
Techniques to solve a Multi-Mode Resource
Constrained Project Scheduling Problem with

energy saving

André Renato Villela da Silva

Institute of Science and Technology
Federal Fluminense University

arvsilva@id.uff.br

Abstract. This paper deals with a new variant of the classical Resource-
Constrained Project Scheduling Problem (RCPSP). In this variant, called
by Multi-Mode Resource-Constrained Project Scheduling Problem with
energy (MRCPSP-energy), each job has different execution modes where
duration and energy consumption are conflicting. To make a job take
less time to finish, it is necessary to spend more energy in its execution
and vice-versa. This situation happens in several mechanized operations
where the machines can operate in distinct energy saving manners.
In order to tackle this problem, a Mixed Integer Programming (MIP)
is proposed as well as some tightening constraints. For large instances,
a metaheuristic based on Ant Colony Optimization technique was tested.
The obtained results show that the formulation provided significant bounds.
The heuristic results are also competitive with other results.

Keywords: MRCPSP, energy consumption, MIP formulation, Ant Colony
Optimization, metaheuristics

1 Introduction

The Project Scheduling Problem (PSP) is a class of combinatorial optimiza-
tion problems where a project is composed of n jobs (activities) that must be
executed. Each job i has a duration di ≥ 0 and may have precedence over
job j, i.e., i must be completely executed before job j starts. One of the most
widely researched variants is the Resource-Constrained Project Scheduling Prob-
lem (RCPSP). Suppose a set K = {1, .., R} of different types of renewable re-
sources, a job i needs qik ≥ 0 units of resource k ∀(k ∈ K) per time unit during
its execution. After its finish, all allocated resources are freed and can be used
by other jobs, since these resources are renewable. The objective is to find the
optimal start times of every job so the project makespan is minimum. It is im-
portant to notice that the jobs are non-preemptive and the total amount of all
available resources is known, a priori.

Usually, the jobs and their precedence are represented by a Directed Acyclic
Graph (DAG), like in Figure 1. The numbers above the vertices indicate the

duration and the resource quantity needed by the job, respectively. By the sake
of simplicity, only one type of resource is shown. The solution makespan is equal
to 13 time units. Two artificial jobs are included representing the project start
and the project finish, when necessary. These jobs, called job 0 and job n + 1,
have duration equal to 0 and make the mathematical modeling easier.

Fig. 1. A DAG representing a project with 7 jobs and only one resource type. The
solution has makespan equal to 13 time units. The numbers above the jobs are their
duration and the resource units needed.

Another frequently researched variant is the Multi-Mode Resource-Constrained
Project Scheduling Problem (MRCPSP). In this variant, the jobs may have dif-
ferent execution modes. For each mode m, a job i has a duration dmi and a
resource requirement of qmik units of resource k. The objective is still the same
(minimize the project makespan), but now the solution must also specify which
execution mode was chosen for each job.

In [18], a variant concerning energy saving is presented. This variant was
denoted by MRCPSP-energy and addresses the situation where the jobs require
energy to start. The smaller the amount of energy applied to the job the longer it
takes to finish. So, each job has multiple execution modes under specific duration
and energy need. The objective is to minimize the project makespan and the total
energy spent simultaneously, which is conflicting.

MRCPSP-energy deals mainly with situations where jobs are machine per-
formed. Modern machines often provide some operation profiles, including energy-
saving modes. Laptops are perfect examples of that. The user can define a power
saving mode that limits the CPU speed, for example. This way, the battery will
last longer but programs will run slower. Nowadays, energy is a very impor-
tant and, sometimes, costly resource. In that way, many combinatorial opti-
mizations problems deal with minimization of energy consumption. Obviously,
MRCPSP-energy, as a PSP variant, still concerns about finishing all jobs as
soon as possible. The metric used by MRCPSP-energy is called “efficiency”,
which can be expressed by Eq. 1 to a project p. lbCPM(p) represents the min-
imum project makespan, using a Critical Path Method (CPM) and considering
the shortest duration for each job. emin(p) is the sum of necessary energy by

the minimum energy mode of every job in p. makespan(p) and etotal(p) are,
respectively, the actual makespan and total energy of project p. As the product
makespan(p) ∗ etotal(p) gets lower, the efficiency increases.

efficiency(p) = (lbCPM(p) ∗ emin(p))/(makespan(p) ∗ etotal(p)) (1)

The remainder of this work is organized as follows. Section 2 presents a
brief literature overview about the RCPSP and variants. In Section 3, a Mixed-
Integer Programming (MIP) formulation and a metaheuristic are proposed for
the MRCPSP-energy. Some computational experiments are described in Section
4. Finally, in Section 5 there are some concluding remarks.

2 Literature overview

RCPSP and variants have been studied for decades. There are some surveys that
seek to classify or give a general notation for problem models as presented in [1,
4, 10]. Since the RCPSP and MRCPSP are NP-hard [1], no efficient algorithm is
known for medium and large instances. The main approaches include construc-
tive heuristics [2, 11], metaheuristics [3, 5, 8, 9, 17], hybrid techniques [6, 20] and
exact methods [7, 14, 17, 21].

In [18], the MRCPSP-energy was proposed as well as a benchmark set of
instances, including 2040 projects with 30, 60, 90 or 120 jobs. The instances are
modified versions of the well-known PSP-library, adapted to MRCPSP-energy
input format. For these instances, a lower bound for makespan and for the total
energy spent is known. Thus, an initial lower bound for MRCPSP-energy can
be quickly computed. This bound, however, is very poor since many jobs cannot
be executed with the minimum duration and energy cost simultaneously. There
are no published algorithms to solve MRCPSP-energy, according to [16].

3 Proposed methods

The Mixed Integer Programming (MIP) is a combinatorial optimization tech-
nique where the problem is modeled by integer and binary variables which repre-
sent a solution. Some sets of constraints are imposed to these variables creating a
feasible region inside the solution space. Usually, this formulation is executed by
a kind of software, called solver, which implements several very efficient solving
methods.

Table 1 presents the proposed variables and constants. In the formulation, M
represents the available execution modes, T represents the planning horizon in
whose time units the jobs must be executed and R represents the set of resources.

Table 1. MIP variables and constants

Symbol Type Description

ym
i,t Bin. Variable Equal to 1 if job i starts at time t with mode m; 0, otherwise
am
i Bin. Variable Equal to 1 if job i is executed with mode m; 0, otherwise

etotal Int. Variable Total energy consumed
di Int. Variable Duration of job i
si Int. Variable Starting time of job i
fi Int. Variable Finishing of job i

Em
i Constant Energy needed to execute job i in mode m

Dm
i Constant Duration of job i in mode m
Cr

i Constant Amount of resources r to execute job i per time unit
Qr Constant Total of available resources r

min etotal ∗ fn+1 (2)

s.t.

M∑
m=1

T∑
t=0

ymi,t = 1 ∀i=0,..,n+1 (3)

ami =

T∑
t=0

ymi,t ∀m=1,..,M ∀i=0,..,n+1 (4)

di =

M∑
m=1

Dm
i ∗ ami ∀i=0,..,n+1 (5)

si =

M∑
m=1

T∑
t=0

t ∗ ymi,t ∀i=0,..,n+1 (6)

fi = si + di ∀i=0,..,n+1 (7)

etotal =

M∑
m=1

n+1∑
i=0

Em
i ∗ ami (8)

sj ≥ fi ∀(i,j)∈E (9)

n+1∑
i=0

M∑
m=1

t∑
t′=t−Dm

i +1

Cr
i ∗ ymi,t ≤ Qr ∀r=1,..,R ∀t=0,..,T (10)

Eq. (2) defines the objective, which is to minimize the project makespan
(fn+1) and the total energy consumed. The available solvers usually do not han-
dle well non-linear constraints or objective-functions as (1). Their performance
(in terms of computational time spent) tends to be worse with non-linearized
models, although some of them can actually solve such formulations. The pro-
posed MIP replaces (1) by Eq. (2), which is mathematically equivalent in the
optimization process. Every job must be executed once, as stated by constraints
(3). The chosen mode for each job is given by constraints (4). The duration,
starting and finishing time of each job are computed by constraints (5), (6),

(7), respectively. The total amount of energy is modeled by constraint (8). Con-
straints (9) ensure the precedence between jobs i and j. The resources constraints
are defined by (10).

Even using Eq. (2), the proposed objective-function continues to be non-
linear. As stated before, most of the commercial solvers do not receive well such
constraints, since multiplication of two or more integer variables is indeed very
difficult to optimize. In order to overcome this issue, some modifications are
suggested. First of all, fn+1 is equal to sn+1 because the artificial job n + 1 was
created only to be the last scheduled job and has duration always equal to 0.
Next, sn+1 can be replaced by

∑M
m=1

∑T
t=0 t∗ymi,t according to constraints (6). All

modes of job n+1 are equivalent, so it is possible to use anyone, e.g., mode 1. The
objective-function is now

∑T
t=0 t∗y1n+1,t∗etotal. Each parcel of this summation is a

product between a binary and an integer variable, respectively, y1n+1,t and etotal,
as well as a coefficient t. Suppose zt = y1n+1,t ∗ etotal ∀t=0,..,T . The objective

can be rewritten as min
∑T

t=0 t ∗ zt. Following, the linearized formulation is
presented, where Ē is an upper bound for etotal, i. e., the maximum energy that
could be used by a feasible solution.

min

T∑
t=0

t ∗ zt (11)

(3)− (10)

zt ≥ 0 ∀t=0,..,T (12)

zt ≤ Ē ∗ y1n+1,t ∀t=0,..,T (13)

zt ≥ Ē ∗ (y1n+1,t − 1) + etotal ∀t=0,..,T (14)

Constraints (13) bound the zt to be at most Ē. If y1n+1,t = 1, then Ē ≥ zt ≥
etotal. As MRCPSP-energy is a minimization problem, zt should be as low as
possible. On the other hand, if y1n+1,t = 0, then zt = 0. By constraints (3), there
is only one t+, representing the starting time of job n + 1, such that variable
zt+ > 0(zt+ = etotal). This way, the solution value if given by t+ ∗ etotal. The
lower the value of t+, the better the solution is.

The formulation still has a poor linear relaxation. In order to improve this
lower bound, a new set of integer variables xt ∀t=0,..,T is included. These
variables are equal to 1 if the project are ongoing at time unit t and are equal to
0, if the project has already been finished at time t. The following constraints are
not necessary to make the linearized formulation correct. However, they make it
tighter.

xt ≥ xt+1 ∀t=0,..,T−1 (15)

xt ≤
n+1∑
i=0

M∑
m=1

T∑
t′=t+1

ymi,t′ ∀t=0,..,T−1 (16)

zt ≥
n+1∑
i=0

M∑
m=1

Em
i ∗ ymi,t ∀t=0,..,T (17)

fn+1 =

T∑
t=0

xt (18)

zt ≤ Ē ∗ xt ∀t=0,..,T (19)

zt ≥ Ē ∗ (xt − 1) + etotal ∀t=0,..,T (20)

It is important to notice that, if constraints (19) and (20) replace constraints
(13) and (14), several variables zt should be equal to etotal, since xt = 1 until the
project is finished. Thus, the objective-function (11) can omit the coefficients t,
which implies in the final formulation version as follows.

min

T∑
t=0

zt (21)

s.t. (3)− (10), (12), (15)− (20)

Exacts methods, like the proposed MIP formulation, may take a very long
computational time even for medium-size instances. In order to produce good
solutions in acceptable time, an Ant Colony Optimization algorithm is proposed
(ACO) [12, 15, 19]. ACO is a bio-inspired metaheuristic, where virtual ants rep-
resents the solution generation process. In nature, some ants of a colony are
responsible for collecting food and bringing it back to the colony. Along the
path that is chosen by the ant, some pheromone is expelled by the ant and
marks the route traveled so that other ants can follow this path.

The paths that are more traveled are more likely to be used than those paths
by which few ants have passed. Because the pheromone dissipates as time passes,
shorter (better) paths retain higher amounts of pheromone. Thus, the ants adap-
tively perform intensification around a local optimal solution tending to make
it even better. Algorithm 1 presents a very simple pseudo-code of the proposed
ACO. After the initial pheromone is defined (line 1), the ACO keeps creating
ants and updating the pheromone (lines 4-10), until the stopping criterion is
met.

The most important mechanism of ACO is the pheromone management. The
MRCPSP-energy is not a routing problem, so associating a pheromone value to
each edge does not making any sense. Instead, the pheromone is associated to
each job and execution mode. Hence, if a job i and mode m is chosen by some

Algorithm 1 ACO(input: instance data)

1: InitiatePheromone()
2: bestAnt← NULL
3: while stop criterion is not met do
4: A← ReleaseAnts(nAnts)
5: for all ai ∈ A do
6: if value(ai) < value(bestAnt) then
7: bestAnt← ai

8: end if
9: end for

10: UpdatePheromone(A, bestAnt)
11: DestroyAnts(A)
12: end while
13: return bestAnt

Table 2. ACO internal parameters

Name Value Description

nAnts 300 Number of released ants at each ACO iteration
p0 20.0 The initial pheromone level on all jobs and execution modes

maxPheromone 8.0 Maximum pheromone level released by a ant(best ant)
dissipRate 0.1 Reduction (10%) of pheromone levels at each ACO iteration

ant, the pheromone level pmi is increased by the pheromone released by some
ant. All initial levels have the same value p0.

The UpdatePheromone(A, bestAnt) procedure (line 10) takes the entire pop-
ulation of ants and computes the level of pheromone phj released by each ant
j (line 4). This level is proportional to the ant’s solution value. In other words,
the worst ant of a population releases no pheromone and the best one releases
maxPheromone (internal parameter). In order to respect the job scheduling in
ant j, phj is gradually decreased until the last job is scheduled. The proposed
decreasing rate is phj/n, where n is the number of jobs. After processing all
ants, the ACO computes the pheromone dissipation. Each pheromone level pmi
is reduced by dissipRate. Table 2 summarizes the internal parameters and their
proposed values. These values were defined after preliminary test with several
distinct configurations.

4 Computational experiments

Some computational experiments were executed in order to measure the per-
formance of both mathematical formulation and metaheuristic proposed. The
PSPLIB-ENERGY [16] is a benchmark composed of projects with 30, 60, 90
and 120 jobs. There are 480 instances with 30, 60 or 90 jobs and 600 instances
with 120 jobs. These instances are divided in groups of 10 instances each. All
groups have instances with the same size.

Table 3. Main results produced by the MIP formulation. Only projects with 30 jobs.

Groups Opt Avg. Opt(s) Avg. Gap (%) Groups Opt Avg. Opt(s) Avg. Gap (%)

1-4 40 23.0 - 25-28 23 279.8 17.5
5-8 26 166.9 8.0 29-32 17 134.3 23.7
9-12 20 360.7 14.0 33-36 40 19.4 -
13-16 16 180.4 16.8 37-40 30 76.8 8.8
17-20 40 41.6 - 41-44 18 151.0 16.5
21-24 28 131.1 6.5 45-48 11 41.2 14.4

The MIP formulation was executed with CPLEX 12.7.1. Although CPLEX is
commercial software, researchers and academics can use it for free and unrestrict-
edly The proposed ACO was implemented in language C++ and compiled with
g++ 4.7.1. The computer configuration includes a processor Intel I7-3630QM,
8GB RAM and operating system Windows 8.0.

In the first experiment, the CPLEX solver executed the formulation using
all 480 instances with 30 jobs each. Exact approaches like MIP are highly time-
consuming methods. Even for small instances, they can take a very large com-
putational time. The time limit given to the optimization process was equal to
1800 seconds. Table 3 presents some results in a condensed form, by groups of in-
stances. Column “Groups” indicates the respective groups. “Opt” is the number
of optimal solutions found. Columns “Avg. Opt(s)” and “Avg. Gap(%)” indi-
cate, respectively, the total time spent in instances where the optimal solution
is known and the average gap where the optimal is unknown. This gap is the
difference between the incumbent solution and the best lower (dual) bound so
far.

The formulation had a significant performance finding 309 optimal solutions
(almost 65% of the tested instances). The average final gap is significant for some
groups (groups 29-32 and 25-28, for example), indicating that these instances
are harder, from the practical point of view. Among the instances in which
the solver was able to find the optimal solution, the computational time spent
was relatively low - approximately 2 minutes per instance. The formulation was
tested in instances with 60 jobs and time limit of 3600 seconds, but the gaps were
much larger and, in some cases, not even a single feasible solution was found.

Suppose effbase = lbCPM ∗ emin. Values of effbase are a very unreal and
unattainable bound because there is an explicit trade-off between job duration
and energy consumption. Indeed, to find good dual bounds for MRCPSP-energy
is difficult. CPLEX can help with this, by executing some preprocessing algo-
rithms. When exploring the Branch-and-Bound root node, also called “node 0”,
CPLEX computes the problem linear relaxation and generates cutting planes in
order to incorporate then to the given formulation. Such cutting planes normally
strengthen the formulation but might take a considerable time to be produced.
During this initial phase, some modifications on original constraints can also
be performed and sometimes a feasible solution might be found. Table 4 shows
some projections obtained by CPLEX preprocessing on node 0 for a subset of

instances. Columns “DB%” indicate the maximum efficiency possible after node
0. The gap between CPLEX bounds at node 0 are provided in columns “gap%”)
and the average preprocessing time (in seconds) are shown in columns “T(s)”.
CPLEX received a time limit of 1800 seconds.

Table 4. Maximum efficiency possible after processing node 0 (column “DB%”). Gap
between CPLEX bounds after node 0 (column “gap%”). Average preprocessing time
(seconds).

Group
30 jobs 60 jobs 90 jobs 120 jobs

DB% gap% T(s) DB% gap% T(s) DB% gap% T(s) DB% gap% T(s)

1 73.3 12.3 4.1 78.2 30.1 37.0 77.4 53.0 175.9 75.0 79.0 1040.8
2 75.2 4.7 3.2 81.0 4.4 11.3 83.9 6.4 27.5 80.2 63.8 555.6
3 77.8 1.6 1.7 80.8 3.6 9.2 83.9 1.5 13.7 85.6 35.0 191.3
4 77.1 0.0 1.4 84.1 0.4 3.3 84.5 0.4 6.2 84.6 25.9 163.8
5 67.7 57.2 22.6 72.1 92.4 197.5 76.6 101.4 353.8 85.5 15.2 76.3
6 73.5 19.6 9.0 78.6 30.7 26.7 82.5 33.6 86.2 82.8 - 1800.0
7 74.3 6.7 3.9 81.3 4.2 13.2 84.0 5.3 25.1 77.3 - 984.9
8 77.9 0.3 1.3 80.4 0.6 5.7 85.1 0.3 8.2 79.6 87.3 579.0
9 62.9 76.3 63.4 66.5 102.7 467.3 63.8 - 1161.6 82.4 56.4 233.5
10 75.0 26.5 14.2 80.4 35.8 43.9 84.1 34.1 131.9 84.7 40.8 206.8
11 75.0 11.1 8.4 81.1 10.2 19.6 82.7 14.8 52.6 77.2 - 1800.0
12 77.5 1.0 3.1 81.5 0.2 5.7 83.8 0.0 9.4 65.7 - 1628.0
13 56.8 74.8 78.3 52.4 87.8 961.5 56.4 - 1800.0 73.6 110.4 989.1
14 72.6 33.8 14.2 76.4 39.7 56.3 82.7 36.9 181.3 78.8 71.9 675.6
15 79.1 13.8 8.5 83.1 13.6 22.3 83.6 15.8 54.9 84.5 43.3 256.3
16 78.1 0.3 2.0 79.5 0.5 6.7 81.0 1.6 18.0 97.5 - 1800.0
17 70.8 13.5 6.3 76.7 29.1 43.0 79.1 43.8 188.2 55.2 - 1800.0
18 73.0 6.7 4.0 81.1 6.4 16.0 82.7 7.8 26.1 64.9 77.8 1611.8

The computational time required by the preprocessing phase was relatively
small, except for some groups of 90 and 120 jobs, which exceeded 1000 seconds. In
14 instances, the preprocessing was aborted due to time limit without producing
a valid bound. In some cases, the gap was so small that the optimization could
finish exactly at node 0. The CPLEX preprocessing found 45, 38, 37 optimal
solutions in sets with 30, 60 and 90 jobs, respectively. These results would be
remarkable if there are not so many groups with very large gaps. Some gaps are
larger than 100%, which indicates that the optimization could take too much
time to finish.

Since the mathematical formulation lacks performance as the instances be-
come bigger. In the second experiment, the algorithm ACO was applied on all
instances using the parameters value in Table 2 and a time limit of 20, 40, 80
and 160 seconds for projects with 30, 60, 90 and 120 jobs, respectively. ACO is
a stochastic method, so 20 independent executions were done. The ACO param-
eter calibration was performed with a set of 50 randomly chosen instances. The
parameters values tested were: nAnts=100, 200 or 300; p0=10.0, 20.0 or 50.0;

maxPheromone=2.0, 4.0, 8.0 or 16.0; dissipRate=0.1, 0.2 or 0.3. Table 5 clas-
sifies the best solution found by its relative difference with the CPLEX bounds.
Column “Gap DB(%)” indicates the average distance to that dual bound. Col-
umn “Improv.” shows how many times the ACO produced a better solution
than CPLEX. The average distance to CPLEX final incumbent solution is also
showed in the last column.

Table 5. Comparisons between ACO solution and CPLEX bounds through relative
difference intervals. Only projects with 30 jobs.

Relative distance to the dual CPLEX bound Incumbent Solution

Groups 0% (0%,2%] (2%,5%] (5%,10%] (10%,∞) Gap DB% Improv. Gap Sol.%

1-4 12 17 10 1 0 1.2 0 1.2
5-8 6 13 8 7 6 4.6 2 1.7
9-12 1 11 10 5 13 8.5 4 1.5
13-16 4 8 6 9 13 10.4 8 0.8
17-20 14 20 6 0 0 0.8 0 0.8
21-24 8 10 12 6 4 3.7 1 1.7
25-28 6 6 12 6 10 8.5 8 1.1
29-32 4 10 3 5 18 12.8 9 -0.2
33-36 17 21 2 0 0 0.5 0 0.5
37-40 14 16 3 3 4 2.8 2 0.6
41-44 6 6 10 7 11 9.3 8 0.4
45-48 5 8 5 8 14 12.1 6 0.5
Total 97 146 87 57 93 - 48 -

Most of the ACO solutions (330 solutions, 97 of them are optimal ones) are up
to 5% worse than CPLEX dual bound. Groups 13-16, 29-32 and 45-48 have the
hardest instances, where the CPLEX dual bound was almost not improved and
the ACO solution were relatively distant from that bound. This result does not
indicate that ACO provided poor solutions to those sets of instances. Actually,
in such instances, the ACO found 48 solutions better than CPLEX incumbent
solution. In groups 29-32, the ACO solutions (time limit of 20 seconds) were
0.2% better than CPLEX incumbent solution (time limit of 1800 seconds), on
average. In such instances, the MIP formulation had a worse performance.

Finally, in Table 6, the average efficiency achieved by ACO is compared
to some data provided by PSPLIB-energy [16]. The PSPLIB-energy gives the
average results of all instances with the same size. Besides that, no further infor-
mation is given about stopping criteria or computational environment used to
obtain those results. Although a deeper comparison is not possible, the average
efficiency obtained by ACO is competitive to PSPLIB-energy data (approxi-
mately, 2% better).

Table 6. Average efficiency of ACO and literature data (higher values are better).

Jobs 30 60 90 120

ACO 64.95 66.66 67.57 51.82
Library 62.93 64.24 64.78 50.32

5 Concluding remarks

This paper dealt with a new variant of the classical RCPSP. In this variant,
called MRCPSP-energy, each job has different execution modes where duration
and energy consumption are conflicting. This trade-off is reflected on the problem
objective, which is maximizing the total project efficiency. In other words, it is
necessary to reduce the project makespan while decreasing the total energy spent
simultaneously.

Since there are no specific methods for MRCPSP-energy in the literature, a
Mixed Integer Programming formulation and an Ant Colony Optimization meta-
heuristic were proposed. The exact approach was only used in small instances,
but provided significant results. CPLEX gaps were not too large, albeit for some
instances the optimization struggled. The proposed ACO found competitive so-
lutions compared to CPLEX bounds and to the few available solution data in
the literature.

As future works, a local search method could improve even more the ACO
performance. The creation of other tightening constraints may diminish the gap
achieved by the MIP formulation.

References

1. J. Blazewicz, J. Lenstra, A. Rinnooy Kan Scheduling subject to resource constraints:
Classification and complexity. Discrete Applied Mathematics, 5:11–24, 1983.

2. F.F. Boctor. Some efficient multi-heuristic procedures for resource constrained
project scheduling. European Journal of Operational Research, 49:3–13,1990.

3. K. Bouleimen and H. Lecocq A new efficient simulated annealing algorithm for
the resource-constrained project scheduling problem and its multiple mode version.
European Journal of Operational Research, 149:268–281,2003.

4. P. Brucker, A. Drexl, R. Möhring, K. Neumann, E. Pesch Resource-constrained
project scheduling: Notation, classification, models, and methods. European Journal
of Operational Research, 112:3–41, 1999.

5. N. Damaka, B. Jarbouia, P. Siarryb, T.Loukila. Differential evolution for solving
multi-mode resource-constrained project scheduling problems. Computers & Opera-
tions Research, 36:2653–2659,2009.

6. D. Debels, B. De Reyck, R. Leus, M. Vanhoucke. A hybrid scatter
searchelectromagnetism metaheuristic for project scheduling. European Journal of
Operational Research, 169:638–653,2006.

7. E. Demeulemeester, W. Herroelen. A branch-and-bound procedure for multiple
resource-constrained project scheduling problem. Management Science, 38:1803–
1818, 1992.

8. A.M. Fahmy, T.M. Hassan, H. Bassioni Improving RCPSP solutions quality with
Stacking Justification – Application with particle swarm optimization. Expert Sys-
tems with Applications, 41(1), 5870–5881, 2014.

9. J.F. Gonçalves, J.J.M. Mendes, M.G.C. Resende A random key based genetic algo-
rithm for the resource constrained project scheduling problems. International Journal
of Production Research, 36:92–109, 2009.

10. S. Hartmann, D. Briskorn. A survey of variants and extensions of the resource-
constrained project scheduling problem. European Journal of Operational Research,
207(1), 1–14, 2010.

11. R. Kolisch. Efficient priority rules for the resource-constrained project scheduling
problem. Journal of Operations Management ,14:179–192, 1996.

12. T. Liao, T. Stützle, M. A. Montes de Oca, M. Dorigo. A unified ant colony op-
timization algorithm for continuous optimization. European Journal of Operational
Research, 234(3):597–609, 2014.

13. S. Liu, C. Wang Resource-constrained construction project scheduling model for
profit maximization considering cash flow. Automation in Construction, 17:966–
974,2008.

14. A. Mingozi, V. Maniezzo, S. Ricciardelli, L. Bianco. An exact algorithm for project
scheduling with resource constraints based on a new mathematical formulation. Man-
agement Science, 44:714–729, 1998.

15. P. B. Myszkowski, M. E. Skowroński, L P. Olech, K.Ośliz lo”, Hybrid ant colony
optimization in solving multi-skill resource-constrained project scheduling problem.
Soft Computing, 19(12):3599–3619,2015.

16. D. Morillo PSPLIB-ENERGY: a PSPLIB extension for evaluating energy opti-
mization in MRCPSP. http://gps.webs.upv.es/psplib-energy/, last access on July,
25th, 2017.

17. K. Nonobe, T. Ibaraki. Formulation and Tabu search algorithm for the resource
constrained project scheduling problem (RCPSP). In: Ribeiro, C.C., Hansen, P.
(Eds.), Essays and Surveys in Metaheuristics. Operations ResearchComputer Science
Interfaces Series, Kluwer Academic Publishers 15, 557–588, 2002.

18. D. M. Torres, F. Barber, M. A. Salido MRCPSP-ENERGY, un enfoque meta-
heuŕıstico para problemas de programación de actividades basados en el uso de en-
erǵıa. Proceedings of XVIII Latin Ibero-American Conference on Operations Research
(CLAIO XVIII), SantiagoChile, October, 2016.

19. L-Y Tseng, S-C Chen A hybrid metaheuristic for the resource-constrained project
scheduling problem. European Journal of Operational Research, 175(2):707–721,2006.

20. V. Valls, F. Ballestin, M.S. Quintanilla. A hybrid genetic algorithm for the
resource-constrained project scheduling problem. European Journal of Operational
Research, 185(2), 495–508, 2008;

21. G. Zhu, J. Bard, G. Tu A branch-and-cut procedure for the multimode
resource-constrained project-scheduling problem”, Journal on Computing, 18(3):377–
390,2006.

