the last use of an operator/parameter.

2. Average reward — considers the average quality of an operator or parameter,
received after few applications.

3. Extreme reward — considers the best quality received after a few applications
of an operator or a parameter.

4. Learned quality attribution — whereas the quality values of operator or pa-
rameter are inferred using Machine Learning and other forecast techniques.

The literature provides some schemes for operator or parameter selection.
However, the Adaptive Pursuit Method (AP) introduced in [25] is used here.
This method was inspired by the field of learning automata, a type of Machine
Learning algorithm, and belongs to a class of methods that fast reaches good
solutions. In a non-stationary environment, we need to change swiftly to any
change of the performance of the operators, and then AP quickly increases the
performance of the best operator when compared to the traditional Probability
Matching. The method calculates the probability for each operator and uses a
roulette wheel to select one of them. All components, operators and parameters,
have a lower bound probability. This characteristic allows the future applica-
tions of these components, as they can become more effective during the search
process. Defining t as the current step, AP evaluates the quality of an operator
as Qu(t+ 1) = Qu(t) + a[Ra(t) — Qu(t)], where R,(t) is the credit assignment
of a operator. The probability of selecting an operator can be defined as:

Pa(t) + B[Pmax - Pa(t)] if a = (1*7

Po(t) + B[ Pmin — Pa(t)] otherwise (1)

Pa(t+1):{

where K is the number of components, Py, and Ppax = [1 — (K — 1)Puyin
are, respectively, the minimum and maximum probability values, and a* =
maxa[Qq(t + 1)] is the best operator at ¢ + 1.

In this work, we apply the Extreme Credit Assignment (EX) suggested in [9].
This method applies a time window W that keeps the last information of a
component and uses the maximum success to evaluate the credit assignment for
it. Defining 0 (¢) the fitness improvement at time ¢, then the reward for a operator
is computed as R, (t) = max{d(t;),i=1---W}.

3.3 Constructive Heuristic

The NEH heuristic was applied to initialize some individuals of the initial pop-
ulation. Proposed by Nawaz et al. [18], this heuristic has the following steps:

1. For each job, one has to calculate the sum of the duration of all operations.



An Adaptive Pursuit G. A. for Solving Job-Shop Scheduling Problems

2. The jobs are sorted in descending order of its total processing time.

3. The first two jobs in the sorted sequence are selected and evaluated consid-
ering the makespan for all the possible sequences. The best order must be
set, and its relative sequence is stored until the end of the algorithm.

4. After that, the next job in the list of Step 2 is taken, and it is required
to find the best sequence placing it at all possible positions in the partial
sequence found in the previous step. The best sequence is chosen and the
relative order is kept.

5. The Step 4 is performed until all the jobs are allocated.

3.4 Local Search

The local search adopted here, proposed in 23|, has two phases: the first one is
a destructive phase, and the last one is a constructive phase. In the first phase, d
jobs are randomly removed without repetition from an individual. These d jobs
are stored in a list in the same order that they were removed. At this point, two
sequences are generated, and the destructive phase ends. Then, the constructive
phase uses the Steps 4-5 of the NEH heuristic, described in Section 3.3.

4 The Proposed Adaptive Genetic Algorithm

The AGA proposed here selects the movement operators (crossover and muta-
tion), their parameters (such as crossover probability and mutation rate), and
the parameter of the adopted LS. These components are automatically chosen
in the evolutionary process and applied aiming to improve the results. Then, the
quality and the probability of the selected operators and parameters are updated.
The Credit Assignment is based on fitness differences between the best parent
and the best-generated individual, in case of crossover, and based on the average
fitness of the population and the generated individual, in the case of mutation
and LS. The success rate of each operator is updated after the generation of each
pair of individuals, and here we use the AP with EX, as previously explained. A
binary tournament is used to select the parents. Finally, the replacement mecha-
nism keeps the best individual of the generation g, discarding the worse created
in the generation g + 1. A pseudo-code is presented in Algorithm 1.

5 Computational Experiments

A program was implemented using the C programming language®. A total of 125
instances with five different problems sizes, namely, 10 x 10, 20 x 10, 20 x 20,
50 x 10 and 50 x 50 (jobs x machines). The instances were generated by the
process suggested by Taillard [24]. The stopping criterion was defined as the
number of objective function evaluations equals to (800 + 10N)A?, as in [2],
where N is the number of jobs.

3 The source code is available at http://bitbucket.org/ciml-ufjf/ciml-lib



Guilherme S. Ferreira, Heder S. Bernardino

Algorithm 1: The Proposed Adaptive Genetic Algorithm for Job-Shop
Scheduling

input : NP (population size), EV A (number of evaluations)

1 CreatelnitialPopulation (NP);

2 for i< 1 to NP do

3 L Evaluate f(zi,c); /*@; is an individual in the population */

4 for £+ 1 to EVA do

5 for i< 1 to NP do

6 crossover.op <— crossover-selectOperator();

7 crossover.rt <— crossover-selectRate();

8 u =

crossover-generate-two-individuals(N P, @, crossover.op, crossover.rt);

9 mutation.op - mutation-selectOperator();
10 mutation.rt +— mutation-selectRate();
11 u1 = mutate-first-individual(u1, mutation.op, mutation.rt);
12 mutation.op +— mutation-selectOperator();
13 mutation.rt +— mutation-selectRate();
14 uz = mutate-second-individual(uz, mutation.op, mutation.rt);
15 for j <1 to 2 do
16 L Evaluate(u;);
17 localsearch.rt <— localsearch-selectRate();
18 SelectPopulation(za, u);
19 AP-ApplyReward(za, u);

The instances were divided into two groups. The first group is called learning
phase. It has 25 instances, five for each problem size. In the learning phase, each
algorithm was executed twice. The second is called the testing phase. This group
has 100 instances, 20 for each problem size, and each algorithm ran five times.

The Table 1 presents the tested parameters, where Ps, Cg, Mg, LSy are the
population size, the crossover rate, the mutation rate, and the LS rate, respec-
tively. The combination of these parameters with the movements operators, and
with the possibility to use or not the NEH heuristic, generates 972 possibilities
to set up a GA. The number of jobs removed in the LS destruction phase was set
10% of the number of jobs. All of these were submitted at the learning phase,
and two setups for a GA are stored, the best to solve all problems and the best
to solve problems with 10 jobs and 10 machines.

Table 1. Values allowed to be used for each GA parameter

Ps Cr Mgr LSgr

50 0.7 0.30 0.015
76 0.8 040 0.030
100 0.9 0.50 0.045




An Adaptive Pursuit G. A. for Solving Job-Shop Scheduling Problems

AGA automatically selects the movement operators and its parameters, but
it also has four parameters described in Section 3.2. Here, we defined 30 param-
eter options to set up this algorithm. The values for o and [ tested here are
((2,2),(2,8),(5,5),(8,2),(8,8)]. Also, the minimum probability P, was set to
0.05. Thus, in average, one individual will be created with the worse settings in
each generation. The population sizes are the same ones used in GA, and the
same length was applied in the time window. Also, the parameter of the destruc-
tion phase of the LS was set 10%, as in GA. The AGA has in its framework the
movement operators described in Section 3.1, and can choose the same proba-
bility or rate showed in Table 1. As in GA, we stored the best setup to solve all
the problems and the best setup to solve the small problems when using AGA.

This work uses Performance Profiles (PPs) to compare the performance of
the algorithms. Suggested in [4] to compare evolutionary computation tech-
niques, they are an analytical resource for the visualization of the results of
numerical experiments. Considering the set T'A of problems instances ta;, with
i=1,2,--+ ,nq, aset Aofalgorithms a;, with j = 1,2, -+ ,ng, and Ctq o > 0 the
ta,a

min{Cia.q :a € A}
Thus, the performance profile of the algorithm is defined as: p(7) = —|{ta €
n

ta

TA:riqe <7}, where p(7) is the probability that the performance ratio ri,,q
of algorithm « is within a factor 7 > 1 of the best possible ratio. The algorithm
with larger p(7) are preferred.

Two analyses were performed to evaluate the proposed algorithm. In the
first, we selected the best parameter settings provided during the learning phase
and execute it on the test instances. Figure 3 presents the results of this anal-
ysis, where LOX IN NEH represents GA, and APEX represents the proposed
AGA. One can observe the best-obtained parameter settings for GA was: LOX
crossover, Interchange Mutation, adopting NEH heuristic to generate some in-
dividuals in the initial population. The best observed parameter values are 50,
0.7, 0.3 and 0.015, for Ps, Cr, Mg, and LSR, respectively. For AGA, a and f3
are equal to 2, the NEH heuristic is used, and Ps = 50, as in GA.

One can see that AGA is better than or equal to GA in approximately 70%
of the test instances. In this case, the AGA can solve all instances within a factor
1.01 worse than those obtained by GA, showing a better reliability.

For a second analysis, we solved all the small problems of the learning in-
stances, that is, 10 jobs and 10 machines. Then we select the best parameter
settings, and we applied then to all test instances. This approach was selected
due to the fact the small problems are solved faster and can reduce the amount
of time spent to evaluate the possible operators and their parameter values. The
results are presented in Figure 4. The best AGA algorithm was set with o and 3
equals 5, Ps = 100 and did not use NEH. The best GA was using PMX crossover,
Shift Mutation, and with NEH heuristic. The parameters selected were Ps = 76,
Cr =0.9, Mg = 0.5, and LSr = 0.045.

We can see that AGA in Figure 4 outperformed GA in almost all instances.
Also, the reliability of the algorithm is greater, as it can solve all the problems

makespan, the performance ratio can be defined as: r¢4,, =




Guilherme S. Ferreira, Heder S. Bernardino

=
k<1
04 | b
0.2 ]
APEX_2 2 NEH_LSgy = =
o ‘ ‘ | LOX_IN_NEHs0.0.700-0.300-0.015 =
1 1.005 1.01 1.015 1.02 1.025 1.03

T

Fig. 3. PPs of GA and the proposed AGA for all instances. The parameters and oper-
ators are the best ones found when all instances (learning phase) are considered.

p(v)

0.2 | f

APEX_5_5_LSy50 = -
0 ‘ ‘ ‘ . PMX_SH_NEH76.0.900-0.500-p.045 ===
1 1.005 1.01 1.015 1.02 1025 1.03 1.035 1.04 1.045

T

Fig. 4. PPs of GA and the proposed AGA for all instances. The parameters and oper-
ators are the best ones found when 10x10 instances (learning phase) are considered.

within an approximated factor of 1.025 from the best performance, and GA only
can solve within a factor near 1.045.

6 Concluding Remarks and Future Works

In this paper, we proposed the use of an existing adaptive method applied to a
GA for solving JSPs. The fitness values of the offspring are compared to those



An Adaptive Pursuit G. A. for Solving Job-Shop Scheduling Problems

from their parents to identify the capacity of a crossover operator in generating
better individuals. On the other hand, the fitness of the offspring is compared to
the average performance of the current population for the mutation and LS pro-
cedures. Also, the algorithm uses AP with EX to selects between the movement
operators from GA (and their parameters) and the LS rate, for the generation
of each new individual.

The proposed algorithm was compared to a GA. AGA performed better
than GA when: setting the best parameters for all problems; and setting the
best parameters for small size problems, i.e., 10 jobs and 10 machines, and using
these setups to solve the problems of all sizes. The results confirmed that the
AGA is reliable to solve JSP problems.

For further works, Probability Matching or Dynamic Multi-Armed Bandit
can be used aiming to improve the quality of the adaptive scheme. Also, the
problem would be worked as a multi-objective optimization, or it would be in-
troduced setup time, for example, turning the JSP problem more complex.

Acknowledgement
The authors thank the financial support provided by CAPES and FAPEMIG.

References

1. Aleti, Aldeida, Moser, I: A Systematic Literature Review of Adaptive Parameter
Control Methods for Evolutionary Algorithms (2015)

2. Arroyo, J.E.C., de Souza Pereira, A.A.: A grasp heuristic for the multi-objective
permutation flowshop scheduling problem. The International Journal of Advanced
Manufacturing Technology 55(5), 741-753 (2011)

3. Asokan, P., Jerald, J., Arunachalam, S., Page, T.: Application of adaptive genetic
algorithm and particle swarm optimisation in scheduling of jobs and AS/RS in
FMS. International Journal of Manufacturing Research 3(4), 393-405 (2008)

4. Barbosa, H.J., Bernardino, H.S., Barreto, A.M.: Using performance profiles to
analyze the results of the 2006 cec constrained optimization competition. In: Evo-
lutionary Computation (CEC), 2010 IEEE Congress on. pp. 1-8. IEEE (2010)

5. Brucker, P., Jurisch, B., Sievers, B.: A branch and bound algorithm for the job-shop
scheduling problem. Discrete applied mathematics 49(1-3), 107-127 (1994)

6. Chaudhry, I.A., Khan, A.A.: A research survey: review of flexible job shop schedul-
ing techniques. Int. Trans. in Operational Research 23(3), 551-591 (May 2016)

7. Eiben, A.E., Hinterding, R., Michalewicz, Z.: Parameter control in evolutionary
algorithms. IEEE Transactions on evolutionary computation 3(2), 124-141 (1999)

8. Eiben, A.E., Smith, J.E., et al.: Introduction to evolutionary computing, vol. 53.
Springer (2003)

9. Fialho, A., Da Costa, L., Schoenauer, M., Sebag, M.: Extreme value based adaptive
operator selection. In: International Conference on Parallel Problem Solving from
Nature. pp. 175-184. Springer (2008)

10. Hart, E., Ross, P., Corne, D.: Evolutionary scheduling: A review. Genetic Pro-
gramming and Evolvable Machines 6(2), 191-220 (2005)

11. Holland, J.H.: Adaptation in natural and artificial systems: an introductory anal-
ysis with applications to biology, control, and artificial intelligence. MIT press
(1992)



12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

Guilherme S. Ferreira, Heder S. Bernardino

Hongyan, X., Hong, H.: Research on job-shop scheduling problem based on Self-
Adaptation Genetic Algorithm. In: Int. Conf. Logistics Syst. and Intell. Manage.
vol. 2, pp. 940-943. IEEE (2010)

Jorapur, V., Puranik, V.S., Deshpande, A.S., Sharma, M.R.: Comparative Study of
Different Representations in Genetic Algorithms for Job Shop Scheduling Problem.
Journal of Software Engineering and Applications 07(07), 571-580 (2014)
Krempser, E., Fialho, A., Barbosa, H.: Adaptive operator selection at the hyper-
level. Parallel Problem Solving from Nature-PPSN XII pp. 378-387 (2012)

Li, Z.M., Zhang, Y., Zheng, X.D., Wan, X.Y.: Solving the Problem of General Job
Shop Problem by Using Improved Cellular Genetic Algorithm. Advanced Materials
Research 945-949, 3130-3135 (Jun 2014)

Lu, C., Gao, L., Li, X., Pan, Q., Wang, Q.: Energy-efficient permutation flow shop
scheduling problem using a hybrid multi-objective backtracking search algorithm.
Journal of Cleaner Production 144, 228-238 (Feb 2017)

Nalepa, J., Cwiek, M., Kawulok, M.: Adaptive memetic algorithm for the job shop
scheduling problem. In: Int. Joint Conf. of Neural Networks (IJCNN). pp. 1-8.
IEEE (2015)

Nawaz, M., Enscore, E.E., Ham, I.: A heuristic algorithm for the m-machine, n-job
flow-shop sequencing problem. Omega 11(1), 91-95 (1983)

Pan, Y., Zhang, W.X., Gao, T.Y., Ma, Q.Y., Xue, D.J.: An adaptive Genetic
Algorithm for the Flexible Job-shop Scheduling Problem. In: Int. Conf. of Comput.
Sci. and Automation Eng. (CSAE). vol. 4, pp. 405-409. IEEE (2011)

Pezzella, F., Morganti, G., Ciaschetti, G.: A genetic algorithm for the flexible job-
shop scheduling problem. Comput Oper Res 35(10), 3202-3212 (2008)

Ripon, K.S.N., Tsang, C.H., Kwong, S.: An Evolutionary Approach for Solving
the Multi-Objective Job-Shop Scheduling Problem. In: Evolutionary Scheduling,
vol. 49, pp. 165-195. Springer Berlin Heidelberg, Berlin, Heidelberg (2007)
Roshanaei, V., Azab, A., ElMaraghy, H.: Mathematical modelling and a meta-
heuristic for flexible job shop scheduling. Int. J. of Prod. Research 51(20), 6247—
6274 (2013)

Ruiz, R., Stiitzle, T.: A simple and effective iterated greedy algorithm for the per-
mutation flowshop scheduling problem. European Journal of Operational Research
177(3), 2033-2049 (Mar 2007)

Taillard, E.: Benchmarks for basic scheduling problems. european journal of oper-
ational research 64(2), 278-285 (1993)

Thierens, D.: An adaptive pursuit strategy for allocating operator probabilities. In:
Genetic and Evolutionary Computation Conference. pp. 1539-1546. ACM (2005)
Wang, L., Cai, J.C., Li, M.: An adaptive multi-population genetic algorithm for
job-shop scheduling problem. Advances in Manufacturing 4(2), 142-149 (Jun 2016)
Wang, L., Tang, D.b.: An improved adaptive genetic algorithm based on hormone
modulation mechanism for job-shop scheduling problem. Expert Systems with Ap-
plications 38(6), 7243-7250 (Jun 2011)

Werner, F.: Genetic algorithms for shop scheduling problems: a survey. Preprint
11, 31 (2011)

Yan, J., Wu, X.: A genetic based hyper-heuristic algorithm for the job shop schedul-
ing problem. In: Int. Conf. Intell. Human-Machine Syst. and Cybern. (IHMSC).
vol. 1, pp. 161-164. IEEE (2015)

Zuo, Y., Gong, M., Jiao, L.: Adaptive multimeme algorithm for flexible job shop
scheduling problem. Natural Computing pp. 1-22 (2016)

Calis, B., Bulkan, S.: A research survey: review of Al solution strategies of job shop
scheduling problem. J. of Intelligent Manufacturing 26(5), 961-973 (2015)



