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Abstract. Bilevel optimization problems rise great interest, given their
ability to model hierarchical decision structures. However, the challenges
in their solution require the development of appropriate computational
techniques. This work aims at a class of bilevel problems where the ob-
jective function of the follower agent is linear or quadratic in the follower
variables. Using the Karush-Kuhn-Tucker conditions, the follower level
is solved as a linear complementarity problem, giving rise to a nested
approach. The follower response is obtained by Lemke’s algorithm, while
the leader level is handled by the differential evolution metaheuristic.
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1 Introduction

The bilevel programming problem (BLPP) is a variation of the general optimiza-
tion problem. It includes some characteristics of bi-matrix games, and provides
an interesting way to model a large variety of problems including defensive plan-
ning [8], facilities location [7], optimal pricing strategy [11], among others.

Due to their various applications, the solution of bilevel programming prob-
lems is of great practical relevance. A BLPP can be characterized as an optimiza-
tion problem which has another optimization problem included in its constraints.
Each one of these optimization problems has its own variables, objectives, and
constraints. This formulation gives rise to a hierarchical structure where in the
upper level an agent (also called the leader) makes its choices while in the lower
(inner) level another agent (also called the follower) responds taking into account
the leader decision and its own interests. Then, for each leader decision a new
optimization problem has to be solved. In fact, the BLPP is NP-Hard [10].

Considering these challenges, a first possibility is to use the Karush-Kuhn-
Tucker (KKT) conditions so that the lower level is eliminated transforming the
BLPP into a single-level optimization problem. Then, standard techniques can
be used, but difficult complementarity constraints are added to the problem [6].

In recent years, metaheuristics became popular in the BLPP context. The
most natural way to implement these techniques is through a nested algorithm,
where each level is solved using a specific approach. Some proposals employ
metaheuristics in both levels [3] while others use a mathematical framework to
solve one of them [13].
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Due to the large cost for solving multiple optimization problems in the BLPP,
the idea of using an approximate solution for the follower level, by means of
a metaheuristic or even metamodels, for example, can save valuable resources
[3,22]. However, this gives rise to a major risk when the follower level is not
solved correctly, which can lead to a deceptive solution, where the leader value
is actually lower (thus seems better) than the real minimum [2]. In another
alternative for the nested approach, one can combine the good performance and
convergence properties of a given mathematical method with the great generality
of a metaheuristic. Some works along this line are [13,14].

Another major issue occurs when the follower objective function has multiple
minima. In this case, the problem lies in defining the follower response in view
of the multiple possibilities and chance of multiple values in the leader func-
tion for these responses. A common way to deal with this issue is by means of
optimistic/pessimistic strategies: in the optimistic strategy the leader assumes
that the follower will respond with the best option for the leader, while in the
pessimistic strategy the leader assumes the opposite: the follower will respond
with the worst solution for the leader objective. The decision of what strategy
should be used depends on the context.

Here, the class of BLPPs where the follower level is linear or quadratic in
the follower variables, and only linear constraints are present in this level is con-
sidered. Then, a nested approach, referred to here as DE4+LEMKE, is proposed
where the upper level is solved by the differential evolution (DE) metaheurisc
and the lower level is solved by Lemke’s method applied to the resulting linear
complementarity problem (LCP).

Lemke’s method has already been used, combined with a genetic algorithm,
in [13], reaching good results in a smaller set of small instances with no ma-
jor challenges. As a result, a direct comparison between [13] and the proposed
DE+LEMKE technique is not performed here, due to the facts that (i) even for
the same amount of resources the instances considered in [13] are not sufficient
to provide a good comparison between them that would allow for sound and
generalizable conclusions, and (ii) there are no results in [13] concerning the cost
of Lemke’s method.

Besides, although the DE+LEMKE may look similar to the technique pro-
posed in [13], this last work is limited to those cases where for each leader con-
figuration it is always possible to find a follower response, and no mechanisms
are provided to treat the cases when this assumption is false, that is, when there
are leader choices without a possible response for the follower level. Another
issue is that [13] just shows a superficial analysis for Lemke’s model associated
with bilevel programming, without including any consideration on the cost of
Lemke’s method, which is another contribution given here.

The paper is organized as follows: Section II presents the mathematical for-
mulation used for the class of BLPPs considered; Section III describes the pro-
posed approach (DE4+LEMKE); Section IV presents the computational results
obtained, and Section V concludes the paper with some possible future works.
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2 Mathematical Formulation

The formulation of the class of BLPPs considered here reads:
min, F(z,y)
s.t. G(z,y) <0

min, f(z,y
s.t. A(

) = LyTQ(e)y + c(z)Ty + d(z) e
x)y +b(x) <0

where x € R™ | y € R™2. F(z,y) : R" —» R and f(z,y) : R* > R, n =ny +ne
are the upper and lower level optimization functions, G(z,y) : £ — R™® are
the upper level constraints, Q(x) € R™2*"2 is a symmetric matrix determined
by the leader configuration, ¢(x) € R"2 and d(z) € R are the linear and constant
terms in the quadratic function, A(z) € R™2*"2 and b(x) € R are the linear
constraint terms induced by the leader configuration.

As in the follower level one has a quadratic (in the follower variables) opti-
mization problem, it can then be replaced by the corresponding KKT optimality
conditions leading to

minm,y,)\ F(Ia y)

s.t. G(z,y) <0
Q(z)y + A(x)TN\; + c(x) =0 9
A(z)y + ) +u=0 (2)
/\iui =0
A>0,u>0

For the formulation proposed, the follower constraints are convex for every
leader configuration. The follower function may be convex if the Q(x) matrix
is, at least, positive semi-definite. In addition, if the follower function is strictly
convex the KKT conditions have one, and just one, solution.

Adding a non-negativity condition for the follower variable, the KKT condi-
tions can be written as an LCP

w—Mz=q w,z>20 wiz;=0 Vi (3)

and the original bilevel problem is transformed into a single-level optimization
problem with an LCP among its constraints:

ming .\ F(z,y)

s.t. G(z,y) <0
N —(Q(z)y + A(x)T X)) = c(z) (@)
u— (—A(x)y +0X)) = —b(x
)\;ui = 0, )\;ij =0
NN u,y >0

where

w=(3) = ()= (40 )= ()
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In this way, solving the LCP for some leader configuration is equivalent to
finding a KKT point for the above system. In addition, if this point is unique it
is also the minimal global solution for the follower minimization problem.

An immediate issue about the non-negativity constraint in the follower vari-
ables can be easily bypassed replacing a y variable for the relation y =y — y".

3 The Proposed Approach

A nested approach, referred here to as DE4+LEMKE, is proposed for the BLPP:
the upper level is solved by the differential evolution (DE) metaheuristic, and
the lower level is solved via Lemke’s method applied to the LCP problem in (4).

In this way, for each leader configuration, Lemke’s method is applied in order
to find the correct follower reaction. The Algorithm 1 summarizes the technique.
The “rand” function gives a random number, within a specified range, assuming
a uniform distribution.

Algorithm 1 DE4+LEMKE
Ensure: F, CR, NP

1: Xo < Population_Random _Init(NP);
2: Yo < Lemke(Xp), G «+ 0;

3: while unsatisfied stop criteria do

4 G+~ G+1,
5 for i+~ 1...NP do

6: {Zr,GyTry,c, Trg,c } < Select_Individuals(Xg); /*r1 # 12 # r3*/
7 mutT < Tr1,¢ + F(@pest,a — Tr1,6) + Far2,c — Tr3,¢);

8: jrand < rand[1... NJ; /* N: dimension in parametric vector */
9: for j< 1...N do

10: S < rand[0...1.0];

11: if S <CR or jrand = j then

12: Trec € TyuTs

13: else

14: m%Ec — l’z,@

15: end if

16: end for

17: yrEC < Lemke(zrEec);

18: if foes(zreC,yrEC) < fDEB(%i,G,¥i,c) then

19: Ti,G+1 < TREC;

20: else

21: TiG+1 & Ti,G;

22: end if

23:  end for

24: end while
25: return best fitness leader evaluation in Xg;

The main steps for the DE4+LEMKE approach follow:
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Step 1: The population is generated randomly, with leader values given within
the bounds assigned in each variable. For each of these initial candidate solutions,
Lemke’s method computes the correct follower response.

Step 2: For each individual in a new population G + 1 three individuals are
selected in the current generation G: the best element in this generation zpest ¢
and two distinct randomly select individuals z,1,¢ and z,2,¢. These individuals
are used in the rand-to-best/1 mutation scheme giving rise to the ;7 solution.

Step 3: For each mutated individual (xpp7) the binomial crossover opera-
tion is applied, combining the components in the vector xy;yr with those of x;,
a reference individual for the current generation. This operation creates the indi-
vidual zrEc, to whom is attributed the exact response of the follower computed
by Lemke’s method.

Step 4: The new individual zrgc is evaluated and compared with the refer-
ence individual x;; the best individual survives to the next generation G + 1.

Step 5: The process ends when the stop criteria are reached. Otherwise it
returns to Step 2.

A more detailed view on DE and on Lemke’s process follows.

3.1 Lemke’s Method

Lemke’s algorithm was proposed by Carlton Lemke in [12] for solving the LCP
problem (3). The main idea in this method is to find a basic feasible solution for
the LCP problem by means of successive pivoting operations on an initial almost
feasible LCP solution which is constructed by inserting an artificial variable.
This variable has to be driven out by the pivoting operations so that the system
solution can be found.

There are some issues in the use of this technique in the BLPP context. The
main one is that it is not trivial to define an optimistic/pessimistic strategy when
the lower level has multiple global minima.

Another difficulty occurs when the follower level has no response for a given
leader configuration. In this case, it is not possible to estimate an approximate
solution, preventing any considerations about constraint violations.

Despite those potential difficulties, for all test-problems used in this work
Lemke’s method was capable of leading the DE+LEMKE approach to converge
to the known optimal solution.

3.2 DE implementation

The DE in this work uses the DE /rand-to-best/1/bin variant and is applied only
at the leader level, not involving the follower variables.

The rand-to-best/1 mutation and the binary recombination were chosen due
to the fact that this was the combination with best performance among the tested
variants. The rand-to-best/1 strategy has shown a good performance considering
the amount of function evaluations used despite the possibility of premature
convergence. While the binary crossover improves to some extent the results
reached in these experiments.
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In this implementation, the initial population is randomly generated taking
into account the bounds in the variables.

For constraint handling, Deb’s method [9] is used with some modifications
for the BLPP context. In the standard Deb method, feasible solutions are always
better evaluated when compared with infeasible solutions. For two feasible solu-
tions, their fitness value is compared and the best one is considered the better.
Finally, for two infeasible solutions the sum of its violations is computed and the
one with the lowest value is considered the winner.

Considering the infeasibility for the lower level a new comparison step is
added to Deb’s method. Solutions with infeasible lower level are considered in-
complete solutions. Thus, no consideration can be made about violations in the
constraints, knowing only that there is no solution for the follower which does not
violate any constraint in the lower level. In the adapted version of Deb’s method,
incomplete solutions are considered the inferior solutions when compared with
both infeasible and feasible solutions.

When comparing incomplete solutions, the sum of bound violations for the
leader variables is computed, and the one with the smaller value is considered
the winner. The following equation summarizes these previous considerations.

F(z,y) x is feasible
B M my G 0 z is infeasible just for
Fpps(z,y) = + 20 max(Gi(, y), 0) the leader constraints

OM + 37 max(z; — us, ls — @4, 0) T is. an incomplete so-
¢ lution

were M is an arbitrarily large constant to guarantee that every infeasible solution
is worse than a feasible solution (the same for infeasible versus incomplete solu-
tions), (z,y) are the leader value and the follower response in a given solution,
Gi(z,y) are the leader constraints and the terms wu; and I; are the upper and
lower bounds for the variable x;. Note that the leader objective function eval-
uation is needed only for feasible solutions. That allows the approach to save
resources by avoiding the evaluation of solutions a priori known as infeasible.

As the mutation operation does not have any provision for satisfying the
bounds, any bound violation is dealt with as any other constraint violation, by
Deb’s method. The binomial crossover operation is used in the traditional way,
with no adaptations needed.

4 Computational Results

The definition of the parameters used in the DE4+LEMKE approach was made
using the “irace” framework [15]. For the tuning procedure, a subset of the test
functions was selected and fifteen thousand samples were performed to obtain
the ideal parameter set.

As a result, the following parameters were used in the experiments (in brack-
ets, the allowed range for each parameter): population size NP=20 € [15, 80],
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weighting coefficient for mutation F' = 0.7 € [0.5, 1.0], and crossover probability
CR =0.6 €[0.3,1.0].

For the experiments, 18 test functions were selected. The Table 1 shows where
the formulation for each test can be found.

Table 1: Location and reference for the test-problems used.

l Test [ Reference [ Location

Prl [20] Section V — Example 2

Pr2 [6] Section 5.2 — Example 2

Pr3 [1] Section IIT — Example 2

Pr4 [4] Section 2 — Example 1

Pr5 [4] Section 4 — Example 3

Pr6 [19] Section 3 — Example

Pr7 [5] Section 8.1.1 — Example 8.1.3
Pr8 [18] Section 3 — Problem 2

Pr9 [5] Section 5.3.2 — Example 5.3.1
Pr10 [10] Section 5 — Example

Pr11 [16] Section 6 — Example

Pr12 [24] Section 8 — Example 3

Pr13 [4] Section 4 — Example 2

Pr14 [25] Section V — Function 20
Pr15 25 Section V — Function 26
Pri6 17 Section 3 — Example 5

Pr17 [17] Section 4 — Example 4

Pr18 [17] Section 4 — Example 6

The first experiment aims at checking the suitability of Lemke’s method in
the solution of the follower level. For 50 independent runs for all the 18 instances
using the DE4+LEMKE algorithm, the number of pivot operations was recorded
and compared with the dimension and number of constraints at each level. The
Table 2 summarizes the results obtained in this experiment. The columns “Dim”
and “Ctr” show the dimension and the number of constraints in each level; the
column “Lemke’s Matrix” indicates the size of the tableau built for each problem,
while the “Pivot Operation” columns lists the Max, Mean, Min and SD values
of this factor.

It may be noted that there is not a well-defined pattern for dimension size
or number of constraints in this table. However, considering the small variation
in the values for these attributes, some trends can be observed.

The plot in the Figure 1 shows the pivot operations compared with dimension
and numbers of constraints in the leader level for each instance. The plot in the
Figure 2 shows the same attributes, but now for the follower level.

Observing these plots the problem dimension appears to be related to the
number of pivoting operations, as well as the number of constraints in the follower
level. With respect to the leader, the number of constraints seems to be of lesser
relevance.
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Table 2: Pivot operations and problem behavior

Leader Follower Lemke’s Pivot Operation
Test | Dim Ctr | Dim Ctr | Matrix Max Mean Min SD
Pr1 2 3 2 0 6x14 4 3.00 1 0.08
Pr2 2 0 2 3 9x20 7 4.22 1 0.42
Pr3 2 1 2 2 14x30 6 3.05 2 0.48
Pr4 1 0 1 3 6x14 3 2.07 1 0.28
Pr5 2 1 2 2 8x18 7 3.04 3 0.31
Pr6 1 0 2 4 9x20 5 4.07 3 0.28
Pr7 1 0 1 0 3x8 1 1.00 1 0.00
Pr8 1 0 1 3 7x16 3 2.00 1 0.09
Pr9 2 0 3 3 9x20 5 4.11 2 0.35
Pr10 2 1 3 3 9x20 5 4.19 2 0.41
Pri1 4 6 2 4 8x18 7 2.33 1 2.33
Pr12 10 2 6 7 25x52 38 19.93 7 2.27
Prl3 4 1 4 4 16x34 12 8.69 4 1.10
Pri4 2 1 2 2 10x22 8 3.56 2 0.70
Pr15 1 0 2 4 8x18 6 4.21 2 0.63
Prl6 2 0 2 2 6x14 6 1.29 1 0.48
Pr17 1 0 2 2 7x16 4 3.99 1 0.12
Pr18 1 0 2 2 7x16 4 3.11 1 0.32

Pivot Operation (Literature Instances)

A5 ¢ ————————
Pivot Operation ———

40 | Dimension (Leader)
Constraints (Leader)

35

30

25 ¢

20

Instances

Fig. 1: Comparison of pivot operations with dimension and number of constraints for
the leader level

The little correlation shown with the change of the number of leader con-
straints is somewhat expected, considering that this factor has little influence in
the size of Lemke’s tableau. In a similar sense it is expected that the leader di-
mension has little or no influence on the number of pivoting operations, but as in
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Pivot Operation (Literature Instances)
45 ¢

" Pivot Oberat‘ion A
a0 Lk Bimension (Follower)
Constraints (Follower)

35

30 f

25 F

20 +

Instances

Fig. 2: Comparison of pivot operations with dimension and number of constraints for
the follower level

these instances the changes in the leader’s dimension factor are linked to changes
in the follower’s dimension it becomes difficult to verify this factor clearly. About
the follower variables and constraints, the growth of pivoting operations accord-
ing to the addition of these factors occurs as expected considering that they
directly influence the size of Lemke’s matrix. Another aspect to consider is that
there is not a bad behavior in Lemke’s method as the problem scales up. Even
in the largest problem, the growth in the mean cost (given by pivot operations)
is low, considering Lemke’s Matrix size, which indicates some level of scalability.

A second experiment presents the performance achieved by the DE4+LEMKE
strategy comparing with the use of an inexact method in the follower level, the
nested technique DE+DE.

For the DE+DE approach, the follower DE was as in the work of [3], with
an stopping criterion by population variance:

o UQ(Xag)
= 2 K

i,init

with threshold of a < 107° [21]. The upper DE is implemented in the same way
as can be seen in the DE4+LEMKE.

The stop criteria in the leader level for both approaches was either 6000 upper
level function evaluations or 10000 DE iterations. These two conditions are used
considering that not every solution will be evaluated by DEB’s criteria and the
10000 DE iterations can occur before the 6000 upper level function evaluations.
Again, 50 independent runs are performed to obtain these results.

The Table 3 shows the objective function for the best, mean, median, and
worst solutions found by the DE4+LEMKE and DE+DE approaches, compared
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with the best solution found in the literature ([Pr1-Pr8] [3], [Pr9-Prl5] [14], and
[Pr16-Pr18] [13]).

Table 3: Summary of the performance of DE4+LEMKE and DE+DE. The “a”
superscript means a maximization problem at both levels.

Test Technique Best Mean Median ~ Worst _ Literature
Pri DE+LEMKE 225.00 225.00 225.00 225.00 295000
DE+DE 224.93 224.96 224.96 224.98 )
Pr2” DE+LEMKE 3.25 3.25 3.25 3.25 3.950
DE+DE 4.00 3.30 3.25 3.25 )
Pr3 DE+LEMKE 0.00 0.40 0.00 5.00 0.000
DE+DE -0.01 0.79 0.00 4.97 )
r - : : : - 17.000
DE+DE 16.50 17.26 16.60 24.98 )
Pr5 DE+LEMKE -12.68 -12.68 -12.68 -12.65 12.679
DE+DE -12.71 -12.69 -12.69 -12.67 e
Pr6 DE+LEMKE -1.21 -1.21 -1.21 -1.21 1.210
DE+DE -1.21 -1.21 -1.21 -1.21 T
r + 1. 1. . 1. 1.000
DE+DE 1.00 1.00 1.00 1.00 )
Pr8 DE+LEMKE 5.00 5.00 5.00 5.00 5.000
DE+DE 4.99 4.99 4.99 4.99 )
r + -29. -29. -29. -29.
DE+DE 2021 2920  -2920  -2920 29200
“Pri0 DE+LEMKE — -I1841  -1629  -16.00  -16.00 13100
DE+DE -18.73 -16.35 -16.03 -16.01 e
r - : : : - 14.990
DE+DE 14.98 14.99 14.99 14.99 )
r12 + “166.83 45438 45361 45341 -0 oo
DE+4+DE -467.57  -453.91  -453.56  -448.06 e
Pri3® DE+LEMKE 6600.01 6600.01 6600.01 6600.01 6600.000
DE+DE 6600.02  6599.73  6599.87  6595.86 )
rl + . . . 5. 0.000
DE+DE 0.00 0.70 0.00 4.97 )
Pri5 DE+LEMKE 0.00 0.00 0.00 0.00 0.000
DE+DE 0.00 0.00 0.00 0.00 )
r T e ks S e -3.920
DE+DE -3.92 -3.89 -3.92 -3.79 )
rl + 0.85 0.85 0.85 0.85 0.849
DE+DE 0.59 0.74 0.75 0.77 )
Prig DE+LEMKE 1.56 1.56 1.56 1.56 1.563
DE+DE 1.56 1.56 1.56 1.56 )

In these experiments it can be seen that DE4+LEMKE easily solves half of
the test-problems, finding always the best solution of the literature. For other
instances, this approach can find the best solution at least one time, with the me-
dian being less than the best only in the Pr10 function. In addition, DE+LEMKE
can improve the best solution in the case Pr12, which corroborates with its good
performance. The DE+DE has a similar performance, but false optimal points
can be found, specially in the Prl7 instance, where in all executions a false
minimum was found. In fact, this is potentially much worse than finding a sub-
optimal viable solution.

Note that, despite these previous analyzes, there is another aspect to con-
sider about the scope for the two techniques, DE+LEMKE and DE+DE. While
DE+DE can be applied to all types of functions and constraints in the leader
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and follower levels, the DE+LEMKE approach can be applied only when the
follower problem is linear or quadratic, with linear constraints, as mentioned
before. However, whenever it is possible to choose between these two options,
the experiments indicate that DE4+LEMKE is a better option.

5 Conclusions

A new approach combing mathematical programming and metaheuristics was
proposed for the class of bilevel programming problems with a quadratic follower
function including linear constraints.

Rewriting the BLPP as an optimization problem with a linear complementar-
ity problem among its constraints, this algorithm solves the follower level using
Lemke’s algorithm while the leader is submitted to the differential evolution
metaheuristic.

The experiments show a good behavior for Lemke’s method with a controlled
growth of complexity with increased dimensions. The DE4+LEMKE technique
shows a good overall performance, more consistent than the DE4+DE, in all the
functions analyzed coming from the literature, always finding the best solutions
recorded so far.

As future work, larger test-problems will be used aiming at verifying the
scalability of the algorithm. Another objective is continuing to improve the
DE+LEMKE approach with a restart procedure, as well as using other strategies
like the adaptive population size used in the L-SHADE DE variant[23].
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