
A Genetic Algorithm for Solving Beehive Hidato
Puzzles

Matheus Müller Pereira da Silva and Camila Silva de Magalhães

Universidade Federal do Rio de Janeiro - UFRJ, Campus Xerém,
Duque de Caxias, RJ 25245-390, Brazil

mullerpds@ufrj.br,camila@xerem.ufrj.br

Abstract. Beehive Hidato puzzles are logic games, similar to Sudoku,
in which the grid cells are hexagons. Some hexagons are prefilled with
given numbers, and the objective of the game is to find a path of natural
numbers, from 1 to the grid size n, in such a way that consecutive num-
bers stay connected by any hexagon side. Although the rules of the game
are simple, finding the solution to this problem can be quite challenging.
In this work, we designed and implemented a genetic algorithm (GA) to
solve Beehive Hidato problems. The proposed GA uses common genetic
operators and the RTS niching technique to preserve population diver-
sity. A new strategy based on gene convergence rate is also implemented
and tested. The proposed algorithm was evaluated in 21 instances of
Beehive Hidato with different sizes and complexities. The results show
that GAs are promising tools for solving Beehive Hidato problems.

Keywords: Genetic Algorithm, Hidato Puzzles, Niching

1 Introduction

Hidato (from the Hebrew hida that means riddle) is a puzzle logic game, similar
to the very popular Sudoku. This game was proposed by the Israeli mathemati-
cian Gyora M. Benedek [9]. The Hidato puzzle consists of n grid cells in which
the player has to complete the cells with natural numbers from 1 to n, in such
a way that consecutive numbers stay in adjacent cells. Some of the Hidato grid
cells are fulfilled with given numbers that are unchanged, including always the
first and the largest number (1 and n). While the Hidato rules are very sim-
ple, completing the game grid can be quite challenging. The Beehive Hidato
is a variant of the classic squared grid cell Hidato and was inspired by honey-
comb structures. The grid cells of Beehive Hidato adopt the hexagonal format,
and consecutive numbers can be placed on any hexagon connected with other
through any of its sides. Hidato games have different difficulty levels related to
the size of the Hidato grid (number of hexagons) and also the number of fixed
given numbers. The larger the number of hexagons and the smaller the amount
of fixed given numbers, the more difficult the Hidato problem is. The hexagonal
grid can also contain holes, which means that some places (hexagonal cells) are
not allowed to be filled with any number.



2 Da Silva, M.M.P. and De Magalhães, C.S.

Although a lot of research effort has been made to solve the Sudoku game us-
ing many different techniques [5,6,11–13] to the best of the author’s knowledge,
this is the first paper to address the Hidato problem. Most of the works for solv-
ing Sudoku uses nature inspired optimization techniques, such as Particle Swarm
Optimization (PSO) and Genetic Algorithms (GA), with relatively good perfor-
mance. In this work, we propose a genetic algorithm [4] specifically designed
to solve Beehive Hidato puzzles. We are interested in investigating the capabil-
ity of genetic algorithms in solving the Beehive Hidato problem. The proposed
GA uses a steady-state population model and commonly used crossover and
mutation operators for permutation representation problems. The population
diversity is maintained by using the Restricted Tournament Selection (RTS) [1]
niching technique with a dynamic tournament size (w) [10]. A new convergence
based gene insertion strategy is also proposed and tested in an attempt to im-
prove performance and convergence speed.

The proposed GA was applied to 21 instances of the Beehive Hidato problem
of different sizes and complexities. The results show that the proposed GA can
easily handle small size Beehive Hidato problems. Nevertheless, for the class 2
hidato instances tested, the success rate varies from 3% to 100% depending on
the Hidato complexity.

The rest of the paper is organized as follows. Section 2 describes the Beehive
Hidato rules and the new proposed GA. Section 3 presents the results obtained
with the application of the GA proposed to the 21 Beehive Hidato instances and
analyses the influence of the RTS technique on it. The conclusions of the work
done are presented in Section 4.

2 Beehive Hidato Rules and The Proposed Genetic
Algorithm

2.1 Hidato Rules

In Beehive Hidato, initially, there is a grid of hexagons with some prefilled fixed
numbers (Fig. 1a). The aim is to fill the empty hexagons with consecutive num-
bers from 1 to the largest number in the grid. In other words, 1 must be adjacent
to 2, 2 must be adjacent to 3 and so on, generating a continuous path. Every
Hidato puzzle has a unique solution. Fig. 1b shows the complete solution and
its corresponding path for this Hidato.

Beehive Hidato, similar to Sudoku, is a constraint satisfaction fill-in puzzle
with simple rules [7].

– Rule 1: Each hexagonal cell of the grid must be filled with a natural number
ranging from 1 to n;

– Rule 2: Each number, ranging from 1 to n, is only in one hexagonal cell (i.e.,
number repetition is not allowed on grid)

– Rule 3: Prefilled numbers are not allowed to change.



A Genetic Algorithm for Solving Hidato Puzzles 3

Fig. 1. Initial hidato grid with prefilled fixed numbers (yellow), first and last numbers
(red) (a). Complete solution and its corresponding path (blue line) (b).

2.2 The Proposed GA

The proposed method is a steady-state genetic algorithm specifically designed
to solve hexagonal Hidato puzzles. In a steady-state GA, a newly created off-
spring is immediately tested for insertion in the population. The GA initiates
generating a random initial population of candidate Beehive Hidato solutions.
Parents individuals are randomly selected, and the genetic operators are applied
(crossover followed by mutation). The offspring are inserted in the population
according to the Restricted Tournament Selection (RTS) method [1]. The pop-
ulation evolves until the maximum number of fitness function evaluations (FEs)
allowed or until the global optimum is found.

Representation Each Beehive Hidato solution is represented by a permutation
of integers of 1 to n, where n is the total number of genes on a given chromo-
some (e.g.: {1, 5, 3, 2, 4}). Thus, number repetitions are not allowed. In this
representation, the numbers of the Hidato are organized linearly, always start-
ing from the top left to the bottom right hexagonal cell of the grid. However,
fixed prefilled numbers of Hidato are not included in the chromosome. These
given numbers are removed from the initial population generation (randomly
arranging only the non fixed numbers of the problem) and are considered only
in order to complete the solution in the fitness evaluations.

Fitness Function A fitness function was specially designed to quantify the
quality of a solution for the Beehive Hidato problem, considering the rules of
the puzzle. Solutions of Beehive Hidato comprises hexagonal cells filled with
consecutive numbers linked adjacently. So, for each hexagonal cell of the Beehive
Hidato, we sum one point to each following number (successor or predecessor)



4 Da Silva, M.M.P. and De Magalhães, C.S.

that is connected to it in an adjacent hexagonal cell. So, for a Beehive Hidato of
size N , the fitness of the optimum solution is equal to (N ∗ 2) − 2. Two points
are subtracted from N ∗ 2 to take into account the first and last numbers, which
have only one next number to it. In other words, the fitness function checks for
every number n, if there are consecutive numbers (n + 1 and n− 1) adjacent to
it, assigning one point to each of these conditions when true. The proposed GA
was designed to maximize this fitness function.

A pseudo-code for evaluating a Beehive Hidato solution can be seen below:

fitness_score = 0

For each number n in candidate solution:

For every adjacent number n_a of n:

If n_a equals to n + 1:

fitness_score = fitness_score + 1

If n_a equals to n - 1:

fitness_score = fitness_score + 1

Diversity Preservation To promote population diversity and, therefore, avoid
premature convergence to local optimum, the RTS crowding technique [1] was
implemented. This technique is based on the concept of local competition in
which similar individuals competes to stay in the population. In this scheme,
parents are randomly selected and a newly generated individual is inserted in
the population replacing the most similar among w randomly selected individuals
if it is better than the most similar one. The distance between two solutions for
the Beehive Hidato problem was defined here as the number of hexagonal cells
with distinct values. For example, given chromosome1 = {1, 5, 3, 2, 4} and
chromosome2 = {1, 5, 2, 4, 3}, the distance between them is evaluated as 3.

In this AG, the w parameter was dynamically set to linearly decay from 100%
of the population to 10%, during whole execution [10]. In this way, strong niche
formation is favored at the beginning of the evolution, and it is relaxed towards
the end.

Genetic Operators The genetic operators used were two commonly used op-
erators for permutation representations in GAs. Only one crossover and one
mutation operator were used. The crossover operator used was the Partially
Mapped Crossover (PMX) as described by Whitley [2]. The mutation operator
used was swap mutation, as described in [3]. This operator works by randomly
choosing two genes and swapping their values. Crossover probability was set to
90%, and mutation probability was set to 10%.

Convergence Based Gene Insertion - (CBGI) Strategy In an attempt of
to improve the algorithm performance in finding the correct order of numbers in
the hexagonal grid even when the Beehive Hidato problem has few fixed given
numbers, we implemented a convergence based gene insertion (CBGI) strategy.



A Genetic Algorithm for Solving Hidato Puzzles 5

This strategy works as follows: after a elapsed evolution time S (a percentage of
the total evolution time, calculated on the maximum number of fitness function
evaluations), the algorithm evaluates for each gene of the best individual its allele
frequency, considering all individuals in the GA population. This process occurs
periodically (in epochs). If the allele frequency of a gene of the best individual
in the population is higher than a parameter c, the value of the gene is inserted
as a given fixed number for the Beehive Hidato problem, and it is held in that
way until the end of the evolution.

More specifically, for each gene of the current best individual, the algorithm
evaluates the number of occurrences of its gene value, in the same position, for all
individuals in the population. Then, this quantity is divided by the population
size, to get its rate. The gene with the highest convergence rate (above of a
parameter c) is then selected to be inserted in the Beehive Hidato problem as a
fixed number, in its corresponding position.

3 Results

The performance of the steady-state GA implemented was evaluated for 21
hexagonal Beehive Hidato problems. These problems were randomly selected
from two different databases [8,9] and used as initial test problems for the algo-
rithm’s performance. From those, problems 1 to 10 are composed by 19 hexagons
(class 1 problems), problems 11 to 21 have 37 hexagons (class 2 problems). There-
fore, the fitness value of the globally optimum solution for class 1 and class 2
problems is 36 and 72, respectively.

All experiments were performed using a population size of 250 individuals and
a maximum of 2.0E + 05 fitness function evaluations. For all problem instances,
30 independent GA runs were performed.

The parameters related to the convergence based gene insertion (GBGI)
strategy used were: S set to 20%, epoch to 5% and c to 20%. It means that,
after 20% of the total maximum number of fitness function evaluations, and
then on each 5% of the evolution, a gene is inserted as part of the Beehive
Hidato problems if its rate of occurrence in the population surpass c.

The algorithm performance was evaluated with and without the use of the
GBGI strategy. Tables 1 to 4 shows, for every problem instance: the best fitness
found, the averaged best fitness, the averaged number of fitness function evalu-
ations to reach the best solution found and the success rate (SR). SR is defined
as the number of successful runs (i.e., runs in which the global optimum solution
was found) over the total number of runs.

Tables 1 and 2 show results for problems 1-10 and 11-21, respectively, without
using the CBGI strategy (described in section 2.2).

Tables 3 and 4 show results for the GA when using the CBGI strategy, with
parameters S and c set to 20%.

For all class 1 Beehive Hidato problem instances (problems 1 to 10, show in
Tables 1 and 3), the genetic algorithm implemented can find the global optimum
solution with a success rate of 100% with and without the use of the CBGI



6 Da Silva, M.M.P. and De Magalhães, C.S.

Table 1. Beehive Hidato class 1 problems without the CBGI strategy

problem best fit. avg. best fit. st. dev. avg. FEs st. dev. SR

1 36 36.00 0.00 6728.07 1600.58 1.00
2 36 36.00 0.00 4626.67 1012.95 1.00
3 36 36.00 0.00 8990.13 2583.16 1.00
4 36 36.00 0.00 19549.20 13161.44 1.00
5 36 36.00 0.00 4898.13 1300.68 1.00
6 36 36.00 0.00 8771.80 2126.81 1.00
7 36 36.00 0.00 6284.13 1842.03 1.00
8 36 36.00 0.00 8004.20 1927.22 1.00
9 36 36.00 0.00 7841.07 2492.01 1.00
10 36 36.00 0.00 4458.73 1679.17 1.00

average: 36 36.0 0.0 8015.21 2972.61 1.00

Table 2. Beehive Hidato class 2 problems without the CBGI strategy

problem best fit. avg. best fit. st. dev. avg. FEs st. dev. SR

11 72 71.60 0.81 78498.20 23461.47 0.80
12 72 70.60 1.83 94339.00 39673.09 0.60
13 72 72.00 0.00 48389.20 6871.02 1.00
14 72 69.80 1.32 93993.13 31468.55 0.17
15 72 68.53 1.66 134916.33 28188.26 0.03
16 72 68.67 1.69 140021.33 28992.19 0.03
17 72 70.80 1.24 102235.80 30075.19 0.47
18 72 70.13 0.51 84031.67 18814.75 0.07
19 72 67.33 2.06 150680.13 28936.90 0.03
20 72 71.93 0.37 46169.40 9177.76 0.97
21 72 71.47 1.04 78580.47 15773.78 0.77

average: 72 70.26 1.14 95623.15 23766.63 0.45



A Genetic Algorithm for Solving Hidato Puzzles 7

strategy. These class 1 Beehive Hidato problem instances differ in the quantity
and values of the fixed given numbers. The number of given numbers varies, in
this case, from 6 (problem 4) to 8 (problems 2, 5 and 10). For all other problems,
seven numbers are given. As expected, the averaged number of fitness evaluations
to reach the global optimum is higher to the problem with less given numbers
(problem 4). When using the CBGI strategy (Table 3), we observed a slightly
reduction in the averaged number of fitness evaluations to reach the optimum.
The main difference is found for problem 4 in which the averaged number of FE
dropped off about 2500 evaluations.

Table 3. Beehive Hidato class 1 problems with the CBGI strategy

problem best fit. avg. best fit. st. dev. avg. FEs st. dev. SR

1 36 36.00 0.00 6914.60 1637.27 1.00
2 36 36.00 0.00 4368.67 1202.92 1.00
3 36 36.00 0.00 8176.93 2898.01 1.00
4 36 36.00 0.00 16811.07 10453.98 1.00
5 36 36.00 0.00 4754.73 1461.79 1.00
6 36 36.00 0.00 9156.93 2757.87 1.00
7 36 36.00 0.00 6343.33 1550.25 1.00
8 36 36.00 0.00 7018.67 2281.46 1.00
9 36 36.00 0.00 7864.73 2388.08 1.00
10 36 36.00 0.00 4396.40 1355.34 1.00

average 36 36.0 0.0 7580.6 2798.7 1.00

Table 4. Beehive Hidato class 2 problems with the CBGI strategy

problem best fit. avg. best fit. st. dev. avg. FEs st. dev. SR

11 72 71.93 0.37 78173.47 23525.59 0.97
12 72 70.13 2.03 84586.60 21264.76 0.53
13 72 71.93 0.37 47842.33 5929.11 0.97
14 72 70.00 1.49 96046.20 32206.56 0.27
15 72 69.07 1.55 145073.33 33799.58 0.07
16 72 69.27 1.23 124719.00 19956.63 0.03
17 72 70.80 1.13 87628.47 13251.76 0.43
18 72 70.27 0.69 80048.73 15193.18 0.13
19 72 68.53 2.16 138049.33 24089.08 0.13
20 72 71.47 0.90 44107.53 9508.78 0.73
21 72 71.60 0.97 74137.13 13698.76 0.83

average: 72 70.45 1.17 90946.56 19311.25 0.46



8 Da Silva, M.M.P. and De Magalhães, C.S.

For class 2 Beehive Hidato (problems 11 to 21) the GA performance varies
significantly from instance to instance (Tables 2 and 4). However, the GA imple-
mented was able to find the global optimum solution for all problem instances
tested. The fixed given number of these instances ranges from 9 (problems 15,
16 and 19) to 13 (problem 13). Problems 17 and 21 have ten fixed given num-
bers, problems 12, 14 and 18 have 11, and problems 11 and 20 have each one,
12 prefilled numbers.

For 5 of the 11 class 2 problem instances, the proposed algorithm presented
a success rate higher or equal to 60% in finding the global optimum solution.
For 2 of these, the algorithm SR is equal or higher than 80%.

As expected, for problem instances with less fixed given numbers (problems
15, 16 and 19), the algorithm presented an inferior performance with SR of only
3%. The same is observed with problem number 18, for which the SR obtained
was of 7%. The SR of the algorithm for problems 14 and 17 (with 11 and 10
fixed given numbers) were of 17% and 47%, respectively.

When the CBGI strategy is used in the GA to solve class 2 Beehive Hidato
problems (Table 4), no significant change in the average algorithm performance
was observed. However, an improvement of 10% in SR was found for problems 19
and 14, two difficult problems. A higher and more significant improvement was
observed only for problem 11, for which the SR increased to 17%. Problems 15,
18 and 21 had minor improvements (4% to 6%). For the other class 2 problem
instances tested, the SR of the GA using the CBGI strategy was equal or worse
than the GA results without using it. However, the average FE for reaching the
global optimum is lower when the CBGI is used for all cases, except for problem
14, in which the GA-CBGI approach has a slightly higher average FE (Table 4).

The proposed GA can quickly solve class 1 Beehive Hidato problems with
100% of success rate. However, for class 2 problems the success rate of the GA
proposed varies from 3% (more difficult problems, with only nine fixed given
numbers) to 100%. From the 11 class 2 problem instances tested, the GA and
the GA with the CBGI strategy obtained a success rate above 50% for five
instances.

3.1 Influence of the Diversity Preservation Technique

To evaluate the influence of the RTS niching technique on the results, we tested
the proposed GA on the 21 Beehive Hidato problems using another selection-
insertion technique, without a diversity preservation mechanism. All the other
GA parameters, operators, and strategies remained the same. The only mod-
ification was that the parent selection was performed by binary tournament
selection [3]. Besides, a newly generated offspring in the population was inserted
in the population replacing the worst individual. Results for class 1 and class 2
Beehive Hidato problems are shown in Tables 5 and 6, respectively.

For class 1 Hidato problems, although the GA can find the global optimum,
we observe a decreased success rate for all ten instances tested. The most signi-
ficative performance loss was observed for problem four (the most difficult class
1 problem tested). For problems one and three the success rate also decreased



A Genetic Algorithm for Solving Hidato Puzzles 9

from 100% (Table 3) to 57% and 47% respectively (Table 5). For the other class 1
problem instances, the success rate varied from 70% to 93%. However, the aver-
aged best fitness value is worse than the results with the RTS niching technique
in all cases.

Table 5. Beehive Hidato class 1 problems with CBGI strategy without the RTS tech-
nique

problem best fit. avg. best fit. st. dev. avg. FEs st. dev. SR

1 36 35.07 1.14 1818.47 518.19 0.57
2 36 35.80 0.61 1374.27 298.78 0.90
3 36 34.60 1.50 7646.53 18150.42 0.47
4 36 32.73 2.00 4191.13 7366.29 0.23
5 36 35.87 0.51 1394.20 341.57 0.93
6 36 35.53 1.14 4421.53 7575.71 0.83
7 36 35.53 1.14 1895.13 596.72 0.83
8 36 35.40 0.93 2048.67 401.97 0.70
9 36 35.00 1.72 3361.20 7127.55 0.73
10 36 35.60 1.22 2004.40 3152.68 0.87

average: 36. 35.11 1.19 3015.55 4552.99 0.71

Table 6. Beehive Hidato class 2 problems with CBGI strategy without the RTS tech-
nique

problem best fit. avg. best fit. st. dev. avg. FEs st. dev. SR

11 68 62.20 3.65 21983.80 36841.56 0.00
12 64 60.93 2.61 15769.87 14025.78 0.00
13 70 62.27 3.81 15763.60 24061.69 0.00
14 70 62.20 4.08 15180.93 21451.34 0.00
15 66 58.13 3.36 12808.20 16630.51 0.00
16 64 58.73 2.49 33452.67 49899.87 0.00
17 68 61.33 3.46 16482.93 21146.48 0.00
18 70 62.27 3.67 16412.40 22317.50 0.00
19 62 57.80 2.25 15717.07 17662.78 0.00
20 70 64.33 3.33 15056.60 13788.24 0.00
21 70 61.20 3.81 23244.27 27569.69 0.00

average: 67.46 61.04 3.32 18352.03 24126.86 0.0

When we compare the results with and without the use of the RTS technique
for class 2 Beehive Hidato problem instances we see that the algorithm cannot
find the global optimum solution for any of the 11 problems tested (Table 6).
Although solutions near to the global optimum were found for five problems



10 Da Silva, M.M.P. and De Magalhães, C.S.

(best fit. values of 70), the averaged best fit is significantly worse than the
results using the RTS strategy in all cases. The averaged best fitness without
the utilization of the RTS is below 65 (Table 6) whereas when using the RTS
strategy it is above 68 (Table 4) for all cases. The RTS technique has a crucial
role in avoiding premature convergence, preserving diversity and improving the
algorithm performance significantly.

4 Conclusion

In this work, we presented a genetic algorithm for solving the Beehive Hidato
Problem. To the best of the author’s knowledge, this is the first work to adress
this problem. A GA representation and a form to evaluate the individual fit-
ness were specifically designed and implemented to solve the Beehive Hidato
problem. The proposed algorithm uses GA operators commonly used for per-
mutation representation problems, and the RTS niching technique, to assure
diversity preservation, an important aspect in solving logic based puzzles [5]. A
new strategy based on gene rate convergence (CBGI) is also proposed and tested
in an attempt to improve the GA search, progressively reducing the search space
by inserting new fixed given numbers to the problem during evolution. The main
improvement observed with the inclusion of the CBGI strategy was: (i) a higher
success rate for more challenging cases; and (ii) a higher convergence speed (lower
averaged number of FEs to reach the global optimum).

Although the mean results for the proposed GA and the GA-CBGI are very
similar, we believe that this strategy can be further improved to give better
results. The main drawback of this approach is that once a gene value is inserted
in a wrong position, it will be a part of the problem and will stay unchanged until
the end of the evolution, taking the algorithm in the direction of a wrong solution.
Rather than inserting genes with high convergence rate as part of the Beehive
Hidato problem, a strategy that spreads the values of the best individual’s genes
to the chromosomes of others individuals in the population may be a better
option. These analyses are in progress and will be reported soon.

References

1. Harik, G.R.: Finding Multimodal Solutions Using Restricted Tournament Selection.
ICGA (1995)

2. Whitley, D.: Permutations, Handbook of Evolutionary Computation (1997)
3. Eiben, A.E., James E.S.: Introduction to Evolutionary Computing. Springer (2003)
4. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning.

Addison-Wesley (1989)
5. Segura, C. et al.: The importance of diversity in the application of evolutionary algo-

rithms to the Sudoku problem. Evolutionary Computation (CEC), IEEE Congress
(2016)

6. Singh, G., Deep, K.: A new membrane algorithm using the rules of Particle Swarm
Optimization incorporated within the framework of cell-like P-systems to solve Su-
doku. Applied Soft Computing. 54, 27-39 (2016)



A Genetic Algorithm for Solving Hidato Puzzles 11

7. Bartos, S.: Effective encoding of the Hidato and Numbrix puzzles to their CNF
representation. Charles University, Bachelor thesis (2014)

8. Hidoku Solver Online, http://hidoku-solver.appspot.com/ [Accessed 15 Aug.
2017]

9. Hidato, http://www.hidato.com/ [Accessed 15 Aug. 2017]
10. de Magalhes, C.S., Almeida, D. M., Barbosa, H. J. C., Dardenne, L.E.: A dynamic

niching genetic algorithm strategy for docking highly flexible ligands. Information
Sciences. 289: 206-224 (2014)

11. Mantere T., Improved ant colony genetic algorithm hybrid for sudoku solving, in
Information and Communication Technologies (WICT), Third World Congress on,
Dec 2013, pp. 274279 (2013)

12. Z. Wang, T. Yasuda, and K. Ohkura, An evolutionary approach to sudoku puzzles
with filtered mutations, in Evolutionary Computation (CEC), 2015 IEEE Congress
on, May 2015, pp. 17321737 (2015)

13. L. Clementis, Advantage of parallel simulated annealing optimization by solving
sudoku puzzle, in Emergent Trends in Robotics and Intelligent Systems, ser. Ad-
vances in Intelligent Systems and Computing, P. Sink, P. Hartono, M. Virkov, J.
Vak, and R. Jaka, Eds. Springer International Publishing, 2015, vol. 316, pp. 207213
(2015)


