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Abstract. Derivative-free methods are being explored recently due to
the increased complexity of the models used in the optimization prob-
lems, and the impossibility/inconvenience of using derivatives in sev-
eral situations. However, those methods show some limitations due to
their low convergence rate, and when the problem is high-dimensional.
Metaheuristics are another commonly adopted type of search technique.
Despite their robustness, metaheuristics require a large number of objec-
tive function evaluations to find an accurate solution. The combination of
derivative-free optimization methods with population-based metaheuris-
tics is analyzed here. Specifically, Particle Swarm Optimization and Dif-
ferential Evolution are hybridized with Pattern Search technique. Also,
an improvement of the conventional pattern search is proposed. Finally,
computational experiments are performed to comparatively analyze the
hybrid methods and the proposed pattern search.
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1 Introduction

In Engineering, Economics, and Sciences, bound-constrained optimization prob-
lems with continuous variables arise where the use of derivatives is often avoided
due to imprecision in their calculation or due to lack of access, as in the so-
called black-box problems, where a simulator is required to compute the objec-
tive function and/or to check the constraints. Furthermore, such problems may
require evaluations with high computational cost. These features make the use
of numerical approximations for the derivatives, which employ finite difference,
unattractive due to the high computational cost required, besides the potential
noise in the objective function or constraints of the problem. These difficulties led
to the use of an appropriate class of methods: the Derivative-Free Optimization
(DFO) methods.

Since the 60s, the demand of problems motivated the creation of DFO meth-
ods which, until the 90s, did not have much theory associated with convergence
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rates. Nowadays, as seen in [14], the emphasis is in understanding the existing
methods, with interest in their global convergence. The interest in these meth-
ods has grown as they are relatively easy to implement and to parallelize, and
have wide applicability. They can be applied in engineering design optimization
problems where each objective function evaluation can require minutes or days
of CPU time. One can find a dense study of these methods in [5], including
convergence analysis and some practical applications.

Among the DFO methods, one can cite the Direct Search methods which
utilize only the objective function values in order to achieve convergence to a
local optimum. More details regarding the Direct Search methods can be found
in [11], such as a historical summary, new techniques, and constraint handling
approaches. A Pattern Search method is also described by [11] and it consists
in a technique that operates with exploratory moves, besides having a flexible
structure that allows for the combination with other heuristics.

Although providing a wide applicability, the DFO methods have relatively
slow convergence and do not achieve good results for high dimensions, when
compared to derivative-based methods. One can expect success for DFO methods
in problems with no more than a hundred variables and (i) which have a function
evaluation with a high processing cost and (ii) where a high convergence rate is
not the first goal. Some works try to improve the efficiency and the robustness
of DFO methods. For instance, a simplex gradient is applied with pattern search
methods in [6], and a particle swarm optimization technique is combined with a
pattern search in [16].

On the other hand, one has the metaheuristics; they are popular due to their
robustness, but in general require a high computational cost to obtain accurate
results. Among them, one can cite the particle swarm optimization (PSO) [10],
which is a population-based method inspired by the collective experience, and
differential evolution (DE) [15], in which the movement operators are based on
differences between vectors. One way to improve the results of metaheuristics is
combining them with other heuristics. This process is known as hybridization [4],
in which approaches are combined aiming to generate more efficient methods. For
instance, a populated-based metaheuristc can be combined with a local search
method to obtain a hybrid procedure able to find promising areas in the search
space and capable of finding good results with a smaller number of objective
function evaluations.

The proposal of this work is to combine PSO with Pattern Search, and DE
with Pattern Search. The main idea is to reach an improved performance when
solving continuous bound-constrained optimization problems. Also, a modifica-
tion in the pattern search is proposed here in order to decrease the number of
objective function evaluations. Computational experiments with problems often
used in the literature are conducted in order to analyze the relative performance
of the proposed techniques.
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2 Pattern Search

Pattern search methods are directional direct search methods which use ex-
ploratory moves and a set of directions with appropriate features to guide the
exploration of the neighborhood of a point in the search space. This set of di-
rections must include at least one direction of descent over the iterations of the
pattern search. To satisfy this condition a positive spanning or a positive base
can be used, as seen in [12].

As presented in [2], the general structure of a pattern search method considers
two steps: the search step and the poll step. Its general scheme is presented in
the Algorithm 1. In the search step, for an iteration k, an objective function f,
and x;_1 the best point obtained in the iteration k — 1, a finite set of points of
the search space is evaluated in order to find a point x such that f(z) < f(zx_1).
In a positive case, xx <+ x and a new iteration is executed. The procedure to
execute this step is not specified: any external heuristic can be executed in this
step. This feature makes the pattern search methods very flexible.

In case of no success in the search step, the poll step is started, where a
series of exploratory moves about the current best point ;1 will be conducted.
Those moves can be seen as a sampling of points in the neighborhood of z_1,
in order to improve it. A set GG of appropriate directions, a step-size aj_1, and
a set P, = {zr_1 + ad} such that d € G are considered. Thus, if there is a point
x € Py such that f(x) < f(zr—1), then xy + x; otherwise, xp < zr_1.

In the end, the iteration can be classified as successful or unsuccessful. If
x is found such that f(z) < f(zr—1) in the search step or in the poll step,
the iteration will be successful, and ap = ~vyag_1, for v > 1. If there is no
improvement of the current best point in both steps, then the iteration will be
unsuccessful and oy = Bag_1, for § < 1.

An application of the pattern search method to a class of molecular geometry
problems can be found in [1]. In [6] the use of simplex derivatives is proposed
to increase the efficiency of the pattern search methods. Also considering the
pattern search methods flexibility, a combination of the Particle Swarm Opti-
mization (PSO) meta-heuristic with a pattern search method is proposed in [16].

3 Adapted Pattern Search

As seen in the Algorithm 1, the pattern search has two steps: the search step and
the poll step. In the poll step, a set of directions with appropriate features is used,
more specifically positive spanning or a positive base, to execute exploratory
moves in the neighborhood of a point in an attempt to find a direction of descent.
When running such exploratory moves, it is required to evaluate the objective
function in the points of the neighborhood obtained via the set of directions, in
order to compare the quality of the current point and the neighborhood points.

The search of a direct of descent can be made by opportunistic or non-
opportunistic way. In the opportunistic approach, when a direct of descent
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Algorithm 1: Generalized Pattern Search
Data: xp, o, 7> 1,0 < 8 < 1. Let GG a set of directions.

1 Let k < 0;
2 while stop criteria false do
3 k< k+1,
4 xy, < Search Step(xr_1);
5 if £ = xr_1 then
6 Py, < Build the Neighborhood(xk—1, ax—1, G);
7 for y € P, do
8 if f(y) < f(zk—1) then
9 T < Y,
10 A < YAk—1;
11 else
12 ‘ o — Pog_1;
13 end if
14 end for
15 else
16 | ak + yor_1;
17 end if

18 end while

is found, the evaluation process of the neighborhood is finalized. The non-
opportunistic all points of the neighborhood is evaluated, which can be com-
putationally expensive.

As seen in [5], the maximal cardinality of a positive base is 2n, where n is the
problem size. In this way, when the cardinality of the set of directions is maximal
and all directions are evaluated, we have the worst case scenario in terms of
iteration cost. It is noted that even in the opportunistic approach, if there was
no success in any direction or even if there was success in the last evaluated
direction, each access to the poll step can lead to 2n function evaluations. Thus,
there may be waste of computational resources.

To decrease the number of objective function evaluations in the Pattern
Search, the last coordinate in which success was obtained is memorized and,
in the next execution of the poll step, the search begins with the next coor-
dinate. This is expected to reduce the occurrence of the worst case mentioned
above in the neighborhood exploration process with opportunistic approach.

The procedure proposed for the adapted pattern search is illustrated in the
Figure 1. As illustrated, in some iteration k the process of poll step starts eval-
uating the direction dy, in green, and then the next ones will be evaluated until
a direction of descent d,,_o, in pink, is found. Thus, the direction d,_o is mem-
orized and in the next iteration k + 1 of the poll step, the first direction to be
evaluated will be d,,_1 instead di, as is made in conventional pattern search.
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Fig. 1. Procedure of adapted pattern search

4 Differential Evolution

Differential Evolution (DE) [15] is a simple stochastic population-based algo-
rithm which emerged as a very competitive evolutionary algorithm for contin-
uous optimization [7]. Its basic proposal is to evolve a population where each
individual is subject to mutation, crossover, and selection. In the DE, each in-
dividual @; in the population is a candidate solution, represented by a position
in the search space, ®; = [z;1,%i2,...,%in), where ¢ € {1,...,N}, N is the
population size, and n is the problem dimension.

DE’s mutation process creates perturbations given by weighted differences
between two individuals in the current population. In its simplest form, a mu-
tated individual v; is generated by:

v, = Xy, + F(Tr, — Tpy). (1)

where v; is the mutated individual, ry # 7o # r3 # i are indexes of individuals
randomly selected in {1,..., N}, F is the weighting factor, and i € {1,...,n}.

The weighting factor in the Equation 1 is the parameter which controls the
the size of the perturbation defined by the difference vector (x,, — @,,). Thus,
the weighting factor should be small enough to allow for exploitation but large
enough to maintain the diversity of the population and the global exploration.
It is common to use F' € [0.4, 1], as seen in [7].

The crossover process aims at increasing the diversity of the mutated individ-
uals. The two most often used kinds of crossover methods are: the exponential
crossover and the binomial crossover. In this work we adopted the binomial
crossover. Thus, new individuals, the trial individuals, are created such that:

_Jwv; ifr; <CR
u’_{mi if r; > CR @

where wu; is a trial individual, v; is a mutated individual, x; is an individual
of the current population, r; is a number drawn from a uniform distribution in
(0,1), CR is a parameter defined in [0,1], and ¢ € {1,...,n}.
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The parameter C'R is the crossover rate and represents the probability of the
new individual to be more similar to the individual of the current population or
with the mutated individual. If the value of CR is close to 1 the trial individual
will be more similar to the mutated individual.

Finally, to construct the new population for the next generation, the selection
process preserves the best individuals between the current ones and the trial
individuals by means of a greedy criterion given by:

xE—H _ {Z if f(ub < f(mzzs) (3)

otherwise
After the presentation of the main operations of the Differential Evolution
method, its basic structure is described in the Algorithm 2.

S

Algorithm 2: Differential Evolution
Data: F, CR, N

1 Initialize the individuals population x1,x2,...,TN;
2 Let & the best individual of the population;
3 while stop criteria false do
4 fori=1,...,N do
5 v; + Mutation(x;, F);
6 u; < Crossover(v;, x;, CR);
7 end for
8 fori=1,...,N do
9 if f(us) < f(x;) then
10 T; < Uj,
11 if f(x:) < f(&) then
12 | &<y
13 end if
14 end if
15 end for

16 end while
17 return z;

Actually, there are different kinds of DE, depending on the mutation and
the crossover approaches utilized. The simplest DE form is referred to in the
literature as DE/rand/1/bin and uses the mutation in Equation 1 and the bi-
nomial crossover in Equation 2. The terminology usually adopted is DE/x/y/z,
where x represents the base vector to be perturbed in the mutation, y is the
number of difference vectors of perturbation in the mutation, and z denotes the
type of crossover used, usually the exponential crossover (denoted by “exp”)
or the binomial crossover (“bin”). The DE variants used in this work are the
DE/rand/1/bin, DE/best/1/bin, and DE/target-to-best/1/bin, all with a bino-
mial crossover, and defined in Equations 1, 4, and 5, respectively.

(DE/best/1/bin) v} =}, + F(x}, —at,) (4)

4,71 1,72
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(DE/target-to-best/1/bin) 0! =zt + F(x}. — 2) + F(zk, —2t,.) (5)

1,71 1,72
When the problem has bound-constraints, those are enforced by simply pro-
jecting the violated component into the feasible range: the closest bound value
is assigned to the violated design variable value.

5 Particle Swarm Optimization

The particle swarm optimization (PSO) [10], is a stochastic population-based
metaheuristic which handles continuous problems and is inspired by collective
intelligence mechanisms and by the social behavior of groups of animals, such as
birds and fishes. Its basic idea is to graphically simulate the choreography of the
group, and the sharing of information and knowledge in the food search process.

In this model, the birds are considered as particles and each represents a
candidate solution in the search space. Thus, each particle of the population is
associated with a triple (x, v, x*), which corresponds to the current position of
the particle, its velocity, and the best position visited by the particle, respectively.

Denoting the population size by N, while some stop criterion is not achieved,
the velocity () and the position (z) of each particle are updated by:

V; = 5Vz' + nwlz(x;" — l‘z) + 1/1(4)21(.’,31 — ZZZ7) (6)

T = x; + Vs (7

where Z is the best global particle, § is the inertia factor of the particle, n > 0

is a learning factor, ¥» > 0 is a social factor, wy; and wsy; are random numbers
uniformly distributed in (0, 1).

The basic structure of the PSO is described in the Algorithm 3. For each
particle, one checks if the new position is better than the current one; if so,
the best point is updated, and it is compared with the best global point. The
iterations have success when the best global point is improved.

A technique to calculate the inertia factor is to initialize it with a relatively
high value and then decrease it gradually to a smaller value. This because the
inertia factor can be seen as an environment fluidity of the medium where the
particles move. For high fluidity values the environment is less viscous, thus
allowing for more exploration. For low values, the environment viscosity is high
and the search is more focused, thus increasing exploitation.

Although both metaheuristics calculate differences in their movement oper-
ators, as seen in equations 1 and 6, one can notice that DE uses differences
between vectors while PSO subtracts vector components independently.

When the problem has bound-constraints, those are often handled by pro-
jection, as explained for the DE case.

6 The Proposed Hybrid Techniques

The hybrid techniques proposed here consist in the combination of Differential
Evolution with Pattern Search and of Particle Swarm Optimization with Pattern
Search. Also, the metaheuristics are combined with the adapted Pattern Search.
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Algorithm 3: Particle Swarm Optimization

Data: §, n, ¢, N
1 Initialize the particle population xi,...,xN;
2 Initialize the velocities v1,...,vnN;

3 Let & the best global position;

4 while stop criteria false do

5 fori=1,...,N do
6
7
8
9

for j=1,...,D do
vij = vij + nwij (i — mij) + pws; (255 — wij);
Tij = Tij + Vij3

end for
10 if f(x;) < f(x}) then
11 T; — xj;
12 if f(x;) < f(&) then
13 | &
14 end if
15 end if
16 end for

17 end while

The general structure of the hybrid DE method consists, for each iteration,
in executing the DE algorithm and verifying if some individual is better than
the current best individual. In that is the case, the best individual is updated,
the poll step of the pattern search is not executed and the iteration is success-
ful; otherwise, the poll step of pattern search is performed on the current best
individual of the population, and the iteration is unsuccessful.

In the same way, the general structure of the hybrid PSO method consists
in executing the PSO algorithm and verifying if some particle is better than the
current best particle. If the iteration is successful, the best particle is updated
and the poll step of the pattern search is not executed; otherwise, the poll step
of the pattern search is performed on the current best particle.

Figure 2 presents a flowchart shared by both (DE and PSO) proposed hy-
brids. The central block contains the particular operational details of each meta-
heuristic, where for the hybrid DE the individuals will be subject to mutation,
crossover, and selection operators, and for the hybrid PSO the particles will have
their velocities and positions updated.

7 Computational Experiments

Computational experiments were conducted to comparatively evaluate the per-
formance of the proposed techniques. We used a benchmark composed by 100
bound-constrained optimization problems implemented in AMPL [9], which were
obtained from a collection of problems from [16]. For the comparisons of the ob-
tained results, Performance Profiles [8] were used, with the average objective
function value as the performance measure.
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Fig. 2. Flowchart of the proposed hybridization of the metaheuristics and Pattern
Search.

The maximum number of objective function evaluations was equal to 2000
and 30 independent runs were performed for each technique in each test-problem.
The results found by the proposed approaches are compared to those obtained
by PSwarm [16], an implementation of PSO with a Pattern Search.

The proposed techniques and their respective labels adopted are as follows:
(i) PSO is the Particle Swarm Optimization method, (ii) PSO+PS is PSO with
the Pattern Search, (iii) DE1, DE2 and DE3 are the corresponding DE variants
DE/best/1/bin, DE/rand/1/bin and DE/target-to-best/1/bin, (iv) DE1+PS,
DE2+PS, and DE3+PS are the DE methods with the Pattern Search. The label
PSWARM makes reference to PSwarm of [16]; the PSOPS*, DE1PS*, DE2PS*,
DE3PS* and PSWARM* have the adapted Pattern Search.

The parameters used in the performed experiments were obtained from the
automatic parameter tuning tool irace [13], using the problems from [16] and
allowing 2000 function evaluations. The standard PSO used n = 0.3815, ¢ =
0.3727 and the weight § was calculated by §(¢) = 6; — (67)(t/tmas), Where §; =
0.8314, 6 = 0.3165, t is the function evaluation counter and t,,q, is the function
evaluations maximum amount allowed. For the the DE variants the parameters
are shown in the Table 1. The Pattern Search parameters are the same as those
defined in [16], with v = 2.0 for the expansion factor and § = 0.5 for the
decreasing factor.

7.1 Results

The results found in the computational experiments are shown in the Figures
3 and 4 presenting performance profiles of the most efficient techniques studied
and proposed.
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Variants F |[CR|N
DE/rand/1 0.66(0.79(10
DE/best/1 0.55(0.93|32
DE/target-to-best|0.80(0.83|11
Table 1. Parameters for the DE variants.

Initially, to detect the best performing techniques, a preliminary study of the
results using the area under the curve p(7), as in [3], was made.

The Figure 3 shows the performance profile plots considering all problems.
From this figure one can conclude that the PSWARM technique has the best
performance (largest p(1)) with respect to the other techniques, obtaining the
best solutions in 66% of the problems. Also, one can notice that the use of
the adapted pattern search improves the performance of the PSO and the DE
with respect to their variants with the original pattern search. Moreover, the
metaheuristics with pattern search and adapted pattern search are more efficient
than the original metaheuristics.

The Figure 4 shows the performance profile plots considering the problems
with dimension greater than 10. This figure shows that PSWARM* obtained the
best performance (largest p(1)), being the top performer in 43% of the problems.
Moreover, PSWARM* is the most robust method, and its performance remains
higher than the performances of the other methods. One can notice that the
performance curve of PSWARM* does not appear in the Figure 3 because it
has the third lowest area under the curve value and, hence, was classified as less
efficient than the others for all problems, as seen in [3]. Thus, the proposed pat-
tern search improved the performance and robustness of PSWARM for problems
with dimension greater than 10, although for the remaining problems - with low
dimensions - the proposed pattern search did not work very well.

8 Concluding Remarks and Future Works

The hybridization of a Pattern Search with (i) Particle Swarm Optimization and
(ii) Differential Evolution is proposed here. Also, an improvement of the original
Pattern Search procedure is presented.

From the analysis of the results obtained in the computational experiments, it
is possible to conclude that the performance of hybrid metaheuristics is very com-
petitive with respect to the studied metaheuristics performance. Moreover the
use of the adapted pattern search improves the performance of the metaheuris-
tics with original pattern search, indicating that to avoid of many accumulated
function evaluations at one stage of the search may result in good responses.
Also, the PSwarm with the adapted pattern search proposed here improves the
performance of the original PSwarm for problems with dimension larger than
10, but the original PSwarm leads to the best performance for all problems.
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Fig. 3. Performance profiles - All techniques, 100 problems. Figure (a) shows the per-
formance profiles for 7 € [1,1.03]; (b) shows, in logarithmic scale, the performance
profiles for 7 € [1.03, 500].
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Fig. 4. Performance profiles - All techniques, 26 problems with dimension greater than
10. Figure (a) shows the performance profiles for 7 € [1,1.03]; (b) shows, in logarithmic
scale, the performance profiles for 7 € [1.03,100].
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As future work, we plan to continue the investigation of new combinations,

studying both metaheuristcs and other derivative-free techniques, as well as their
application to practical problems, such as those found in structural optimization.
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