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Abstract. Genetic Programming (GP) is used for solving many real
world problems. From data classification to building phylogenetic trees,
the technique can be applied to almost any problem. One way to improve
GP performance is by using a formal grammar. We propose here the use
of grammar-based genetic programming (GGP) with Differential Evolu-
tion (DE). DE is incorporated to GGP in order to improve the quality
of solutions obtained by GGP by finding numerical coefficients when
solving symbolic regression problems. In this proposal, the coefficients of
the best individuals generated by GGP during the search are adjusted
by DE. Also, this technique incorporates these values to the grammar;
thus, the grammar is adapted during the search. The proposed method
is applied to 24 symbolic regression problems and it is compared to a
standard GGP. The results indicate that GGP hybridized with DE ob-
tained better models, specially when one expects real-valued coefficients
in the model.

Keywords: Grammar-based Genetic Programming, Differential Evolu-
tion, Hybridism, Symbolic Regression

1 Introduction

Genetic Programming (GP) is an evolutionary computation technique developed
by Koza [1] which aims at automating the construction of a computer program.
Supervised machine learning problems are one of the most common applications
of this technique, where the programs represent models which map inputs into
the outputs.

Grammars are widely used in computer science, and one of their main util-
ity is to syntactically constrain symbolic expressions. This can be either to de-
fine valid expressions or to enforce type constraints [2]. Grammar-based Genetic
Programming (GGP) is a GP technique in which a formal grammar is used to
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constrain the expressions generated during the search. A survey of the grammar-
based GP method can be found in [3].

When solving symbolic regression problems, the numerical coefficients of the
obtained model are important. If the problem does not involve only integer co-
efficients the standard GGP may have difficulties to reach the real-valued ones
[4]. One way to overcome this limitation is by performing some arithmetic op-
erations. Another way to describe this type of values is to include them in the
grammar used. Due the large number of symbolic regression problems in which
the desired model is composed by not only integer numerical coefficients, an-
other approach is desirable. Differential Evolution (DE) was first introduced by
Storn and Price [5] and is often used for continuous parameter optimization
problems. Considered a simple and efficient technique for many real-world opti-
mization problems, such characteristics make DE a good choice to combine with
other optimization techniques. Thus, DE is used here to obtain the numerical
coefficients of some of the models found by GGP.

Using genetic programming together with another technique is very common
[6]. Differential evolution can be used in some phases of GP, but just a few papers
exploring this combination can be found in the literature. Shun and Teo [7]
used DE to improve GP’s mutation phase, and the results obtained showed
improvement by using the hybridized method. The algorithm was capable of
automatically designing and co-evolving both the controller and the morphology
of modular robots.

Roy et al. [8] tried to generate DE’s trial vector via GP, using a learning
method which would choose the best strategy for the problem. The hybridiza-
tion performance was compared with four numerical optimization methods and
achieved a better success rate over all of them.

Howard and D’Angelo [9] explored a hybridism of genetic programming with
a genetic algorithm. This method was named GA-P and it addressed the problem
of symbolic regression; the GP part of the algorithm evolves the expression while
the GA part concurrently evolves the coefficients used in the expression. The
results show that GA-P has a slight advantage over the original GA and over
GP.

Rayno et al. [10] also used a hybridism of GP with GA for 3-D Metamate-
rial Design. The technique uses genetic programming as the main evolver and a
genetic algorithm in the evaluation phase. The GA tries to optimize the chro-
mosomes and then insert them in the GP tree. Their work aims at reducing the
number of generations needed to reach a good solution in metamaterial designs.
They achieved fewer GP generations with their algorithm.

Here, the main objective is to generate better solutions with a GGP by using
real-valued coefficients. A technique which hybridizes GGP with DE is proposed,
where DE is used to improve the numerical coefficients of the models obtained by
GGP. The values found by DE are also added to the grammar. Thus, the main
contribution of this work is a procedure to generate better coefficients in a GGP
than its standard variant, and which adapts its grammar during the search.
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2 Grammar-based Genetic Programming

Nature has been a source of inspiration for various tools in computational sys-
tems. Two of these are genetic programming (GP) and grammatical evolution
(GE). Genetic programming is a technique based on the Darwinian theory of
natural selection in which, in short, the best individuals tend to survive, re-
produce, and generate fitter offspring. The three main steps of this process are
selection, crossover, and mutation. Differently from other algorithms, GP, as
stated in [11, 12], has in its favor the production of symbolic models, allowing
knowledge extraction from the model by an area expert. Although GP is able
to generate interpretable models [13, 14], it demands high computational cost,
given the number of objective function evaluations required to reach a good so-
lution. When modeling dynamical phenomena, for example, it may require the
numerical solution of ordinary differential equations during the evaluation phase.

In the grammar-based genetic programming (GGP) every individual is gen-
erated by means of a formal grammar. Therefore it has some advantages over
GP, such as cleaner enforcement of semantic constraints, reduced search space,
bias introduction, some possible extensions such as additional genetic operators,
and the evolution of the grammar itself. On the other hand its concept is more
complex and its implementation is more demanding.

Most of the GP elements are preserved in GGP. For instance, the selection
procedure does not depend of the representation and can be the same used in
the standard version of GP. During this step, some individuals are selected to
be submitted to the genetic operations. Also, each individual is still represented
by a tree, although in GGP they are represented by a derivation tree (sen-
tence and nonterminal symbols). A grammar-based derivation tree is composed
by sentences, nonterminal and terminal symbols. Every generated individual is
syntactically correct with respect to the grammar rules adopted. A candidate
expression is represented by the leafs of its tree in the post-order notation. Thus,
one can notice that all leafs are terminal symbols of the grammar.

The crossover operates only over coincident nonterminal symbols. Two indi-
viduals (parents) generate two offspring. To perform this operation one sub-tree
is chosen from each parent and the offspring is created with characteristics from
both parents, as shown in Figure 1a The mutation is a perturbation that happens
in an individual. First, a node is randomly chosen. Then a sub-tree is created
respecting the restriction of the node, as shown in Figure 1b.

To evaluate an individual, GP uses known inputs mapped to outputs. Here,
the objective function is the mean squared error between the real values and
those inferred by the model. After the evaluation, the algorithm chooses which
individuals will go into the next generation. The replacement can be performed
using an elitism procedure, where a percentage of the best individuals is se-
lected to compose the next generation. To fill the remaining individuals of the
population, the newest generated individuals are chosen.
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Fig. 1: The two main genetic operators for GGP

Algorithm 1 Pseudo-code for the Grammar-based Genetic Programming

1: procedure GP

2: Create initial population pop of size N
3: evaluate (pop)
4: while Termination criteria not met do
5: selection(pop)
6: crossover(pop)
7: mutation(pop)
8: evaluate(pop)
9: replacement(pop)

3 Differential Evolution

Differential Evolution was proposed by Storn and Price [5] and, despite its sim-
plicity, is a powerful search technique, specially for continuous variables opti-
mization.

The basic operation performed by DE is the addition to a candidate vector
of scaled difference(s) between other candidate solution vectors from the popula-
tion. The basic mutation operator of the DE is used here, which picks randomly
the individuals in the population, leading to ui,j,G+1 = xr1,j,G + F.(xr2,j,G −
xr3,j,G), where r1, r2 and r3 are randomly selected individuals with r1 6= r2 6= r3
. In addition, a crossover operation is performed, using the parameter CR, as
explained in Algorithm 2.

4 The Proposed Hybrid Approach

Numerical coefficients in GGP are generated only by means the values in the for-
mal grammar. To reach values different of those ones in grammar, the algorithm
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Algorithm 2 Pseudo-algorithm for the Differential Evolution

1: procedure DE(PS(populationsize),MUT (mutationscaling), CR(crossoverrate),
GEN(generationsnumber))

2: G← 0
3: CreateRandomInitialPopulation(PS)
4: for i = 0 to PS do
5: Evaluate f(−→x i,G) /*−→x i,G is an individual in the population*/

6: for G← 1 to GEN do
7: for i← 1 to NP do
8: SelectRandomly(r1, r2, r3) /*r1 6= r2 6= r3 6= i*/
9: jRand← RandInt(1, N) /*N is the number of variables*/

10: for j ← 1 to N do
11: if Rand(0, 1) < CR or j = jRand then
12: ui,j,G+1 = xr3,j,G + F.(xr1,j,G − xr2,j,G)
13: else
14: ui,j,G+1 = xi,j,G

15: if f(−→u i,G+1) ≤ f(−→x i,G) then
16: −→x i,G+1 = −→u i,G+1

17: else
18: −→x i,G+1 = −→x i,G

must carry out arithmetic operations over them. This can be very costly as the
tree has a limited depth and some numbers may require several operations to be
calculated. A smaller tree is faster to execute and simpler to understand than
the larges ones, so models represented by smaller trees are desirable.

One way to solve this problem is to use another technique to found the
numerical coefficients. Here we propose the use of DE, a simple and efficient
search technique. We termed our hybrid approach DE Mutation, as DE performs
a perturbation in all numerical coefficients of an individual created by GGP.

DE mutation does not replace the original GGP mutation. The idea is to
perform the original GGP operators first and, in the sequence, to improve the
created individual using DE. All the numerical coefficients in an individual are
then replaced by those found by DE.

The proposed grammar-based genetic programming executes the standard
genetic operators in every generation. In equally spaced intervals, DE is used
to carry out numerical coefficient adjustment. We use Ω to represent how many
times DE is performed during the search.

Another feature that DE introduces to the proposed hybrid GGP concerns
the grammar. All the constants generated by the best individual via DE Muta-
tion are inserted into the grammar as terminals. Consequently, the evolutionary
process can take advantage of these values in the remaining generations (without
DE). A pseudo-code of the proposed approch is described in Algorithm 3.

The parameter de_range in Algorithm 3 indicates how many individuals
of the Population will be improved by DE. Here, the options considered for
de_range are: (i) de_range = 0 (the standard GGP), (ii) de_range = 1 (the
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Algorithm 3 Pseudo-algorithm for Grammar-based Genetic Programming

1: procedure GGPDE

2: Initialize Population of size p_size
3: Initialize Ptmp empty
4: Evaluate Population with DE optimization
5: while evaluations to go do
6: while |Ptmp| < p_size do
7: Select p1 and p2 by tournament
8: Copy p1 to p′1 and p2 to p′2
9: if random < cross_factor then

10: Apply crossover between p′1 and p′2
11: if random < mut_factor then
12: Apply mutation on p′1 and p′2
13: Evaluate p′1 and p′2
14: Insert p′1 and p′2 in Ptmp

15: if Execute DE on this generation then
16: for each individual in de_range best individuals on the Population do
17: DE(individual) //Algorithm 2

18: Population← elite from Population ∪ elite from Ptmp

19: Empty Ptmp

hybrid technique with DE improving the best individual of GGP), and (iii)
de_range = elite (similar to the previous case, but DE is applied to the elite
best individuals of the population).

5 Computational Experiments

Some experiments were designed to compare the performance of classic GGP and
the proposed hybrid. The goal is to show that on problems with real coefficients
the hybrid algorithm performs better than GGP.

Some basic parameters required by GGP are the maximum tree depth, the
population size, the crossover and mutation rates, the elite size, the grammar
used, the selection used and the stop criterion. We used 8 as the maximum tree
depth. The population size used was 500 individuals with an elite of 5%. For
selection we used tournament with 2 randomly sampled individuals. Crossover
and mutation occur in 90% of the cases.

The input data used is split into three groups. The first one is for training,
which is used to evolve the population. The second group is named validation
data, which is used to select the best individual. The last group is the test set
which is used to evaluate the selected individual.

The termination criteria adopted was the maximum number of objective
function evaluations. An evaluation occurs every time the program has to as-
sign a fitness value to an individual. Therefore, the algorithm uses the generated
function and applies it to the training set, calculating the root mean square
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error of that individual. Here, the objective function is evaluated in the evalua-
tion of both meta-heuristics, namely, GGP and DE. The maximum number of
evaluations allowed was 100000.

The population is initialized based on a grammar developed for generating a
feasible individual. Two methods to initialize the GGP population were imple-
mented, each one having 50% of chance of being chosen. In the first one, a tree is
built with a depth being an integer randomly chosen between one and the maxi-
mum depth defined by the user. The second option is a random approach, where
any rule is allowed to be chosen from the grammar as long as the minimum tree
depth plus the current level does not exceed the maximum tree depth.

The DE parameters are population size, and crossover and mutation rates.
The values adopted here are 100, 90% and 80% respectively. The DE process
ends when it performs 100 objective function evaluations, which here correspond
to 10 generations.

Nicolau et al. [15] provided some guidelines for defining benchmark prob-
lems. Many functions were presented and discussed in their work; some of them
are used here. Also, some new functions were generated replacing the integer
values by real ones. It was done randomly including two randomly generated
decimal places for each coefficient. In addition, eight polynomial functions were
created. Four of them have only integer coefficient values while these integer
coefficients are replaced by real values in the other four functions. To do that,
0.5 is added/subtracted to all integer coefficients. All functions from Nicolau et
al. and the ones created here are in Table 1. As the proposed approaches are de-
signed to efficiently found real-valued coefficients, the problems set also includes
functions with this feature.

The adopted grammar is composed by the following rules:

< expr > ::= < expr >< expr >< op > | < var > | < expr >< uop > | < const >

< op > ::= + | − | ∗ | / | pow

< uop > ::= exp

< var > ::= x1 | x2

< const > ::= −5 | − 4 | − 3 | − 2 | − 1 | 0 | 1 | 2 | 3 | 4 | 5

Preliminary experiments were performed using DE in all generations and
for every element of GGP. However, no improvement in the final result was
observed. Thus the parameter Ω was defined, resulting in less objective function
evaluations in the DE in the evolution process of GGP; Here Ω = 10; so the
algorithm will call DE 10 times in equally spaced intervals during the entire
process. Also, the best individual generated by the DE replaces the original
individual from GP only when an improvement is observed.

Two variants of the proposed approach are analyzed here: (i) DE is applied to
the best individual of the population (GGPDE best), and (ii) DE is performed
using the best individuals of GGP (GGPDE elite). Both methods are compared
to a baseline GGP, where the numerical coefficients are created only by the
elements in the formal grammar.
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Table 1: Definition of the functions used in the computational experiments
Nicolau et al. functions [15] and the created ones

F1 f(x) = x4 + 2x3 − 13x2 − 14x+ 24
F2 f(x) = 2x4 − 9x3 − 4x2 + 1
F3 f(x) = x4 + 9x3 − 3x2 − x+ 1
F4 f(x) = x4 − x2 + 25x+ 2
F5 f(x1, x2) = 6sin(x1)cos(x2)
F6 f(x1, x2) = (x1 − 3)(x2 − 3) + 2sin((x1 − 4)(x2 − 4))

F7 f(x1, x2) =
(x1−3)4+(x2−3)3−(x2−3)

(x2−2)4+10

F8 f(x1, x2) =
1

1+x1
−4 + 1

1+x2
−4

F9 f(x1, x2) = x1
4 − x1

3 + x2
2/2− x2

F10 f(x1, x2) =
8

2+x1
2+x2

2

F11 f(x1, x2) = x1
3/5 + x2

3/2− x2 − x1

F12 f(x1, x2) =
e−(x1−1)2

1.2+(x2−2.5)2

F13 f(x1, x2) = e−x1x1
3cos(x1)sin(x1)(cos(x1)sin

2x1 − 1)(x2 − 5)

Functions adapted to real valued coefficients

F1r f(x) = 0.5x4 + 1.5x3 − 13.5x2 − 13.5x+ 24.5
F2r f(x) = 2.5x4 − 9.5x3 − 3.5x2 + 1.5
F3r f(x) = 1.5x4 + 9.5x3 − 2.5x2 − 0.5x+ 1.5
F4r f(x) = 1.5x4 + 0.5x3 − 0.5x2 + 25.5x+ 1.5

F5r f(x1, x2) =
(x1−3.96)4+(x2−3.41)3−(x2−3.11)

(x2−2.94)4+10.57

F6r f(x1, x2) =
1.91

1.93+x1
−4 + 1.5

1.64+x2
−4

F7r f(x1, x2) = x1
4 − x1

3 + x2
2/2.71− x2

F8r f(x1, x2) =
8.47

2.59+x1
2+x2

2

F9r f(x1, x2) = x1
3/5.92 + x2

3/2.98− x2 − x1

F10r f(x1, x2) = 6.7sin(x1)cos(x2)
F11r f(x1, x2) = (x1 − 3.91)(x2 − 3.33) + 2.26sin((x1 − 4.74)(x2 − 4.53))

Thirty independent runs were performed for each technique in each function.
The results obtained in the functions from [15] and the generated ones with
integer coefficients can be seen in Table 2. Table 3 presents the results found for
the modified functions. These tables present the following values for the errors of
the models found: minimum, median, mean, standard deviation, and maximum.
Also, the best results are highlighted in boldface.

As F12 already has real-valued coefficients, no modification was made. F13
has trigonometric functions and these functions are not in the grammar used
here. Thus, F13 is not adapted either.

“Inf” values can be seen in some lines of both tables. In F13, the worst model
obtained by GGP contains indefiniteness (like division by zero). The standard
deviations calculated for the solutions found by the variant GGPDE best in
functions F13 and F5r are very large.

Table 4 shows the number of times in which the best results are obtained by
each method considered here. For the minimum value, GGPDE best overcomes
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Table 2: Results for the models from [15] and those with integer coefficients.
F Approach Min Median Mean Std Max

GGP 1.27267e-20 3.20295e+02 3.83958e+02 3.38433e+02 2.06861e+03

F1 GGPDE best 1.24314e+02 3.19164e+02 3.23125e+02 9.66903e+01 5.25894e+02

GGPDE elite 9.39024e+01 2.84030e+02 3.91188e+05 2.10417e+06 1.17225e+07

GGP 1.18479e-18 3.69810e-01 1.41985e+02 3.98085e+02 1.68803e+03

F2 GGPDE best 1.18489e-18 1.02453e+00 1.87379e+02 4.55823e+02 2.31287e+03

GGPDE elite 1.18489e-18 1.00000e+00 1.48102e+02 3.11546e+02 1.26865e+03

GGP 3.41348e-19 3.22930e+01 4.05211e+02 6.64576e+02 3.21866e+03

F3 GGPDE best 3.41343e-19 2.02782e+00 2.04296e+02 3.27345e+02 1.09942e+03

GGPDE elite 3.41353e-19 1.89276e+01 1.25639e+02 1.91379e+02 8.71560e+02

GGP 2.67329e-20 2.67330e-20 1.25102e+01 5.56011e+01 3.05324e+02

F4 GGPDE best 2.67327e-20 2.67330e-20 1.87492e-01 9.44870e-01 5.26439e+00

GGPDE elite 2.67325e-20 2.67330e-20 1.47353e+01 7.84320e+01 4.37096e+02

GGP 7.15415e+00 8.23153e+00 2.43162e+01 8.16072e+01 4.62883e+02

F5 GGPDE best 6.85063e+00 8.29127e+00 1.15226e+08 6.20513e+08 3.45679e+09

GGPDE elite 6.46682e+00 8.45763e+00 3.31625e+28 1.78586e+29 9.94876e+29

GGP 1.83507e+00 4.25916e+00 9.97359e+00 1.07128e+01 4.32296e+01

F6 GGPDE best 1.88241e+00 1.93989e+00 8.03398e+00 8.29932e+00 2.77297e+01

GGPDE elite 1.80789e+00 4.27954e+00 9.19945e+00 9.40705e+00 3.42718e+01

GGP 9.48119e+01 4.09538e+02 3.98684e+02 2.07941e+02 1.02015e+03

F7 GGPDE best 5.56259e+01 3.73582e+02 7.24423e+132 3.90114e+133 2.17327e+134

GGPDE elite 9.81467e+01 4.04810e+02 4.24675e+02 1.94837e+02 9.01534e+02

GGP 5.17117e-03 6.18720e-02 8.34767e-02 5.51492e-02 2.18350e-01

F8 GGPDE best 4.54639e-03 6.12495e-02 7.54036e-02 4.68644e-02 1.61780e-01

GGPDE elite 2.57640e-03 9.20400e-02 9.63285e-02 5.57474e-02 1.98522e-01

GGP 2.91398e-20 6.76676e+01 8.15942e+01 7.44445e+01 2.52412e+02

F9 GGPDE best 5.41265e-01 3.07666e+01 6.67409e+01 6.25851e+01 1.81362e+02

GGPDE elite 1.05793e+01 1.27820e+02 1.24008e+02 9.92508e+01 4.27681e+02

GGP 3.96578e-02 1.84812e-01 1.84424e-01 9.35003e-02 3.49632e-01

F10 GGPDE best 3.94160e-02 1.15905e-01 1.14604e+10 6.17160e+10 3.43811e+11

GGPDE elite 4.34469e-02 1.32551e-01 3.67080e+07 1.97679e+08 1.10124e+09

GGP 2.64535e+00 1.92827e+01 2.31053e+01 1.46673e+01 5.52548e+01

F11 GGPDE best 2.08399e+00 2.07451e+01 2.43688e+01 1.54383e+01 7.97426e+01

GGPDE elite 1.24761e+01 2.64740e+01 3.04023e+01 1.77095e+01 7.05079e+01

GGP 1.15570e-03 2.80619e-03 1.61054e+29 8.67302e+29 4.83162e+30

F12 GGPDE best 5.90153e-04 3.02171e-03 3.58328e-03 2.32394e-03 1.28618e-02

GGPDE elite 1.23993e-03 4.13272e-03 4.26648e-03 2.18519e-03 1.02590e-02

GGP 3.21105e+140 1.43894e+145 inf inf inf

F13 GGPDE best 8.53042e+139 3.29360e+145 7.07463e+210 inf 2.12239e+212

GGPDE elite 8.47539e+139 5.86418e+144 9.91778e+145 1.95611e+146 9.20379e+146

the other approaches. The same minimum value was obtained by all approaches
in F2, so it is not considered in this analysis.

Analyzing the median values, the results obtained shows GGP with better
values in seven of all 23 problems. The same median value was found by all
approaches in F4 and it is not considered in this analysis. Comparing to the
other approaches, GGPDE best achieved most of the best medians: 11 of the 23
problems.

Looking for the mean value, GGP and GGPDE best had better results. When
comparing only GGP with GGPDE best, the second one goes to 15 best values
while standard GGP stays with 9.

For both standard deviation and the maximum values, GGPDE variants
obtained values better than those found by GGP.
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Table 3: Results obtained for the models with real-valued coefficients.
F Approach Min Median Mean Std Max

GGP 5.48189e+01 1.76317e+02 2.38351e+130 1.28356e+131 7.15053e+131

F1r GGPDE best 8.51386e+00 1.23058e+02 1.50917e+02 1.01282e+02 4.14614e+02

GGPDE elite 2.49015e+01 1.35062e+02 1.38455e+02 5.61589e+01 2.33040e+02

GGP 2.50000e-01 1.27940e+02 5.39328e+02 7.85030e+02 2.91256e+03

F2r GGPDE best 7.98032e-01 9.79430e+01 3.85574e+02 7.04658e+02 2.90090e+03

GGPDE elite 2.59192e-01 1.22137e+01 2.26970e+02 5.07131e+02 2.12380e+03

GGP 3.74884e+01 5.10014e+02 1.33653e+03 2.39767e+03 1.24998e+04

F3r GGPDE best 5.81255e-01 4.41056e+02 8.12076e+02 1.21800e+03 5.71448e+03

GGPDE elite 8.34346e+00 4.18485e+02 4.83822e+02 3.86485e+02 1.36211e+03

GGP 1.24521e+01 1.32684e+02 1.74190e+02 1.31735e+02 5.17977e+02

F4r GGPDE best 2.50000e-01 1.42351e+02 1.84998e+02 1.75329e+02 8.49106e+02

GGPDE elite 4.24787e+00 2.00104e+02 9.78321e+02 2.70527e+03 1.22537e+04

GGP 7.69905e+00 1.03494e+01 1.02325e+01 9.72613e-01 1.15175e+01

F5r GGPDE best 7.49249e+00 1.04060e+01 6.18707e+178 inf 1.85612e+180

GGPDE elite 8.71417e+00 1.06273e+01 1.35408e+03 7.23534e+03 4.03176e+04

GGP 2.54229e+00 1.26288e+01 1.99437e+01 1.68676e+01 5.73162e+01

F6r GGPDE best 2.48153e+00 1.62218e+01 1.88118e+01 1.67733e+01 5.67298e+01

GGPDE elite 2.50581e+00 1.88640e+01 2.35538e+01 1.99124e+01 7.69267e+01

GGP 1.96530e+02 7.14748e+02 8.50404e+02 5.03237e+02 2.46552e+03

F7r GGPDE best 1.74813e+02 7.11527e+02 7.67132e+02 4.85504e+02 2.54786e+03

GGPDE elite 2.50323e+02 1.02802e+03 1.03900e+03 5.45372e+02 3.07262e+03

GGP 1.63017e-02 8.62828e-02 8.27299e-02 3.87543e-02 1.75797e-01

F8r GGPDE best 6.21844e-03 6.91660e-02 6.70838e-02 3.80853e-02 1.52002e-01

GGPDE elite 1.15992e-02 9.12135e-02 8.32915e-02 3.95185e-02 1.65612e-01

GGP 1.00405e-01 1.32341e+02 1.49218e+02 2.45887e+02 1.42234e+03

F9r GGPDE best 6.63786e-01 8.77002e+01 1.45180e+02 3.37647e+02 1.93108e+03

GGPDE elite 2.84583e+00 1.41733e+02 1.16240e+02 7.19148e+01 2.48074e+02

GGP 1.62983e-02 1.20113e-01 1.31228e-01 9.36401e-02 4.21901e-01

F10r GGPDE best 1.16336e-02 1.29129e-01 2.41550e+07 1.30079e+08 7.24650e+08

GGPDE elite 2.34820e-03 1.18365e-01 1.35053e-01 8.51397e-02 2.62876e-01

GGP 3.58123e+00 1.46003e+01 1.55218e+01 6.35614e+00 3.31064e+01

F11r GGPDE best 5.52777e+00 1.22693e+01 1.37339e+01 5.88497e+00 2.75655e+01

GGPDE elite 6.61749e+00 1.32096e+01 1.57459e+01 7.43996e+00 3.55630e+01

When all cases are considered (total), GGPDE best can be considered the
best performing method between those considered here. Also, one can highlight
the results obtained GGPDE variants when the functions contains real-valued
coefficients. GGPDE best obtained the best results in 8 of the 11 problems, the
best medians in 5, and the best mean in 4.

Finally, Table 5 presents the mean run time of the techniques for each func-
tion. These values indicate that the processing time required by the baseline
GGP is similar to those observed in both GGPDE approaches. Also, one can
notice that GGPDE elite is faster than the other methods considered here.

6 Concluding Remarks and Future Works

The hybridization of GGP with DE is proposed here, where DE is used to im-
prove the numerical coefficients of the models obtained by GGP. Also, the gram-
mar is adapted during the search when the proposed method is used.
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Table 4: Total of best results for each category
Approach Min Median Mean Std Max Total

GGP 5 7 9 6 6 33
GGPDE best 13 11 9 8 8 49
GGPDE elite 5 5 6 10 10 36

Results show that using DE into GGP is useful. The proposed technique ob-
tained the best results in most of the problems when DE is applied to the best
individual of GGP. It indicates that the fine tuning of the coefficient values per-
formed by the proposed hybrid approach improves the original search technique.
In special, the best results were found by the variant GGPDE best in 13 of the 24
functions used in the computational experiments. When the functions contains
real-valued coefficients, the best results are achieved in 8 of the 11 situations.

Other applications can be considered in future works. Also, it is desired
perform a sensibility analysis of the parameter values; for instance, with respect
to the frequency of DE execution and the number of fitness evaluations.
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